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Abstract—The assessment of document sentiment orientation
using term specificity information is advocated in this study. An
interpretation of the mathematical meaning of term specificity
information is given based on Shannon’s entropy. A general
form of a specificity measure is introduced in terms of the inter-
pretation. Sentiment classification using the specificity measures
is proposed within a Bayesian learning framework, and some
potential problems are clarified and solutions are suggested when
the specificity measures are applied to estimation of posterior
probabilities for the NB classifier. A novel method is proposed
which allows each document to have multiple representations,
each of which corresponds to a sentiment class. Our experimental
results show, while both the proposed method and IR techniques
can produce high performance for sentiment classification, that
our method outperforms the IR techniques.

Index Terms—term specificity information; specificity mea-
sure; naive Bayes classifier; sentiment classification.

I. INTRODUCTION

The proliferation of web-centred social interaction has led
to increasing quantities of opinion-dense text. The availability
of this data, and the range of scientific, commercial, social and
political uses to which it may be put, has reinforced interest
in opinions as objects of analysis and fuelled the growth of
text Sentiment Classification (SC). Sentiment analysis draws
from, and contributes to, broad areas of text analytics, natural
language processing and computational linguistics. The basic
task for the analysis is to classify the polarity of a given text:
whether the opinion expressed is positive or negative. Early
studies at the whole document level such as [1], [2] used
several methods to classify the polarity of product reviews and
movie reviews, respectively. Classifying document polarity on
n-ary scales, rather than just positive and negative, can be
found, for instance, in [3]–[5]. Good reviews of SC methods
can be found, for instance, in [5]–[7].

Generally, three main issues need to be considered in sta-
tistical methods of SC: i) methodologies to identify sentiment-
bearing terms; ii) models to represent documents with the
identified terms; iii) classifiers to classify each document by
predicting a class that is most likely to generate the docu-
ment representation. This study focuses on the second issue:
design method to represent documents using Term Specificity
Information (TSI) for accurate and reliable SC.

Several classical classifiers, such as Naive Bayes (NB),

k-Nearest Neighbours (kNN), Maximum Entropy (ME) and
Support Vector Machine (SVM) have been developed further
for SC. Studies have shown NB and SVM to be superior meth-
ods for SC [8]–[12]. Studies [13], [14] have experimentally
shown performance benefits of representing documents using
TSI along with SVM for SC. Our experimental results (not
discussed in this paper) obtained from TSI with SVM, also
support these conclusions.

In order to develop SC classifiers with a predictive ca-
pability, we need to know the explicit representation of
the opinionated documents. That is, we have to design a
weighting function to generate the document representation
corresponding to the individual sentiment classes (each class
is treated as a sub-collection). The weights of terms may
be expected to enhance the likelihood of correctly predicting
document sentiment orientation. This stage is crucial for SC,
in particular, for estimating the posterior probability required
by the NB classifier. There have been extensive studies on
document representation in other areas, such as IR, in which
a controlled vocabulary is constructed and the weights of
carefully selected terms are used to represent the content of
documents over the whole collection.

Specificity information measurement can be naturally and
conveniently utilized to estimate posterior probabilities re-
quired in the NB classifier. Therefore, this study concentrates
on SC in a Bayesian learning framework (rather than in SVM),
in which, document representation using TSI is essential. The
NB classifier is surprisingly effective in practice since its
classification decision can be correct even if its probability
estimates are inaccurate [15], [16], and it often competes well
with more sophisticated classifiers [16], [17]. There are the-
oretical reasons [17] for the apparently unreasonable efficacy
of the NB classifier. However, there has been no systematic
discussion on how to use TSI to represent documents for SC
and there exist some potential problems in applying specificity
measures to the NB classifier for SC.

It is worth mentioning, rather than considering all terms
in documents, that [18] attempts to determine the specificity
of nouns. One possible indicator of specificity is how often
the noun is modified: a very specific noun is rarely modified,
while a very general noun is often modified. There are three
categories of the modifiers: (prenominal) adjectives, verbs, or
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other nouns. Their study uses the probability that the noun
is modified by any of the modifiers and the probability that
the noun is modified by each specific category. Their work
considers also how much the modifiers vary: a noun with a
great variety of modifiers suggests that it is general, whereas a
noun rarely modified or modified by only a few different ways
is likely specific. Clearly, their work is entirely different from
methods presented in this paper. It is evident that the method
given in [13] is a special case of one of our methods.

There are three main concerns in this study. First, we
interpret the mathematical meaning of a basic concept on
specificity information conveyed by a given term based on
Shannon’s entropy, and introduce a formal definition of a
specificity measure in terms of the interpretation. Second,
we propose a general method to represent the statistical
importance of terms pertaining to individual documents with
estimation of posterior probabilities using term weights ob-
tained from TSI for the NB classifier. Third, we clarify
some potential problems inherent in applying the specificity
measures in a Bayesian learning framework and, then suggest
solutions that are easy to apply in practice. Our methods
allow each document to have multiple representations, each
of which corresponds to a specific sentiment class, which
we believe is of benefit to SC tasks. In addition, we present
some experimental results, evaluating performance against a
standard collection, MovieReviews [19], to verify that both
TSI and the difference of TSIs over the individual sentiment
classes may be regarded as appropriate measures for SC.

The remainder of the paper is organized as follows. Sec-
tion 2 focuses on the mathematical interpretation and formal
definition of TSI. Section 3 proposes a general form of the
NB classifier with posterior probability estimation using TSI.
Section 4 clarifies problems of applying TSI and suggests solu-
tions. Some experimental results of our method are presented
in Section 5 and conclusions are drawn in Section 6.

