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Abstract—On time and within budget software project devel-
opment represents a challenge for software project managers.
Software management activities include but are not limited
to: estimation of project cost, development of schedules and
budgets, meeting user requirements and complying with stan-
dards. Recruiting development team members is a sophisticated
problem for a software project manager. Since the utmost cost
in software development effort is manpower, software project
effort and is associated cost estimation models are used in
estimating the effort required to complete a project. This effort
estimate can then be converted into dollars based on the proper
labor rates. An initial development team needs to be selected
not only at the beginning of the project but also during the
development process. It is important to allocate the necessary
team to a project and efficiently distribute their effort during
the development life cycle. In this paper, we provide our initial
idea of developing a prediction model for defining the estimated
required number of test workers of a software project during
the software testing process. The developed models utilize the
test instance and the number of observed faults as input
to the proposed models. Artificial Neural Networks (ANNs)
successfully build the dynamic relationships between the inputs
and output and produce and accurate predication estimates.

Keywords—Staff Management; Neural Networks; Software
Testing; Estimation

I. INTRODUCTION

”Software is a place where dreams are planted and
nightmares harvested . . . a world of were- wolves and
silver bullets.” This quote from Brad Cox [1] defined the
challenges for software project managers in the past as well
as today. The software project manager needs to have the
skills, techniques and monitoring and control tools to meet
the goal of a software development project. The goal is to
complete software development within the agreed upon cost,
schedule and user expectations. The measure of meeting
this goal includes: meeting a schedule and a cost through
improving budget distribution, managing human resources
and adapting to environment changes. Intelligent project
management requires many talents and skills. In 1987, the
IEEE standards provide the following definition of software
project management: Software project management is the
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process of planning, organizing, staffing, monitoring, con-
trolling, and leading a software project.

Software development has long been perceived as a risky
business [2], [3]. A project manager can always try to predict
the required resources and plan a schedule for a deliverable,
but there is no guarantee that this is what will happen unless
a careful monitoring and control plan is maintained. His/her
ability to identify risks in advance could help planning
for additional time to recover and reduce the consequence
losses. According to Dr. Patricia Sanders, Director of Test
Systems Engineering and Evaluation at OUSD, in her 1998
Software Technology Conference keynote address, 40% of
the DoDs software development costs are spent on reworking
the software, which in the year 2000 is equal to an actual loss
of $18 billion. Furthermore, Sanders stated that only 16% of
software development would finish on time and on budget.
It was also stated in [4] that:

Given that software-intensive projects are
among the most expensive and risky undertakings
of the 21st century, the investment in weapons
from fiscal years 2003 through 2009 will exceed
$1 trillion. Furthermore, many of the DoD’s most
important technology projects will continue to de-
liver less than promised unless changes are made.
Improving how we acquire software-intensive sys-
tems is both long overdue and an imperative.

In fact, the software development process is all about
people, methodologies and tools. This can be seen from the
software development process shown in Figure 1. People
have to understand the project requirements, develop project
plan and make a design, deployment of the project, test and
validate the business requirements and finally fix bugs if any.

Software life cycle includes testing of the software sys-
tem. The testing process requires significant effort and could
cost over 50% of the project effort. This process requires a
significant effort. It is defined as the process of executing
a program with the intent of finding software bugs, errors
or any defects [5]–[7]. It is also the process of validating
and verifying that the developed software program will work
and satisfies the needs of stakeholders. Software testing to be
implemented needs a team of qualified personal. The team
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Fig. 1. Software development process

size depends on many factors. These factors include the size
and complexity of the developed software or program. Staff
turnover means frequent replacement of the development
personnel. This in fact is one of the significant problems
a software project manager could deal with.

In this paper, we provide a non-parametric Artificial
Neural Network (ANN) model for predicting the number
of test workers required during the software testing process.
The number of required test workers will depend upon the
count of faults (defects) observed at certain test instances.
The model should be capable of accurately defining the
required team size for testing and also help project managers
distribute the effort of his team on various tasks required
for the project. In Section II, we present a definition to the
staff management problem. Statistical Regression Analysis
is presented in Section III. An overview of soft computing
techniques and specifically Artificial Neural Networks is
presented in Section IV. The evaluation criterion for mea-
suring the goodness of the developed models are presented
in Section VI. The two case studies considered in this article
are presented in Sections VII and VIII. Finally, we present
the conclusion and future work.

