
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

112 | P a g e

www.ijacsa.thesai.org

L-Bit to M-Bit Code Mapping
To Avoid Long Consecutive Zeros in NRZ with Synchronization

Ruixing Li

Department of Electrical Engineering,

University of Nevada, Las Vegas,

Las Vegas, U.S.

Shahram Latifi

Department of Electrical Engineering,

University of Nevada, Las Vegas,

Las Vegas, U.S.

Yun Lun

Department of Electrical Engineering,

University of Nevada, Las Vegas,

Las Vegas, U.S.

Ming Lun

Department of Electrical Engineering,

University of Nevada, Las Vegas,

Las Vegas, U.S.

Abstract—we investigate codes that map bits to m bits to

achieve a set of codewords which contain no consecutive n “0”s.

Such codes are desirable in the design of line codes which, in the

absence of clock information in data, provide reasonable clock

recovery due to sufficient state changes. Two problems are

tackled- (i) we derive for a fixed and and (ii) determine

 for a fixed and . Results benefit telecommunication

applications where clock synchronization of received data needs

to be done with minimum overhead.

Keywords—overhead; mapping; synchronization; consecutive

“0”

I. INTRODUCTION AND BACKGROUND

In serial communications, data is transferred on a medium
that carries a signal varying with time. For digital signal, each
bit is represented as a high or low voltage for a fixed amount
of time. We call this time period a clock cycle. The clock of
the communication line is very important as it tells the
transmitter when to transmit a new bit, and it tells the receiver
when to read. For short distance transfer, such as
communication within a digital system, we can have a clock
signal between the transmitter and receiver to synchronize the
clock; for example, the Serial Peripheral Interface (SPI) uses a
clock signal for clock synchronization. However when it
comes to long distance communication, adding signaling only
for clock synchronization consumes part of the bandwidth. It
is impossible to exactly match the clock speed for the
transmitter and receiver. On the other hand, employing codes
that contain explicit clock information (ex. Manchester
coding) will waste half of the available bandwidth [1]. In
practice, the clock information is embedded within the data so
that, at the receiver end, the clock can be extracted and used to
clock in the received data (using devices such as Phased
Locked Loop or PLL). Nonetheless, having a long period of
flat signal (which may correspond to consecutive ―0‖s) may
cause the synchronization to be lost. For that purpose, the
signal that carries the data must also have sufficient transitions
or state changes to allow a PLL to lock onto the incoming
data. In the event that a long sequence of ―0‖s is encountered,
there will be a risk of losing synchronization.

As one of the scrambling techniques for data encoding,

transmitter should provide sufficient amount of signal
transitions for the receiver to maintain clock synchronization
[2]. Line coding is applied on data before transmission
especially in High Speed Serial Links to ensure a maximum
Run Length (RL) to guarantee frequent transitions for Clock
and Data Recovery (CDR) in asynchronous links [3], for
example, B8ZS and HDB3, which substitute a long sequence
with a code violation of the encoding rule. These types of
techniques either require increase of signal rate for the same
data rate, or require more than 2 signal levels to represent
binary data. For Manchester and Differential Manchester, the
signal rate is twice the data rate (50% overhead). For B8ZS
and HDB3, having 3 signal levels to represent a single binary
bit creates a 33% overhead. Though line codes can generate
adequate timing information for clock recovery and error
detection [5] [6], it usually comes at the cost of additional bits.
In this paper, we will discuss how to minimize the overhead
with the same clock recovery performance.

Another technique is to eliminate long sequence of zeros
by encoding the data so that the transmitted data does not
contain long sequences of “0”'s. The 8b/10b encoding [4]
which is widely used, adds 2 bits for every 8 bits resulting in
2/8 = 25% overhead while ensuring a maximum RL of 5. One
other example would be mapping 4-bit data to 5-bit codes
such that a sequence of 3 “0”s is avoided (
3). There are total possible codes in 4-bit data.