II. TERM SPECIFICITY INFORMATION (TSI)

This section gives a mathematical interpretation and formal
definition of specificity information of terms.

To begin, let us introduce the notation. Let C be a collection
of documents and d ∈ C be a document. Let C be the
classification of documents over C and X ∈ C (or, X ⊆ C) be
a class. Let V be a vocabulary of all the terms used to index
individual documents. Let VX ⊆ V be the sub-vocabulary
consisting of those terms appearing in at least one document
d ∈ X and Vd ⊆ V be the set of terms appearing in document
d ∈ C.

For simplicity, all our discussions are set to the situation
where |C| = 2. Such a setting can be easily generalized to
any finite number of classes. Thus, we have C = {X, X̄},
where X = CP (or, X = CN ) is a possible sentiment class
consisting of all positive (or, negative) documents. Generally,
VX ∩ VX̄ 6= ∅, as terms often occur in both positive and
negative documents.

A. A General Form of a TSI Measure

Intuitively, a term is said to contain specificity information
if it tends to be capable of isolating the few documents of
interest from many others.

Consider a conditional probability distribution P
X

(d|t) sat-
isfying: P

X
(d|t) ≥ 0 and

∑
d∈X PX

(d|t) = 1. The entropy
function (Shannon’s entropy) of P

X
(d|t) is

H
(
P

X
(d|t)

)
= −

∑
d∈X

P
X

(d|t) logP
X

(d|t)

where P
X

(d|t) is called the document frequency distribution
(over X) of term t ∈ VX . We here adopt the notational
convention: y log(y) = 0 if y = 0.

Note that, from the properties of the entropy function, if
term t is uniformly distributed over X:

P
X

(d|t) =
1

|X|
for every d ∈ X

where |X| is the cardinality of X , then the entropy of t arrives
at the maximum:

H
(
P

X
(d|t)

)
= −

∑
d∈X

1

|X|
log

1

|X|
= log

(
|X|
)

= Hmax

which is called the maximum entropy of term t. Clearly, we
have Hmax ≥ 0 as |X| ≥ 1. H

(
P

X
(d|t)

)
can be regarded as a

measure of the degree of uncertainty based on what we know
about t concerning X . Thus, t is said to be more informative
than t′ ∈ VX if H

(
P

X
(d|t)

)
< H

(
P

X
(d|t′)

)
as t reduces

uncertainty. The reduction based on H
(
P

X
(d|t)

)
essentially

amounts to specificity information of t.
The above statements may already mathematically interpret

what it is meant by the basic concept of specificity information
conveyed by term t. Thus, we can now introduce a formal
definition as follows.
Definition 2.1 For a given class X ∈ C and an arbitrary
term t ∈ VX , suppose P

X
(d|t) be the conditional probability

distribution over X . A general form of a term specificity
information measure, denoted by tsi

X
(t), is defined by

tsi
X

(t) =

{
Hmax −H

(
P

X
(d|t)

)
t ∈ VX

undefined t ∈ V − VX
(1)

which measures the extent of uncertainty reduction caused by,
or the amount of specificity information of, t concerning X .

Clearly, we have tsi
X

(t) ≥ 0 for every t ∈ VX ⊆ V . A
basic idea for tsi

X
(t) is: if term t has a skewed document

frequency distribution, P
X

(d|t), over X , then t may be ex-
pected to be a good discriminator for distinguishing the few
documents of interest from many others in X .

If we accept the assumption that the importance of a term
in representing each document is dependent significantly, if
not completely, on its specificity over the individual classes,
the problem is then reduced to choosing a suitable specificity
measure. With Definition 2.1, we discuss below two concrete
specificity measures to clarify ideas involved in the general
form given in Eq.(1).
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B. Example TSI Measures

Two well-known specificity measures, idf
X

(t) and int
X

(t),
as examples, are reconsidered to illustrate the general form,
and the relationship between the two specificity measures are
established based on the general form.
Example 2.1 Perhaps the most well-known measure capturing
the specificity information of term t concerning some class X
is the inverse document frequency [20]:

idf
X

(t) =

{
log |X|

n
X

(t) t ∈ VX
undefined t ∈ V − VX

(2)

where n
X

(t), called the document frequency of t in X , is the
number of documents in X in which term t occurs.

In order to interpret idf
X

(t) in terms of the entropy function
as given in Eq.(1), let us consider documents represented by
binary vectors. Note that t appears in at least one document
of X , so n

X
(t) 6= 0, for every t ∈ VX . Then, for a given

t ∈ VX , the document frequency distribution for the binary
representation is:

P
X

(d|t) =


1

n
X

(t) d ∈ Xt

0 d ∈ X −Xt

undefined d ∈ D −X
(3)

where Xt ⊆ X is the set of document(s) in which t appears.
Thus, we obtain

H
(
P

X
(d|t)

)
= −

∑
d∈X

1

n
X

(t)
log

1

n
X

(t)
= log

(
n

X
(t)
)

Hence, from Eq.(2) and Eq.(3), we have

idf
X

(t) = log
(
|X|
)
− log

(
n

X
(t)
)

= Hmax −H
(
P

X
(d|t)

)
which is the exact expression given in Eq.(1) when t ∈ VX .