II. STAFF MANAGEMENT

Time, cost, and number of staff estimations are essen-
tial duties for project managers in all business enterprises
and especially for software projects. The manager needs
to calculate an estimate for these main attributes in the
early development process. This is not always an easy task
for project managers. The role of a project manager is to
manage, analyze and make decisions at all development
phases according to accessible resources. Estimating time,
cost, and staff helps sustain the monitoring and controlling
of project activities and, in the end, produce quality. The
field of software effort/cost estimation is concerned with
providing an estimate of the expected cost, schedule, and
manpower required to produce a software system. In fact
there are common problems which could occur whenever
we build a software system. The source of these problems
could be one of the following:

• Insufficient requirements for the project

• Inadequate financial resources

• Loss of coordination because of many vendors

Fig. 2. Staff management process

• Staff turnover

The staff management process for the project consists of the
following five elements: Staff Planning, Staff Acquisition,
Staff Training, Staff Tracking, and Staff Transition. This
process is shown in Figure 2. Specific information related to
staff need to be collected, organized and updated during the
project development life cycle. The staff management process
for the project consists of the following five elements: Staff
Planning, Staff Acquisition, Staff Training, Staff Tracking,
and Staff Transition. This process is shown in Figure 2.
Specific information related to staff needs is to be collected,
organized and updated during the project development life
cycle. The staff management information collected should
include:

• The adequate numbers of staff needed for each
project phase.

• The contribution as a function of time staff member.

• The source of staff such as staff hiring, part timer
hiring or consulting.

• The schedule for joining and leaving the project.

Staff management includes project cost. The manager needs
to gather adequate information such that the estimated project
cost can be computed. Many software effort/cost estimation
models where proposed to help in providing a high quality
estimate to assist a project manager in considering the best
decisions for a project [8], [9]. Many software cost estimation
models were reported in the literature [10]–[13]. These
models were used to help project managers to estimate effort,
time and cost.

Staff scarcities is considered as sources for either inef-
ficient use of resources or delay in delivering the project.
Computing staffing members needed for a project depends
on correct predictions of the project demand and expected
date of the product to be in the market. Any delay might
cause business loss or damage to firm reputation. Numerous
methods were used to compute the estimate and predict
staffing needs, based on the firms past experience, project
types and sales and manufacture statistics [14]–[17].

III. STATISTICAL REGRESSION ANALYSIS

Statistical regression analysis associates relationships
among a set of independent variables and one or more

(IJACSA) International Journal of Advanced Computer Science and Applications,  

Vol. 5, No. 7, 2014 

187 | P a g e  

www.ijacsa.thesai.org 



dependent variables. The independent variables could be
historical measurements about certain events in the past while
we want to estimate or predict an independent variable at
this instant of time or even in the future. Many techniques
for carrying out regression analysis were evolved in the past.
Linear regression and ordinary least squares regression are
parametric methods that use Least Square Estimation (LSE)
to estimate mathematical model parameters. COCOMO uses
such regression methods.

A. Single Linear Regression

Regression analysis measures the degree of influence
of the independent variables on a dependent variable. In
the case of simple bivariate regression where there is a
single independent variable, the dependent variable could
be predicted from the independent variable by the simple
equation:

y = a+ bx+ ϵ (1)

a is constant and b is the slope. This model is linear in
the parameters ai. y is called the independent variable and
xi, i = 1, . . . , n are called the independent variables. The
goal is to find the relationship between the dependent and
independent variables. To compute the regression coefficient
for the single independent variable given in Equation 1, we
use the formula:

b =

∑
(xi − x̂)(yi − ŷ)∑

(xi − x̂)2
(2)

Where x̂ is the mean (average) of the x values and ŷ is
the mean of the y values. The parameter a is computed by
the formula:

a = y − bx (3)

Equation 2 can be expanded to be:

b =
(
∑

yi
∑

x2
i )− (

∑
xi

∑
xiyi)

n(
∑

x2
i )− (

∑
xi)2

(4)