In 5-bit code space, we have 24 (32 – 8) codes without
"000" sequence available. So mapping 4-bit all data with 5-bit

TABLE I. 5-BIT CODES WITH THE ABSENT ―000‖ PATTERNS

00100 00101 00110 00111 01001 01010

01011 01100 01101 01110 01111 10010

10011 10100 10101 10110 10111 11001

11010 11011 11100 11101 11110 11111

codes is possible. Table I shows the 5-bit codes with the
absent “000” patterns.

The overhead of this technique is 1/5 = 20%1, which is

1 Calculated by (Total transmitted data size – Actual represented data

size)/(Total transmitted data size)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

113 | P a g e

www.ijacsa.thesai.org

lower than the 50% of forced transition techniques and the
33% of substitution techniques. We can try to reduce the
overhead of code mapping techniques by mapping larger size
data. Questions of interest might be - Can we do 9-bit to 10-bit
mapping? If not, how about 9-bit to 11-bit, 61-bit to 64-bit,
etc.

This paper proposes an empirical method of calculating the
minimum overhead to avoid a given number of consecutive
―0‖s. The rest of this paper is organized as follows: Section 2
discusses the basic theory of avoid long sequence of ―0‖s.
Section 3 introduces the methodology to achieve two
empirical formulas for our concerns. The results and
conclusion are given in Section 4 and 5 separately.

II. THEORY

The research question here is- Given a specific size of a
code, what is the smallest overhead to avoid a given number
of consecutive “0”s.?

Example 1. We are given a 9-bit code and we want to
avoid the sequence “000”. First we will check if the 10-bit
code has enough space to hold the 9-bit code and also avoid
the sequence “000”. If 10-bit is not possible, we will consider
the 11-bit code and continue checking until we find the
smallest size of code that can hold the 9-bit code and avoid the
sequence “000”.

To check if 10-bit code is enough, first we will enumerate
the codes in the 10-bit code that has “000” sequence in. The
calculations are depicted in Table II. Note that in the patterns
given in the table, X can be 0 or 1 and each line must exclude
the cases that had been counted in the previous lines.

TABLE II. ENUMERATION OF 10-BIT CODES THAT CONTAIN ―000‖

Pattern The number of occurrences

XXXXX XX000 =128

XXXXX X0001 =64

XXXXX 0001X =64

XXXX0 001XX =64

XXX00 01XXX ()=56

XX000 1XXXX (3)=52

X0001 XXXXX ()=48

0001X XXXXX (0)
Total 520

Note that for X’s of length 3 or more on the right side, we
have to exclude any codes that have the ―000‖ sequence,
because they were already covered in previous lines.

Subtracting the total number of “000” patterns- 520 from
the total code space 0 , we get only 504 codes which
is not enough for mapping all 9-bit codes to 10-bit codes.

Generalization

To answer the general question of if it is possible to map
all L-bit codes to m-bit codes that avoid sequence of n
consecutive zeros, we first have to find the number of codes
without n-zero sequence by subtracting the number of codes
with n-zero sequence from the total m-bit code space .

To answer another question of finding the smallest number
of consecutive “0”s, we can start with 2 zeros and work

upward. Say if we cannot avoid 2 zeros, test if we can avoid 3,
4, 5, etc. Repeat until we can find that smallest number of
consecutives “0”s we can avoid through -bit to -bit
mapping.

To find the number of codes with sequence(s) of n “0”s in
m-bit space, use a similar step from the 9B-10B mapping
example to obtain the solution (Table III).

TABLE III. ENUMERATION OF M-BIT CODES THAT CONTAIN N

CONSECUTIVE ―0‖S

Pattern
The number of

occurrences
Distribute the
multiplication

k

XXXXXXXXX…X00
…0

 k=0

XXXXXXXX…X00
…01

 (0)

 (0)
k = 1

XXXXXXX…X00…
01X

 ()

 ()
k = 2

XXXXXX…X00…0
1XX

 ()

 ()
k = 3

XXXXX…X00…01
XXX

 (3)

 (3)
k = 4

X00…01XX…XXX
XXX

 ()

 ()

k= m-n-1

00…01XX…XXXX
XXX

 ()

 ()
k = m – n

We can see that calculating () requires recursive
calculation of the number of codes with n-zero sequence in the
code lengths less than m. We must define the basis for the
recursive function, otherwise we will go to endless loop of
calculations. We know that there cannot exist n-zero sequence
in the code if the code length m is shorter than n bits.
So () 0, for .