The measure idf
X

(t) states that the specificity of term
t ∈ VX is inversely proportional to the document frequency
over X . Therefore, it assigns higher values to more specific
terms that tend to be capable of isolating few documents
from the many others. However, idf

X
(t) does not take into

consideration term frequency within documents, and terms
with the same document frequency will be treated equally by
assigning the same weights. �
Example 2.2 A more accurate indication of term importance
may be obtained by incorporating term frequency information
into the document frequency distribution, which is noise of
a term [21], it may be used to capture the unspecificity
information of term t ∈ VX concerning some class X:

noise
X

(t) = H
(
P

X
(d|t)

)
= −

∑
d∈X

fd(t)

f
X

(t)
log

fd(t)

f
X

(t)

which is the entropy of the document frequency distribution:

P
X

(d|t) =

{
fd(t)
f
X

(t) t ∈ VX
undefined t ∈ V − VX

(4)

where fd(t) is the frequency of t in d, f
X

(t) =
∑
d∈X fd(t)

is the total frequency of t in X . In other words, noise
X

(t)

measures the extent of the lack of concentration of occurrence
of t; it emphasizes the uselessness of those terms that are in
agreement with P

X
(d|t) for all the documents in X .

Note that the specificity of term t is in inverse relation to its
noise. Thus, the specificity of t may be computed, for instance,
by

int
X

(t) =

{
Hmax − noiseX (t) t ∈ VX
undefined t ∈ V − VX

(5)

which, called the inverse noise of t, is the same expression
given in Eq.(1).

Because the measure int
X

(t) assigns low values to those
terms that are not concentrated in a few particular documents,
but instead are prevalent in X , it should be an appropriate
measure of term specificity. �

It is worth mentioning that there are two statistical con-
cepts [22] used widely to test the performance of a binary
classification: sensitivity of a test is the proportion of actual
positives which are correctly predicted; specificity of a test
is the proportion of negatives which are correctly predicted.
Clearly, they are entirely different from our above discussion
(i.e., the specificity of a term, rather than a test) and used
in different contexts: sensitivity and specificity estimate the
ability of the tests to predict positive and negative results,
respectively.

III. SENTIMENT CLASSIFICATION USING TSI
So far, we have given a formal account of TSI. We are now

in a position to see how the NB classifier, along with esti-
mation of posterior probabilities using term weights obtained
from TSI, can be used for effective SC.

A. The NB Classifier
The NB classifier is a learning method that requires an

estimate of the posterior probability that a document belongs
to some sentiment class, and then it classifies the document
into the class with the highest posterior probability.

More specifically, the NB classifier is constructed based
on Bayes’ theorem with a strong conditional independence
assumption. That is, for a possible sentiment class X = CP
(or X = CN ), it computes the posterior probability, p(X|d),
that document d ∈ C belongs to X:

p(X|d) =
p(X)

p(d)
· p(d|X) ∝ p(X) ·

∏
t∈Vd

p(t|X) (6)

where p(t|X) is the conditional probability of term t occurring
in some document of class X , p(d) is the probability that a
randomly picked document is d, and p(X) is the probability
that a randomly picked document belongs to class X . Note
that p(d) in Eq.(6) can be omitted as it is a scaling factor
dependent only on terms, and that p(t|X) may be interpreted
as a measure of evidence of how much contribution t makes
to support class X . Taking logarithms of probabilities on both
sides of Eq.(6), we can write the NB Classifier by:

Γ(d,X) = log
(
p(X)

)
+
∑
t∈Vd

log
(
p(t|X)

)
(7)
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given 0 < p(X) < 1 and p(t|X) > 0 (where t ∈ Vd). Then
document d is classified into class X∗ if it has the highest
posterior probability or, equivalently, it satisfies:

Γ(d,X∗) = max
{

Γ(d,X),Γ(d, X̄)
}

The parameters given in Eq.(7), such as, a priori probability
p(X) and the posterior probability p(t|X) may be estimated
by

p(X) =
|X|
|C|

(8)

p(t|X) =

{
$

X
(t)∑

t∈V $
X

(t) t ∈ VX
undefined t ∈ V − VX

(9)

where $
X

(t) is a weighting function estimating the importance
of term t ∈ VX in representing class X .

Estimation of p(X) is normally straightforward, it may be,
for instance, the ratio of class cardinalities of X and C as given
in Eq.(8). Estimation of p(t|X) is however the main concern
of studies and our discussion below is based on using term
weights obtained from TSI as discussed in the last section.

B. Estimation of Posterior Probabilities

It can be seen, from Eq.(9), that estimation of p(t|X) is
uniquely determined by its argument $

X
(t). Generally, we

can express

$
X

(t) =

{∑
d∈X π(d) · wd|X(t) t ∈ VX

undefined t ∈ V − VX
(10)

in which, wd|X(t) is a weighting function estimating the
importance of t in representing document d ∈ X; π(d) is a
function indicating the presumed importance of d in X . Thus,
$

X
(t) is the sum of weights, multiplied by the importance

of the corresponding d, of term t ∈ Vd over all documents
d ∈ X .

It is now clear, with the general expression given in Eq.(10),
that estimation of p(t|X) is reduced to estimation of two
components, wd|X(t) and π(d), of $

X
(t).

1) Estimation of wd|X(t)
As we know, document representation, wd|X(t), plays an

essential role in determining SC effectiveness. The issue of
accuracy and validity of representation has long been a crucial
and open problem. It is beyond the scope of this paper to
discuss the issue in greater detail. A detailed discussion about
representation techniques may be found, for instance, in [23].