B. Multiple Linear Regression

Equation 1 can be expanded to a multivariate concept as
follows:

y = a1xi1 + a2xi2 + · · ·+ anxij (5)

Where xij is the ith observation on the jth independent
variable. To show how the parameter estimation process
works, we assume we have a system with four input variables
x1, x2, x3, x4 and single output y. Thus, the model mathe-
matical equation can be represented as:

y = a0 + a1x1 + a2x2 + a3x3 + a4x4 (6)

To find the values of the model parameters a’s we need to
build what is called the regression matrix ϕ. This matrix is
developed based on the experiment collected measurements.

Thus, ϕ can be presented as follows given there is a set of
measurements m:

X =


1 x1

1 x1
2 x1

3 x1
4

1 x2
1 x2

2 x2
3 x2

4
...

...
...

...
...

1 xm
1 xm

2 xm
3 xm

4


The parameter vector θ and the output vector y can be

presented as follows:

θ =

 a1
a2
a3
a4

 y =


y1

y2

...
ym

 (7)

The least squares solution of yields the normal equation:

ϕT θ = y (8)

which has a solution:

θ = ϕ−1y (9)

But since, the regression matrix ϕ is not a symmetric matrix,
we have to reformulate the equation such that the solution
for the parameter vector θ is as follows:

θ = (ϕTϕ)−1ϕTy (10)

IV. SOFT-COMPUTING TECHNIQUES

Soft Computing techniques were explored to build effi-
cient effort estimation models structures [18], [19]. In the
past, authors in [20] explored the use of Neural Networks
(ANNss), Genetic Algorithms (GAs) and Genetic Program-
ming (GP) to provide a methodology for software cost
estimation. ANN were used for software engineering project
management in [21]. Authors in [22], provided a detailed
study on using Genetic Programming (GP), Neural Network
(ANNs) and Linear Regression (LR) in solving the software
project estimation. Many data sets provided in [23], [24] were
explored with promising results. A fuzzy COCOMO model
was developed in [18].

Recently, In [12], author provided a pioneering set of
models modified from the famous COCOMO model with
interesting results. Later on, many authors explored the
same idea with some modification [25]–[28] and provided
a comparison to the work presented in [12]. Exploration
of the advantages of the Takagi-Sugeno (TS) technique on
building a set of linear models over the domain of possible
software Kilo Line Of Code (KLOC) were investigated in
[29]. Authors in [30] presented an extended work on the
use of Soft Computing Techniques to build a suitable model
structure to utilize improved estimations of software effort
for NASA software projects. On doing this, Particle Swarm
Optimization (PSO) was used to tune the parameters of
the COCOMO model. The performance of the developed
model was evaluated using NASA software projects data
set. A comparison between COCOMO-PSO, Artificial Neural
Networks (ANNs), Halstead, Walston-Felix, Bailey-Basili
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and Doty models were provided with excellent modeling
results. In [31], a research work describes the Estimation
of Projects in Contexts of Uncertainty (EPCU) model. The
model is an estimation process based on fuzzy logic which
has the objective of solving the project estimation problem
taking the benefits of the Expert Judgment in a formal way,
without using quantitative historic data.

V. WHAT IS ANN?

According to the Defense Advanced Research Projects
Agency (DARPA) Neural Network Study (1988, AFCEA
International Press, p. 60):

... a neural network is a system composed
of many simple processing elements operating in
parallel whose function is determined by network
structure, connection strengths, and the processing
performed at computing elements or nodes.

According to Nigrin (1993), p. 11 Nigrin1993, ANN was
defined as:

A neural network is a circuit composed of a
very large number of simple processing elements
that are neurally based. Each element operates only
on local information. Furthermore each element
operates asynchronously; thus there is no overall
system clock.

ANN can exhibit many brain-like behaviors such as
learning, association, generalization, feature extraction, op-
timization and noise immunity. The basic simple unit of any
ANN is the perceptron which is presented in Figure 3.