For , continue our generalization. Adding the terms
and simplifying gives

 () ∑

 ()

 Now that we obtain the piecewise recursive
function ():

 ()

{

0

 ()

 ∑

 ()

The calculation of the function () seems very
complicated with the summation. We can make the calculation
easier and more efficient by observing the following 2 special
cases of m and n.

Case (i) if , we know that there is only one code that
has the n-zero sequence; that is the n-zero sequence itself.

 Case (ii) if , the last addition to the sum is
 (). Let’s look at the last largest ,
we substitute m with 2n and obtain () , the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

114 | P a g e

www.ijacsa.thesai.org

recursive call to the function returns 0 because .
Similarly, all m value between n and 2n make recursive call to
function f with first argument less than second argument n,
which will ultimately give 0 as the result. So for ,
the summation evaluates to 0.

By separating the domain of the function, we produce a
new formula with 4 pieces but is easier to calculate or more
efficient to compute digitally.

 ()

{

0

 ()

 ()

 ∑

 ()

We can use the code in Appendix to calculate the function
f. Let 0 3 , the function returns 520 which match
our previous calculation for 9-bit to 10-bit mapping example.
We can also check our result by counting the number of codes
with ―000‖ pattern by using a brute force checking program,
created by Edgar Solorio (See Appendix) Our result matches
the number counted by this checking program (0).
Similarly when 3 , the function returns 1121,
that means there are 927 codes available for mapping. While
this is not enough to map 10-bit, it is sufficient for 9-bit codes,
giving 18.2% overhead.

Generally speaking, for given and ,

 *
 () } (1)

Floor is the greatest integer function, mapping a real
number to the largest previous integer.

We define the minimum overhead bits

 (2)
If we try 19-bit to 22-bit mapping, which is possible, there

is only 13.6% (3 bits) overhead. Similarly 64-bit codes has
about . codes without “000”, while we cannot map 61-bit
codes to 64-bit codes, there is enough to map 56-bit codes.
Also 8-bit to 9-bit mapping is possible, 9-bit space has 238
codes with “000” leaving 274 codes available to map 8-bit
(256 possible) codes. The overhead of for 8B9B is 11.1%.
Since 9B-10B is impossible, code mapping with 1-bit
overhead stops at with 8-bit to 9-bit mapping.

III. METHODOLOGY

The result from the 9B-10B example in the Work section
shows that mapping from 9-bit codes to 10-bit codes cannot
avoid all codes with 3 consecutive zeros. If we want to avoid
3 consecutive zeros, the minimum overhead to map 9-bit code
is 2 bits. The following 2 questions are our main concerns
about avoiding consecutive zero level signal transmitted in
regard to maintain synchronization.

A. For a given pattern length and mapping from bits to

 bits, what is the minimum number

of consecutive “0”s we can avoid? (Fixed and ,

find)

The code in Appendix shows how to solve this question.
Table IV shows the minimum avoidable zeros with 1 to 9 bits
overhead for mapping data of lengths from to 24 bits.
The jumps in are highlighted and bold faced.

TABLE IV. MINIMUM AVOIDABLE ZEROS WITH 1 TO 9 BITS OVERHEAD

FOR MAPPING DATA OF LENGTHS FROM TO BITS

h=

1

h=

2

h=

3

h=

4

h=

5

h=

6

h=

7

h=

8

h=

9

2 2

3 2

4 3 2

5 3 2

6 3 3 2

7 3 3 2

8 3 3 3 2

9 4 3 3 2

10 4 3 3 3 2

11 4 3 3 3 2

12 4 3 3 3 2

13 4 3 3 3 3 2

14 4 3 3 3 3 2 2

15 4 3 3 3 3 3 2

16 4 3 3 3 3 3 2

17 4 4 3 3 3 3 3 2

18 4 4 3 3 3 3 3 2

19 4 4 3 3 3 3 3 3 2

20 4 4 3 3 3 3 3 3 2

21 5 4 3 3 3 3 3 3 2

22 5 4 3 3 3 3 3 3 3

23 5 4 3 3 3 3 3 3 3

24 5 4 4 3 3 3 3 3 3

If we rearrange and extend the data, we can get the
following table:

TABLE V. MINIMUM L FOR SPECIFIC AND H

h n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

1 2 4 9 21 43 88 177 355

2 4 6 17 38 82 171 348 702

3 6 8 24 56 122 254 519

4 8 10 31 74 161 337 690

5 10 13 38 92 201 420 861

6 13 15 46 110 240 503

7 15 17 53 127 279 586

8 17 19 60 145 319 669

9 19 22 68 163 358 753

10 22 24 75 181 397 836

11 24 26 82 199 437 919

12 26 28 89 216

13 28 31 97 234

14 31 33 104 252

15 33 35 111 270

16 35 38 118 288

17 38 40 126 305

18 40 42 133 323

19 42 44 140

20 44 47 148

https://en.wikipedia.org/wiki/Real_number
https://en.wikipedia.org/wiki/Real_number

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

115 | P a g e

www.ijacsa.thesai.org

We plot the data both in horizontal (Fig. 1) and vertical
direction (Fig. 2),

Fig. 1. Plotting using data from Table V (horizontal)

Fig. 2. Plotting using data from Table V (vertical)

Obviously, we can observe that L is approximating linear
with h and is relatively exponential with n. This means for a
fixed n, the overhead bits h should be proportional with L. We
can assume that

 (()) (3)

a, b, c in this formula is the coefficient to be determined.

We can choose any three points in Table V to determine
the coefficient. For example, we substitute (3, 20, 47), (4, 20,
148) and (5, 11, 199) [in (n, h, L) order] in (3), we can
get .333 . 0. . Therefore,

(
 .
 . .)

Thus,

 .333 n (

 .) 0. ()

When is given, we can determine via (4) and
 ().

B. For a given number of consecutive “0”s to avoid, how to

minimize the overhead? Solve the problem for a specific

case of avoiding two “0”s first. Under what conditions

can we map " " to " "? If not, what about " " to

" " or " " to " 3"? (Fixed , find)

The code in Appendix shows how to solve question 2.
Table VI shows the minimum overheads to avoid n zeros with
 to 0 for mapping data of lengths from to
bits. The jumps in overheads are highlighted and bold faced.

TABLE VI. MINIMUM OVERHEADS TO AVOID N CONSECUTIVE ZEROS

L
n=

2

n=

3

n=

4

n=

5

n=

6

n=

7

n=

8

n=

9

n=

10

4 2 1 1 0 0 0 0 0 0

5 2 1 1 1 0 0 0 0 0

6 3 1 1 1 1 0 0 0 0

7 3 1 1 1 1 1 0 0 0

8 4 1 1 1 1 1 1 0 0

9 4 2 1 1 1 1 1 1 0

10 5 2 1 1 1 1 1 1 1

11 5 2 1 1 1 1 1 1 1

12 5 2 1 1 1 1 1 1 1

13 6 2 1 1 1 1 1 1 1

14 6 2 1 1 1 1 1 1 1

15 7 2 1 1 1 1 1 1 1

16 7 2 1 1 1 1 1 1 1

17 8 3 1 1 1 1 1 1 1

18 8 3 1 1 1 1 1 1 1

19 9 3 1 1 1 1 1 1 1

20 9 3 1 1 1 1 1 1 1

21 9 3 2 1 1 1 1 1 1

22 10 3 2 1 1 1 1 1 1

23 10 3 2 1 1 1 1 1 1

24 11 4 2 1 1 1 1 1 1

Fig. 3. Plotting using data from Table VI

If we rearrange and extend the data of TABLE VI, we can
get the following table:

TABLE VII. MINIMUM L FOR SPECIFIC N AND H

h n=2 n=3 n=4 n=5 n=6 n=7 n=8 n=9

1 2 3 4 5 6 7 8 9

2 4 9 21 43 88 177 355 710

3 6 17 38 82 171 348 702

4 8 24 56 122 254 519

5 10 31 74 161 337 690

6 13 38 92 201 420 861

7 15 46 110 240 503

8 17 53 127 279 586

9 19 60 145 319 669

10 22 68 163 358 753

11 24 75 181 397 836

12 26 82 199 437 919

13 28 89 216

14 31 97 234

15 33 104 252

16 35 111 270

17 38 118 288

18 40 126 305

19 42 133 323

0

2

4

6

8

10

4 9 14 19 24 29 34 39 44 49 54 59 64

O
ve

rh
e

ad

L

n=3

n=4

n=5

n=6

n=7

n=8

n=9

n=10

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

116 | P a g e

www.ijacsa.thesai.org

This table is slightly different from Table V. We can use
similar procedure and get

 . . .
 (5)

Fig. 4. Minimum overheads versus message length L and number of

consecutive ―0‖s to be avoided

IV. RESULDS

We can check the accuracy of (4) by different check point:

TABLE VIII. COMPARISON OF THEORETICAL AND CALCULATION N BY

FIXED L AND H

Point(L, h)
(44,

19)

(60,

8)

(145,

8)

(437,

11)

(918,

11)

(861,

5)

(702,

2)

Actual n 3 4 5 6 7 8 9

Approximate

According (4)
2.99 4.01 5.00 5.97 6.92 7.87 8.81

deviation
0.33

%

0.33

%

0.04

%

0.55

%

1.14

%

1.65

%

2.12

%

From this table, we can see, when n is between 3 and 9, (4)
is accurate enough to determine the minimum consecutive
“0”s can be avoided for fixed and .

We can also check the availability of (5) by different check
points in TABLE IX:

From this table, we can see, when n is between 3 and 6,
this formula is accurate enough to determine the minimum
required overhead bits h to avoid n consecutive ―0‖s for fixed
message length .

TABLE IX. COMPARISON OF THEORETICAL AND CALCULATION N BY

FIXED L AND H

L 88 82 56 74 92 46

n 6 5 4 4 4 3

Actual h 2 3 4 5 6 7

h from

(5)

1.9925

97

3.0131

21

4.0947

25

5.0894

58

6.0841

91

7.2144

31

deviation -0.37% 0.44% 2.37% 1.79% 1.40% 3.06%

V. CONCLUSION

We have considered the problem of L to m mapping to
avoid a set of n consecutive ―0‖s. We derived two formulas to
calculate (i) the minimum number of consecutive ―0‖s that can
be avoided for fixed L and m (4) and (ii) the minimum
overhead required to avoid a given number of consecutive
―0‖s with fixed L (5). We found the exact values for small
values of L, m and n (Table IV and Table VII). For very long
messages, we used the empirical results and combination of
several tables to arrive at a formula that will give the desired
answer with close approximation.

One may think of splitting a long code into smaller codes
and using the results for small values to obtain the parameters
for the long code. For example, the splitting of 56-bit code
into 8*7-bit codes can simplify the calculation but will not
work since a potential problem can occur: Even if all 8 7-bit
codes have no ―000‖, when the frame size is more than 7 bits
(e.g. 64 bits), there can exist consecutive ―000‖ in the end of a
7-bit code and the start of another consecutive 7-bit code.

The results obtained can find applications in coding and
communication where the synchronization of the transmitter
and receiver is of primary concern.

ACKNOWLEDGMENT

This work was supported in part by the NSF EPSCoR
grant under Award # EPS-IIA-1301726.

REFERENCES

[1] V.Sneha Latha et al. ―Performance Evaluation of Different Line
Codes‖.Indian Journal of Computer Science and Engineering (IJCSE).
Vol. 2 No. 4, 2011

[2] Stallings, W. ―Data and Computer Communications‖. 10th Ed. 2013.