Our concern is with applying TSI for the estimation of
posterior probability required in the NB classifier. Therefore,
in order to give a general expression of wd|X(t) incorporating
term specificity information, we need to introduce a further
piece of notation−we need to define the intuitive concept of
specificity strength of terms over the classification.
Definition 3.1 Suppose we have a classification C = {X, X̄}.
The specificity strength of term t in support of X against X̄

is defined by

∆tsi
(X:X̄)

(t)

=

{
tsi

X
(t)− tsi

X̄
(t) t ∈ VX ∩ VX̄

undefined t ∈ V − VX ∩ VX̄
(11)

where tsi
X

(t) is the TSI measure given in Eq.(1).
Obviously, the larger the difference is, the more specificity

information term t conveys in support of X against X̄ . Thus,
∆tsi

(X:X̄)
(t) may be regarded as the specificity strength of t

over C and as an appropriate measure for SC. Clearly, unlike
tsi

X
(t), ∆tsi

(X:X̄)
(t) ≥ 0 may or may not hold for every

t ∈ VX ∩ VX̄ .
Now we are ready to formally write wd|X(t). Suppose

each document d ∈ X can be represented as a 1 × n
matrix Md|X =

[
wd|X(t)

]
. With Definitions 2.1 and 3.1, a

general expression of a weighting function incorporating term
specificity information is defined as follows.
Definition 3.2 Suppose we have a classification C = {X, X̄}.
A general form of the weight of term t in representing
document d ∈ X is defined by

wd|X(t)

=

{
wd|X

(
fd(t),=(X:X̄)

(t)
)

t ∈ VX ∩ VX̄
undefined t ∈ V − VX ∩ VX̄

(12)

where =
(X:X̄)

(t) is the TSI measure given in either Eq.(1) or
Eq.(11).

It is worth emphasizing that we here express the weighting
function by wd|X(t) rather than by wd(t). That is, our method
facilitates SC with the NB classifier: it allows each document
to have multiple representations, each of which corresponds
to a specific sentiment class X . Estimation of term weights
has been extensively studied in the area of IR. However, in
traditional IR, document d is represented by a single weighting
function wd(t) corresponding to the whole collection C.
Example 3.1 We may write a number of weighting functions.
Eight weighting functions, derived immediately from Eq.(2)
and Eq.(5), are given in Table I. The eight functions, and their
variations, are widely applied in many applications (and they
will be used in our experiments presented in Section 5). �

TABLE I
EIGHT WEIGHTING FUNCTIONS wd|X(t)

Symbols Descriptions
idf idf

X
(t)

tf·idf fd(t) · idf
X

(t)
int int

X
(t)

tf·int fd(t) · int
X

(t)

∆idf idf
X

(t)− idf
X̄

(t) = log
p(X)

1−p(X)
− log

n
X

(t)

n
X̄

(t)

tf·∆idf fd(t) ·
[
idfX(t)− idfX̄(t)

]
∆int int

X
(t)− int

X̄
(t) =

H
(
PX̄ (d|t)

)
log(|X̄|) −

H
(
P
X

(d|t)
)

log(|X|)
tf·∆int fd(t) ·

[
intX(t)− intX̄(t)

]
We point out that [13] showed good performance using

measure ∆tfidf = log p(X)
1−p(X) , along with SVM, for SC. It
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is now clear that their measure is a special case of tf·∆idf
(i.e., when |X| = |X̄|).
2) Estimation of π(d)

There may be many ways to construct function π(d). Two
functions given in the example below indicate how they can
be applied in practice.
Example 3.2 Let V = {VX ,VX̄} ⊂ V be the set of all
sentiment-bearing terms selected, in which, VX is the subset
consisting of all positive (or, negative) terms. Generally, we
have VX ∩VX̄ = ∅, but VX ∩VX̄ 6= ∅ (or, VX̄ ∩VX 6= ∅), that
is, a strong positive (or, negative) sentiment-bearing term may
also occur in a negative (or, positive) document. Thus, for a
given document d ∈ C, we may write a function:

π1(d) =


µ ·
[
1 + |Vd∩VX |

Ld

]
d ∈ X, Vd ∩ VX̄ = ∅

µ1 d ∈ X, Vd ∩ VX̄ 6= ∅
µ2 d ∈ X̄

In particular, when µ = 0, we have

π2(d) =

{
µ1 d ∈ X
µ2 d ∈ X̄

where µ, µ1, µ2 ≥ 0 are constants and Ld =
∑
t∈Vd

fd(t) is
the length of d. �

The function π1(d) may involve SC using a small set
of strong sentiment-bearing terms. For instance, two lists of
strong positive and negative terms may be

VX = {admirable, beautiful, creative, delicious, excellent, ...}
VX̄ = {aggravated, bored, confused, depressed, enraged, ...}

respectively. The terms in the lists may be obtained in manual
term selection and, hence, they may or may not be relevant to
domains of interest or to training topics. Clearly, when taking
µ ≥ µi (i = 1, 2), π1(d) assigns a relatively higher value to
those documents that contain many strong sentiment-bearing
terms in VX but contain no strong sentiment-bearing term in
VX̄ ; π1(d) is normally needed for applications where a set of
good samples for learning is essential.

The function π2(d) is a special case of π1(d): there is no a
set of strong sentiment-bearing terms and, thus it assigns the
same value to all documents in X (or, X̄). π2(d) is simple
and may be the most commonly used function in practice:
it indicates that all documents within X (or, X̄) are treated
as equally important; π2(d) may be needed when one has no
particular reason to emphasize any document in X (or X̄).

IV. PROBLEMS APPLYING TSI FOR SC

It seems that our method is a straightforward application
of TSI, but it has some potential pitfalls. This section re-
veals problems and suggests solutions when applying the TSI
measures for estimation of posterior probabilities for the NB
classifier.