Artificial neural networks (ANN) have been proposed
in many articles as a tool which was successfully able to
develop software cost estimates. In [32], author provided
a novel artificial neural network (ANN) prediction model
which incorporates COCOMO and ANN-COCOMO II, to
provide more accurate software estimates at the early phase
of software development. ANN was employed to regulate
the software features considering historical project data. In
[33], authors provided a survey on the cost estimation models
using artificial neural networks. ANN has many advantages
they include:

• A neural network can perform tasks that a linear
program cannot.

• When an element of the neural network fails, it
can continue without any problem by their parallel
nature.

• A neural network learns and does not need to be
reprogrammed.

• It can be implemented in any application.

The learning process in ANN is the algorithm which
is used to adjust the weights of the network in order to
minimize the difference between the actual and predicted
values by the network. Usually, the weights of the network
are initialized randomly. There are four basic types of
learning rule: Error Correlation Learning (ECL), Boltzmann

Fig. 3. The simple building block of ANN

learning (BL), Hebbian Learning (HL), and Competitive
Learning (CL). The detailed descriptions of these learning
rules are referred to the work of [34]. Among all the training
algorithms, Back-Propagation (BP) which follows ECL rule
is the most popular choice.

VI. EVALUATION CRITERIA

The performance of the developed two models; the Auto-
Regression and the Artificial Neural Networks models will
be evaluated using a number of evaluation criteria. They are:

• The Variance-Accounted-For (VAF) criteria was
adopted by [35]:

V AF =
[
1− var(y − ŷ)

var(y)

]
× 100% (11)

• The Mean square error (MSE):

MSE =
1

N

n∑
i=1

(yi − ŷi)
2 (12)

• The Euclidian distance (ED):

ED =

√√√√(
n∑

i=1

(yi − ŷi)2 (13)

• The Manhattan distance (MD):

MD =
1

N

n∑
i=1

|yi − ŷi| (14)

• In [36], the authors provided an empirical study for
data modeling in software engineering application
and used radial basis function (RBF) to develop
effort estimation model. They considered the mean
magnitude of relative error (MMRE) as the main
performance measure. We will evaluate the (MMRE)
over the training and testing data as described in
[36]. The mean magnitude of relative error (MMRE),
defined as:
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TABLE I. TEST/DEBUG DATA 1 x1 : TEST INSTANCES, x2 : REAL
DETECTED FAULTS, yk : NO. OF TEST WORKERS

x1 x2 y x1 x2 y x1 x2 y

1 5 4 38 15 8 75 0 4
2 5 4 39 7 8 76 0 4
3 5 4 40 15 8 77 1 4
4 5 4 41 21 8 78 2 2
5 6 4 42 8 8 79 0 2
6 8 5 43 6 8 80 1 2
7 2 5 44 20 8 81 0 2
8 7 5 45 10 8 82 0 2
9 4 5 46 3 8 83 0 2

10 2 5 47 3 8 84 0 2
11 31 5 48 8 4 85 0 2
12 4 5 49 5 4 86 0 2
13 24 5 50 1 4 87 2 2
14 49 5 51 2 4 88 0 2
15 14 5 52 2 4 89 0 2
16 12 5 53 2 4 90 0 2
17 8 5 54 7 4 91 0 2
18 9 5 55 2 4 92 0 2
19 4 5 56 0 4 93 0 2
20 7 5 57 2 4 94 0 2
21 6 5 58 3 4 95 0 2
22 9 5 59 2 4 96 1 2
23 4 5 60 7 4 97 0 2
24 4 5 61 3 4 98 0 2
25 2 5 62 0 4 99 0 2
26 4 5 63 1 4 100 1 2
27 3 5 64 0 4 101 0 1
28 9 6 65 1 4 102 0 1
29 2 6 66 0 3 103 1 1
30 5 6 67 0 3 104 0 1
31 4 6 68 1 3 105 0 1
32 1 6 69 1 3 106 1 1
33 4 6 70 0 3 107 0 1
34 3 6 71 0 3 108 0 1
35 6 6 72 1 3 109 1 1
36 13 6 73 1 4 110 0 1
37 19 8 74 0 4 111 1 1

TABLE II. EVALUATION CRITERIA OF THE ANN MODELS

Criteria VAF MSE ED MD MMRE
MR 85.621% 0.559 7.881 0.526 0.148
NN 96.347% 0.143 3.994 0.243 0.076

MMRE =
1

N

N∑
i=1

|yi − ŷi|
yi

(15)

Where y and ŷ are the observed and predicted number of
test workers the neural network model and n is the number
of measurements used in the experiments, respectively.