[3] J. Saadé et al. ―Low Overhead, DC-Balanced and Run Length Limited
Line Coding‖ IEEE 19th Workshop on Signal and Power Integrity
(SPI), 2015.

[4] P.A. Franszek and A.X. Widmer, ―A DC-Balanced, Paritioned-Block,
8B/10B Transmission Code‖, IBM Journal of research and development,
Volume 27, Number 5, September 1983.

[5] J. G. Proakis, Digital Communication, 4th ed., Mc-Graw Hill, New
York, 2001.

[6] K. W. Cattermole, ―Principles of digital line coding,‖ Int. J. Electron.,
vol. 55, no. 1, pp. 3–33, July 1983.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7221957

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

117 | P a g e

www.ijacsa.thesai.org

APPENDIX

C++ Code for function f (named numOfOccurrences)

Note: The codes shown in this report emphasize on basic
idea to implementation. The actual result from the code may
be incorrect due to limitation in range in of int data type. Also,
a cached table may be necessary to reduce repeated
calculations and to improve performance.

twoToPowerOf is a simple function that returns the power
of n without importing the C Math library.

Code for function twoToPowerOf(n)

Programs to check number of codeword with n
consecutive “0”s

Program outputs for 0 n 3

Program outputs using code provided by Edgar Solorio [8]

Code to solve question 1

int numOfOccurrences(int m, int n)
{

 if (m < n) // m < n
 return 0;

 else if (m == n) // m = n
 return 1;

 else if (m <= 2*n) // n < m ≤ 2n
 {

 int result;
 result = twoToPowerOf(m-n) + (m-n) * twoToPowerOf(m-n-1);

 return result;
 }

 else // m > 2n
 {

 int result;
 int *s = new int[m-n+1];

 s[0] = twoToPowerOf(m-n) + (m - n) * twoToPowerOf(m-n-1);
 result = s[0];

 for (int i = 1; i <= m-n; i++)
 {

 s[i] = numOfOccurrences(i-1, n) * twoToPowerOf(m-n-i);
 result -= s[i];

 }
 return result;

 }
}

int twoToPowerOf(int n)
{

 if (n < 0)
 {

 std::cout << "Cannot calculate negative or fractional powers"
 << std::endl;

 exit(1);
 }

 else
 {

int result = 1;
 result = result << n;

 return result;
 }

}

// this function calculates the minimum number of consecutive zeros
we can avoid
// by mapping l-bit codes to m-bit codes.
int minimumAvoidableConsecutiveZeros(int L, int m)
{
 if (L >= m)
 {
 return -1; // you cannot avoid any consecutive zeros
 // moreover, if m < L, you cannot even map from L-bit to m-bit
anyway.
 }
 int minZeros =L;
 // starting from 2 zeros "00"
 for (int i = 2; i < L; i++)
 {
 if (twoToPowerOf(m) - numOfOccurrences(m, i) >
twoToPowerOf(L))
 {
 minZeros = i;
break;

 }
 }
 return minZeros;
}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 11, 2015

118 | P a g e

www.ijacsa.thesai.org

Code to solve Question 2

#define MAXIMUM_ALLOWED_OVERHEAD 5
#define MAXIMUM_ALLOWED_PERCENT_OVERHEAD 30
// this function calculates the minimum overhead by mapping l-
bit code
int minimumOverheadToAvoid_n_Zeros(int L, int n)
{
 if (n < 2)
 return -1; // error, n must be at least 2

 int maximum_m = L + MAXIMUM_ALLOWED_OVERHEAD;
 int max_MP = (m *
(100+MAXIMUM_ALLOWED_PERCENT_OVERHEAD) / 100);
 if (max_MP > maximum_m)
 maximum_m = max_MP;

 ULL numOfLBitCodes = twoToPowerOf(L);

 for (int i = L+1; i < maximum_m; i++)
 {
 if (twoToPowerOf(i) - numOfOccurrences(i, n) >
numOfLBitCodes)
 {
 return (i-L);
 }
 }
 return -1; // reached maximum allowed overhead
}