A. Problems

Let us first consider a simple example below, in which, the
document frequency distributions are derived by expressions
Eq.(3) and Eq.(4) and the values of term specificity informa-
tion are computed by measures given in Eq.(2) and Eq.(5).
Example 4.1 Suppose we are given C = {d1, ..., d7}, CP =
{d1, ..., d4}, CN = {d5, d6, d7} and V = {t1, ..., t6}. Then
we have VC

P
= {t1, t2, t3, t4, t6}, VC

N
= {t1, t4, t5, t6},

and VC
P
∩ VC

N
= {t1, t4, t6}. Thus, the term occurrence

frequencies and the document frequency distributions are
shown in Tables II and III, respectively, and the values of
term specificity information computed by tsi

X
(t) = idfX(t)

and tsi
X

(t) = intX(t) are given in Table IV. For instance,
for t1 ∈ VCP

, we have

noise
CP

(t1) = −
∑
d∈CP

fd(t1)

f
CP

(t1)
log

fd(t1)

f
CP

(t1)

= −
[1

7
log

1

7
+

3

7
log

3

7
+

1

7
log

1

7
+

2

7
log

2

7

]
= −1

7
· log

33 × 22

77

with expression Eq.(5) and Hmax = log(|CP |), we obtain

int
CP

(t1) = log(|CP |)− noiseCP
(t1)

= 4− [−1

7
· log

108

77
]

Note that, in the above computation, we adopt the notational
conventions: y log(y) = 0 if y = 0. �

TABLE II
TERM OCCURRENCE FREQUENCIES

fd(t1) fd(t2) fd(t3) fd(t4) fd(t5) fd(t6)

d1 1 2 0 1 0 0
d2 3 0 2 0 0 1
d3 1 0 3 2 0 0
d4 2 3 1 0 0 0
d5 0 0 0 1 2 3
d6 1 0 0 0 2 2
d7 0 0 0 2 3 2

Some problems arise from the above example. First,
for a given class X , the specificity measures tsi

X
(t) and

∆tsi
(X:X̄)

(t) are meaningless for every t ∈ V − VX and for
every t ∈ V − (VX ∩XX̄), respectively. That is, some terms
may have no TSI values. For instance, from Table IV, we can
see that there is no specificity information concerning CP for
t5 6∈ VCP

, concerning CN for t2, t3 6∈ VCN
, concerning both

CP and CN for t2, t3, t5 ∈ V − (VCP
∩ VCN

).
Secondly, as mentioned previously, ∆tsi

(X:X̄)
(t) ≥ 0 may

not hold for every t ∈ VX∩VX̄ . That is, it may assign negative
weights to some terms that occur in both X and X̄ . For
instance, from Table IV, we can see ∆tsi

(VCP
:VCN

)
(t) < 0

for idf
X

(t) when t1 ∈ VCP
∩ VCN

and for int
X

(t) when
t6 ∈ VCP

∩ VCN
. Therefore, when ∆tsi

(X:X̄)
(t) is applied,

function wd|X(t) given in Eq.(12) may assign a negative
weight to some terms and $

X
(t) given in Eq.(10) cannot be
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TABLE III
DOCUMENT FREQUENCY DISTRIBUTIONS PX (d|t)

t1 t2 t3 t4 t5 t6

for calculating tsi
X

(t) = idf
X

(t)

P
CP

(d1|t) 4
4

4
2

4
3

4
2 - 4

1

P
CP

(d2|t) 4
4

4
2

4
3

4
2 - 4

1

P
CP

(d3|t) 4
4

4
2

4
3

4
2

4
1

P
CP

(d4|t) 4
4

4
2

4
3

4
2 - 4

1

P
CN

(d5|t) 3
1 - - 3

2
3
3

3
3

P
CN

(d6|t) 3
1 - - 3

2
3
3

3
3

P
CN

(d7|t) 3
1 - - 3

2
3
3

3
3

for calculating tsi
X

(t) = int
X

(t)

P
CP

(d1|t) 1
7

2
5

0
6

1
3 - 0

1

P
CP

(d2|t) 3
7

0
5

2
6

0
3 - 1

1

P
CP

(d3|t) 1
7

0
5

3
6

2
3 - 0

1

P
CP

(d4|t) 2
7

3
5

1
6

0
3 - 0

1

P
CN

(d5|t) 0
1 - - 1

3
2
7

3
7

P
CN

(d6|t) 1
1 - - 0

3
2
7

2
7

P
CN

(d7|t) 0
1 - - 2

3
3
7

2
7

TABLE IV
TERM SPECIFICITY INFORMATION

tsi
CP

(t) tsi
CN

(t) ∆tsi
(CP :CN )

(t)

obtained from tsi
X

(t) = idf
X

(t)

t1 log 4
4 log 3

1 − log 3
t2 log 4

2 - -
t3 log 4

3 - -
t4 log 4

2 log 3
2 log 2− log 3

2

t5 - log 3
3 -

t6 log 4
1 log 3

3 log 4

obtained from tsi
X

(t) = int
X

(t)

t1 4 + 1
7 · log 108

77 0 4 + 1
7 · log 108

77

t2 4 + 1
5 · log 108

55 - -
t3 4 + 1

6 · log 36
65 - -

t4 4 + 1
3 · log 4

33 3 + 1
3 · log 4

33 1

t5 - 3 + 1
7 · log 432

77 -
t6 0 3 + 1

7 · log 432
77 −(3 + 1

7 · log 432
77 )

expected to produce non-negative values for every t ∈ VX∩VX̄
and, thus p(t|X) given in Eq.(9) may be non-positive. The
negative weights may cause a problem in estimating the
posterior probability for the NB classifier.