VII. TEST/DEBUG DATA 1

Field report data was developed to measure system faults
during testing in a real-time application [37]. The software
system consists of 200 modules with each having one kilo
line of code of FORTRAN. A Test/Debug dataset of 111
measurements is given in Table I. To develop a ANN test
work estimate model, we used the data set to train the
ANN. The observed and predicted number of workers was
calculated based on the test instances and the real detected
faults and shown in Figure 4. The convergence of the neural
networks is shown in Figure 5 over 3000 epochs. The
observed and predicted number of workers calculated based
the test instances and the real detected faults is shown in
Figure 5. The convergence of the neural networks is shown
in Figure 6.
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Fig. 4. Observed and predicted number of test workers using Multiple
Regression Model: Test/Debug Data 1
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Fig. 5. Observed and predicted number of test workers using ANN:
Test/Debug Data 1
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Fig. 6. NN Convergence using 50 neurons in the hidden layer: Test/Debug
Data 1
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TABLE III. TEST/DEBUG DATA 2 x1 : TEST INSTANCES, x2 : REAL
DETECTED FAULTS, yk : NO. OF TEST WORKERS

x1 x2 y x1 x2 y

1 2 75 24 2 8
2 0 31 25 1 15
3 30 63 26 7 31
4 13 128 27 0 1
5 13 122 28 22 57
6 3 27 29 2 27
7 17 136 30 5 35
8 2 49 31 12 26
9 2 26 32 14 36

10 20 102 33 5 28
11 13 53 34 2 22
12 3 26 35 0 4
13 3 78 36 7 8
14 4 48 37 3 5
15 4 75 38 0 27
16 0 14 39 0 6
17 0 4 40 0 6
18 0 14 41 0 4
19 0 22 42 5 1
20 0 5 43 2 6
21 0 9 44 3 5
22 30 33 45 0 8
23 15 18 46 0 2
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Fig. 7. Observed and predicted number of test workers using Multiple
Regression Model: Test/Debug Data 2

VIII. TEST/DEBUG DATA 2

A Test/Debug data set has 46 measurements is given in
Table III. The data set was presented in [37]. The number of
measurements collected during the testing process is small.
This represents a difficulty for traditional parameter estima-
tion techniques. It is sometimes difficult to correctly estimate
model parameters using a small number of measurements.
To build a test work estimate model, we used the data set
to build both the MR and ANN models. The observed and
predicted number of workers calculated is based on the test
instances and the real detected faults are shown in Figure 8.
The convergence of the neural networks is shown in Figure
9 over 3000 epochs.

TABLE IV. EVALUATION CRITERIA OF THE ANN MODELS

Criteria VAF MSE ED MD MMRE
MR 84.088% 188.73 93.175 9.992 0.931
NN 89.098% 129.99 77.328 7.252 0.707
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Fig. 8. Observed and predicted number of test workers using ANN:
Test/Debug Data 2
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Fig. 9. NN convergence using 20 neurons in the hidden layer: Test/Debug
Data 2

IX. CONCLUSIONS AND FUTURE WORK

Estimating the number of test workers during the soft-
ware testing process became a challenge problem. Numerous
methods were used to estimate and predict staffing needs,
based on the firms past experience, project types and sales
and manufacture statistics. Thus, tools and methods are
required to fill the gap in this major area of software
project life cycle development. In this paper, we propose
our initial idea of developing predictive models for defining
the estimated number of test workers of a software project
during the software testing process using ANN. The de-
veloped models utilize the test instance and the number of
observed faults as input to the proposed models. Two cases
studies were presented and many evaluation criterions were
used to validate the developed model performance. Artificial
Neural Networks (ANNs) successfully build the dynamic
relationships between the inputs and output and produce and
accurate predication estimates. We plan to explore other soft
computing techniques to handle this problem such as fuzzy
logic to develop a mathematical relationship which can be
easily explained in this case.
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