Thirdly, the estimation of the posterior probabilities are
normally the maximum likelihood estimate which are given
by weights $

X
(t) and, thus p(t|X) = 0 if $

X
(t) = 0.

This is problematic: it wipes out all information conveyed
by other terms with non-zero probabilities when they are
multiplied (see Eq.(6)); it also makes Γ(d,X) given in Eq.(7)
meaningless.

B. Solutions

There may be many ways to solve the above three problems.
We here suggest some simple ways which are easy to apply
in practice.
1) Terms Having No TSI Value

To solve the first problem, for each t ∈ V (⊇ VX ), let us

redefine the specificity measure tsi
X

(t) given in Eq.(1) to

tsi′
X

(t) =

{
tsi

X
(t) ≥ 0 t ∈ VX

ε1 t ∈ V − VX
(13)

where ε1, called a pseudo weight, is assigned to every t ∈
V − VX (i.e., to those terms occurring in only X̄). A similar
discussion can be given to tsi′

X̄
(t) with a pseudo weight ε2

assigned to terms occurring in only X . Generally, we have

0 ≤ ε1, ε2 ≤ min
{
tsi′

X
(t), tsi′

X̄
(t′); t ∈ VX , t′ ∈ VX̄

}
Note that V can be partitioned into three disjoint sets:

V = (VX − VX̄) ∪ (VX ∩ VX̄) ∪ (V − VX)

Thus, in the same manner, we may redefine ∆tsi
(X:X̄)

(t) given
in Eq.(11) to

∆tsi′
(X:X̄)

(t) =


tsi′

X
(t)− ε2 ≥ 0 t ∈ VX − VX̄

tsi′
X

(t)− tsi′
X̄

(t) t ∈ VX ∩ VX̄
ε1 t ∈ V − VX

(14)

where tsi′
X

(t) is given in Eq.(13) and ε1 and ε2 are the
above pseudo weights. A similar discussion can be given to
∆tsi′

(X̄:X)
(t).

Clearly, both tsi′
X

(t) and ∆tsi′
(X:X̄)

(t) are meaningful over
V . According the results given in Table IV, we may simply
take, for instance, ε1 = ε2 = 0 as

min
{
tsi′

X
(t), tsi′

X̄
(t′); t ∈ VX , t′ ∈ VX̄

}
= 0

for tsi
X

(t) = int
X

(t). Thus, the results given in Table V are
examples of term specificity information obtained from the
redefined specificity measures.

TABLE V
MODIFIED TERM SPECIFICITY INFORMATION

tsi′
CP

(t) tsi′
CN

(t) ∆tsi′
(CP :CN )

(t)

obtained from tsi
X

(t) = idf
X

(t)

t1 log 4
4 log 3

1 − log 3
t2 log 4

2 ε2 = 0 log 2
t3 log 4

3 ε2 = 0 log 4
3

t4 log 4
2 log 3

2 log 2− log 3
2

t5 ε1 = 0 log 3
3 ε1 = 0

t6 log 4
1 log 3

3 2 log 2

obtained from tsi
X

(t) = int
X

(t)

t1 4 + 1
7 · log 108

77 0 4 + 1
7 · log 108

77

t2 4 + 1
5 · log 108

55 ε2 = 0 4 + 1
5 · log 108

55

t3 4 + 1
6 · log 36

65 ε2 = 0 4 + 1
6 · log 36

65

t4 4 + 1
3 · log 4

33 3 + 1
3 · log 4

33 1

t5 ε1 = 0 3 + 1
7 · log 432

77 ε1 = 0

t6 0 3 + 1
7 · log 432

77 −(3 + 1
7 · log 432

77 )

2) Terms Assigned a Negative TSI Value
To solve the second problem that ∆tsi

(X:X̄)
(t) < 0 may

hold for some t ∈ VX ∩VX̄ , for each t ∈ V (⊇ VX ∩VX̄ ), we
need to further redefine ∆tsi′

(X:X̄)
(t) given in Eq.(14) to:
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∆tsi∗
(X:X̄)

(t)

=



(
tsi′

X
(t)− ε2

)
+ τ4 t ∈ VX − VX̄

∆tsi′
(X:X̄)

(t) + τ3 t ∈ VX ∩ VX̄ ,∆tsi′(X:X̄)
(t) > 0

τ2 t ∈ VX ∩ VX̄ ,∆tsi′(X:X̄)
(t) = 0

τ1 t ∈ VX ∩ VX̄ ,∆tsi′(X:X̄)
(t) < 0

ε1 t ∈ V − VX
where 0 ≤ ε1 < τ1 < τ2 ≤ τ3 ≤ τ4 are called modifying
parameters (e.g., τ1 = 0.5, τ2 = 1.0, τ3 = 1.5, τ4 = 2.0,
ε1 = ε2 = 0 were used in our experiments).

Clearly, ∆tsi∗
(X:X̄)

(t) ≥ 0 for all t ∈ V . The basic idea
of taking the above modifying parameters is simple. First, we
assign τ1 to those terms having negative weight and τ2 to
those terms having zero weight; the reason τ2 > τ1 is because
we believe that terms having negative weight are worse than
terms having zero weight. To avoid losing the importance of
terms representing d caused by adding τ1 and τ2, τ3 and τ4 are
also added to those terms having positive weight; the reason
τ4 > τ3 is because we regard terms occurring in X alone
as being more important in representing d ∈ X than terms
occurring in both X and X̄ . Finally, ε1 < τ1 for those terms
occurring in only VX̄ .
3) Terms with a Zero Posterior Probability

To solve the third problem that p(t|X) = 0 if $
X

(t) = 0,
a smoothing method may be required to assign a non-zero
probability mass to those terms with $

X
(t) = 0. For instance,

with the additive smoothing method,

$′
X

(t) = $
X

(t) + θ

where θ > 0 is a smoothing parameter (for instance, θ = 0.5
was used in our experiments), the posterior probability can be
rewritten by

p̂(t|X) =
$′

X
(t)

Ψ′
=
$

X
(t)

Ψ′
+

θ

Ψ′

and Ψ′ is a normalization factor after smoothing:

Ψ′ =
∑
t∈V

$′
X

(t) = Ψ + θ · |V |

where, according to Eq.(9),

Ψ =
∑
t∈VX

$
X

(t) =
∑
d∈X

∑
t∈VX

π(d) · wd|X(t)

is a normalization factor before smoothing. Thus, all the terms
with $

X
(t) = 0 are then assigned to an equal non-zero

probability mass θ
Ψ′ .

4) Alternative
An alternative way, which can solve both the second and

third problems together and may thus be the simplest one, is:

$∗
X

(t) =

 $
X

(t) + θ1 $
X

(t) > 0
θ2 $

X
(t) = 0

θ3 $
X

(t) < 0

where θ1 ≥ θ2 ≥ θ3 > 0 are smoothing parameters. Clearly,
$′

X
(t) adds an equal value θ to all terms regardless of whether

$
X

(t) is zero or negative or not. That is, $′
X

(t) = $∗
X

(t)
when θ1 = θ2 = θ3 = θ and, therefore, it is a special case of
$∗

X
(t).

V. EXPERIMENTS

This section presents some results from three sets of ex-
periments carried out in order to verify SC effectiveness of
our methods. As this study focuses on introducing a general
form of a specificity measure and clarifying some potential
problems of applications and suggesting solutions, rather than
an extensive experimental investigation into the measure, the
readers interested in empirical evidence drawn from a number
of performance experiments and comparisons are referred to
those papers referenced.

Our experiments used a collection from the movie review
domain [19], first used in [12] and widely used in SC research.
There are 2000 labelled documents in the full collection, con-
sisting of 1000 positive and 1000 negative documents. Before
using our formulae, we removed stop words and very high
frequency terms (occurring in more than 60% of documents),
and used a stemming algorithm [24]. We disregarded the
position of terms in documents. Each document was treated
as a ‘bag-of-words’. Only term frequencies were considered.
In our experiments, 10-fold cross-validation and the standard
measures recall and precision were used for evaluation.

The first set of experiments compared the performance
obtained from eleven weighting functions: eight are listed in
Table I (in Example 3.1) and another three below were used
as benchmarks:

w
(F )
d (t) = fd(t)

w
(O)
d (t) =

(a+ 1) · fd(t)
a ·
[
(1− b) + b · β(d,C)

]
+ fd(t)

w
(S)
d (t) =

[
1 + ln

(
1 + ln(fd(t))

)]
· log

( |C|+1
Ld

)
(1− c) + c · β(d,C)

where parameters a = 1.2, b = 0.75 and c = 0.2, and
β(d,C) is given in Eq.(15) (see the last set of experiments
below). Past experimental studies emphasised that a weighting
function using just term frequency information can produce
good performance for SC [1], and the Okapi (BM25) [25] and
Smart [26] weighting functions have widely been recognized
to produce excellent retrieval performances in IR. Table VI
displays our experimental results using the eleven weighting
functions, and the best results are given in square brackets in
bold face.

From the results in Table VI it can be seen: Classifications
obtained from (i) all the eleven weighting functions achieved
good performance (above 90% recall/precision) at most eval-
uation points; (ii) idf, tf·idf, int, tf·int achieved consistently
better performance than from tf, Okapi and Smart functions;
the improvements were shown at all the evaluation points,
which verifies TSIs are appropriate measures for SC; (iii)
4idf, tf·4idf, 4int and tf·4int showed a bias towards CP ,
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which resulted in a relatively low precision for CP but a very
high precision for CN ; the cause of the bias is an interesting
question, and extensive experiments may need to be carried
out to train the parameters of ∆tsi∗

(X:X̄)
(t); (iv) int, tf·int,4int

and tf·4int were consistently better than from idf, tf·idf, 4idf
and tf·4idf, respectively; the improvements were shown at all
the evaluation points (the reason for the improvements was ex-
plained at the beginning of Section 2.2); (v) tf·idf, tf·4idf, tf·int
and tf·4int seem not to achieve the anticipated performance
improvements compared with from idf, 4idf, int and 4int,
respectively; this indicates that term specificity information
may dominate the classifier performance. In addition, our
experimental results bear out past experimental studies that
tf can produce good performance for SC.

TABLE VI
PERFORMANCE WITH 11 WEIGHTING FUNCTIONS

Negative Class CN Positive Class CP

wd(t) recall precision recall precision
tf 0.9280 0.9460 0.9470 0.9297

Okapi 0.9350 0.9482 0.9490 0.9363
Smart 0.9290 0.9411 0.9420 0.9303

wd|X(t) recall precision recall precision

idf 0.9420 0.9684 0.9690 0.9433
tf·idf 0.9350 0.9672 0.9680 0.9367
int [0.9560] [0.9747] [0.9750] [0.9566]

tf·int 0.9440 0.9705 0.9710 0.9452
4idf 0.8790 0.9921 0.9949 0.8927

tf·4idf 0.8420 0.9903 0.9900 0.8618
4int 0.8860 0.9988 0.9990 0.9190

tf·4int 0.8630 0.9947 0.9978 0.8954

The second set of experiments considered the issue of
dimension reduction of term space. Dimension reduction is
an important issue in document classification, IR, NLP, and
many related areas. It is generally the process of reducing the
number of random variables under consideration. In our case,
it is the process of identification of informative terms and,
then, documents are represented by all the identified terms.
The identified informative terms pertaining to the positive
(or, negative) class are regarded as positive (or, negative)
sentiment-bearing terms. The directed divergence measure
[27] was used for the identification:

I
(
P

X
(t);P

C
(t)
)

= P
X

(t) log
P

X
(t)

P
C

(t)

in which, P
X

(t) = P (t|X) (where t ∈ VX ) may be estimated
using expressions given in Eq.(9), Eq.(10) and Eq.(12). Di-
mension reduction enables sentiment analysis to be performed
in the reduced space more accurately and reliably than in
the original space. A detailed discussion on informative term
identification can be found in [28].

We experimentally studied classification performance using
the identified informative terms to represent documents. There
were 25259 distinct terms in V after stop word removal. The
top δ terms of a ranked list were selected as the informative
terms. We iteratively evaluated the eleven weighting functions
using the δ terms, with δ = 14000 to δ = 4000 stepping
−2000. The best results with δ = 10000 are given in Table
VII.

From the results in Table VII it can be seen: Classifications
obtained from (i) all the eleven weighting functions achieved
consistently good performance at all the evaluation points; (ii)
idf and tf·idf showed better performance than using tf, Okapi
or Smart at most evaluation points; (iii) tf, Okapi and Smart
showed better performance compared with the corresponding
performance without using the informative terms at most
evaluation points (see Table VI). In addition, our experimental
results (not given in this paper) showed that if the number of
identified terms is reduced to less than 40% of the original
size of the vocabulary, it would not be possible to improve
classification performance.

TABLE VII
PERFORMANCE USING 10000 INFORMATIVE TERMS

Negative Class CN Positive Class CP

wd(t) recall precision recall precision
tf 0.9340 0.9459 0.9460 0.9351

Okapi 0.9420 0.9529 0.9530 0.9430
Smart 0.9420 0.9536 0.9540 0.9435

wd|X(t) recall precision recall precision

idf [0.9550] 0.9539 0.9530 [0.9641]
tf·idf 0.9520 [0.9553] [0.9550] 0.9517
int 0.9960 0.9233 0.9010 0.9952

tf·int 0.9910 0.9300 0.9170 0.9904
4idf 0.9210 0.9472 0.9490 0.9243

tf·4idf 0.9150 0.9488 0.9510 0.9192
4int 0.9240 0.9455 0.9470 0.9268

tf·4int 0.9210 0.9472 0.9490 0.9243

The last set of experiments involved the construction of the
normalization factor, denoted by ψ(d,X), according to the
individual documents. There are many ways to construct ψ.
One way is to consider a linear combination (with a parameter
λ > 0):

ψ(d,X) = (1− λ) + λ · β(d,X) (15)

where β(d,X) = Ld

ave(X) is a length moderation factor and
ave(X) = 1

|X|
∑
d∈X Ld is the average length of all d ∈ X .

The β(d,X) may be used to further moderate the effect of
the document length across the individual classes and thus be
used to construct ψ. The ψ(d,X) given in Eq.(16) is used in
both Okapi and Smart weighting functions.

It is thus interesting to test the usefulness of a combination
with the form:

w∗d|X(t) =
wd|X(t)

ψ(d,X)

where wd|X(t) is one of the eight weighting functions listed
in Table 1, and λ is set to 0.2, 0.5, 0.8 and 1.0.

The results (not given in this paper) showed that w∗d|X(t) did
not provide performance improvement compared with wd|X(t)
itself whether using the informative terms or not. The reason
for the worse performance is not yet clear. However, we
conjecture that it may be because tf, Okapi and Smart are
basically term frequency-based weighting functions, and are
therefore sensitive to the document length normalization. In
contrast, our methods provide term specificity-based weighting
functions, thus a skewed document frequency distribution over
a class plays a key role in determining SC performance.
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Note that the normalization factor Ψ given in Section
4.2 serves for $

X
(t), whereas the normalization factor ψ

here serves for wd|X(t). That is, the former is used for the
weighting function regarding classes, the latter is used for the
weighting function according to the individual documents.

VI. CONCLUSIONS

This study has advocated the use of TSI to assess document
sentiment orientation. We discussed the mathematical concept
of specificity information conveyed by a given term based on
Shannon’s entropy, and then introduced a general form of a
specificity measure in terms of the concept. Two well-known
specificity measures were considered, as examples, to illustrate
the general form and their relationship was established based
on the general form. We introduced an intuitive concept
on specificity strength of terms over the classification and,
then proposed a general method to represent the statistical
importance of terms pertaining to individual documents with
estimation of posterior probabilities using term weights ob-
tained from TSI for the NB classifier. We clarified some
potential problems inherent in applying the TSI measures in a
Bayesian learning framework and, then suggest solutions that
are easy to apply in practice. We proposed a novel multiple
representation method, where each term is assigned multiple
weights against individual sentiment classes, and explored a
method of applying existing advanced single representation
IR techniques to SC. We presented some experimental results
and showed that the proposed method outperforms existing
advanced IR single representation techniques. We attributed
this to the capacity of the proposed method to capture as-
pects of term behaviour beyond a single representation. Our
experimental results also verified that TSI may be regarded as
an appropriate measure for effective SC. In ongoing work we
are exploring reasons why using specificity information may
result in a classification bias. Due to its generality, our method
can be expected to be a useful tool for a variety of tasks of
document classification, IR, NLP, and many related areas.
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