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Abstract—Software testing is a critical component of modern
software development. For this reason, it has been one of the
most active research topics for several years, resulting in many
different algorithms, methodologies and tools. Combinatorial
testing is one of the most important testing strategies. The test
generation problem for combinatorial testing can be modeled as
constructing a matrix which has certain properties, typically this
matrix is a covering array. The construction of covering arrays
with the fewest rows remains a challenging problem. This paper
proposes a post-processing technique that repeatedly adjusts the
covering array in an attempt to reduce its number of rows. In
the experiment, 85 covering arrays, created by a state-of-the-
art algorithm, were subject to the reduction process. The results
report a reduction in the size of 28 covering arrays (∼33%).

Keywords—Software testing; Combinatorial testing; Covering
arrays; Post-Processing

I. INTRODUCTION

The ever increasing complexity, ubiquity, and dynamism of
modern software systems demands new approaches to quality
assurance. Extensive testing is required to assure that software
works correctly, however, in many practical applications the
number of configurable parameters may be large, and testing
all possible configurations is not possible due to limited testing
resources. Combinatorial testing enables the tester to execute a
small set of test cases on the system, while achieving very high
fault coverage. The pairwise test is one of main approaches
in black-box testing. Several studies have demonstrated the
effectiveness of pairwise testing [1], [2]. By examining fault
reports for several systems [3] shown that ∼100% of faults
can be discovered with 4-wise to 6-wise interactions.

The first step to apply combinatorial testing is to construct
a parametrized model of the System Under Test (SUT). The
tester should first identify the input parameters related to the
test goal, i.e. parameters affecting the system behavior; they
may include but not limited to the following: (a) parameters
of method calls; (b) parameters in system settings; and (c) a
selection of replaceable system components installed in a test
environment, such as hardware devices, system libraries and
applications [4].

The key idea of combinatorial testing is that most of
the SUT faults can be detected by combinations of a small
number of factors. In combinatorial testing, a covering array
(CA) is usually used as test suite, which covers parameter
combinations involving t factors.

Covering Arrays (CA) are one of the most popular methods
for representing pseudo-exhaustive test suites, they are small
in comparison with an exhaustive approach but guarantee a
level of interaction coverage among the parameters involved.
They focus on having minimum cardinality (i.e. minimize
the number of test cases), and maximum coverage (i.e. they
guarantee to cover all combinations of certain size between
the input parameters). To address this problem it has been
proposed several methods (e.g., algebraic, exact, greedy and
metaheuristic); however, usually they produce quasi-optimal
covering arrays that contain combinations of symbols which
are covered more than once (redundant). Redundancy opens
the possibility for designing post-processing algorithms that
eliminate the redundant information in the existing covering
arrays with the aim of improve them.

This paper presents a new algorithm called Post-Procesing
Covering Arrays (PPCA) for eliminating redundant tests; it
receives a covering array as input, then it tries to reduce the
number of tests (rows).

The remainder of this paper is organized in four more
sections. Section II, presents a brief overview of the principal
techniques and tools for constructing covering arrays; Section
III presents the new algorithm for post-processing covering
arrays by deleting unnecessary tests. Section IV, shows the
complete results for post-processing a benchmark composed
by 85 covering arrays. Final remarks are presented in the
section V.

II. RELATED WORK

There are several methods for constructing covering arrays;
according to the strategy for generating covering arrays, they
can be classified into algebraic, exact, greedy and metaheuristic
approaches. Additionally, there are some useful operations that
can be applied to a covering array previously constructed.

Algebraic approaches use formulas or operations with
mathematical objects such as cyclic vectors [5], permutation
vectors (Zero-sum method [6]), groups [7], cover starter [8]
or covering arrays with small values of t, k, v (doubling [9]
and v-plication [10] Algebraic constructions often provide a
better bound in less computational time, but impose serious
restrictions on the system configurations to which they can
be applied. For example, many approaches for constructing
covering arrays require that the domain size be a prime number
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or a power of a prime number; this significantly limits the
applicability of algebraic approaches for testing.

Greedy approaches are more flexible than algebraic con-
structions. These methods can generate any covering array
using as input t, k, and v. The majority of commercial and
open source test data generating tools use greedy approaches
for covering arrays construction (TVG [11], ACTS [12],
Jenny [13] and T tuples tool [14]). The problem with these
approaches are the quality of results –greedy methods rarely
obtain optimal covering arrays–.

The exact approaches are exhaustive methods for the
construction of optimal covering arrays. Despite of the fact
that some approaches have techniques for accelerating the
search process, in general they require an exponential time
for completing the task, making them only practical for con-
structing small covering arrays. Some examples of this type of
construction were reported in [15], [16], [17].

Metaheuristic approaches do not guarantee the construc-
tion of the optimal covering array but in practice they give
good results in a reasonable amount of time. Among the most
used metaheuristics are simulated annealing [18], tabu search
[19], [20] and genetic algorithms [21].

III. METHODOLOGY

This section presents an algorithm for post-processing cov-
ering arrays; it starts with some basic definitions that introduce
the problem, and then the proposed algorithm is described.

A. Definitions and Preliminaries

Definition 1: Let N , t, k, and v be positive integers where
t ≤ k. A covering array CA(N ; t, k, v) is a matrix of size
N × k and strength t where each column has entries from
alphabet Σ of size v. In every N × t subarray, all possible vt

t-tuples of symbols occurs at least once. Then N is the number
of rows, t is the strength of the coverage of interactions, k is
the number of factors (also called the degree), and v is the
number of symbols for each factor (also called the order).

Definition 2: A t-way interaction is the assignment of
specific values to each factor from set of t factors. The array
is ‘covering’ in the sense that every t-way interaction is
represented by at least one experimental run. In any covering
array, the number of N × t subarrays is M =

(
k
t

)
, and the

number of t-way interactions to be covered is
(
k
t

)
vt.

Definition 3: The covering array number CAN(t, k, v) is
the smallest N for which a CA(N ; t, k, v) exists. The CAN
is defined according to

CAN(t, k, v) = min{N : ∃ CA(N ; t, k, v)};

evidently CAN(t, k, v) ≥ vt.

When a covering array is used as test suite:

• Each column represents a parameter of the software
under testing (SUT).

• The symbols in the column specify the values for such
parameter.

• Each row represents a test case to be performed.

(a)

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0
0 0 1 2



(b)

0 0 0 0
0 1 1 1
0 2 2 2
1 0 1 2
1 1 2 0
1 2 0 1
2 0 2 1
2 1 0 2
2 2 1 0
∗ ∗ ∗ ∗


Fig. 1: Detection of a redundant row (a) a covering array
CA(10; 2, 4, 3); (b) the last row (maked by asterisks) is not
required in CA(9; 2, 4, 3).

• The fundamental problem is to determine
CAN(t, k, v).

When a covering array is constructed (see section II), it can
contain t-way interactions which are covered more than once
(in the definition of a covering array, the indication at least
once means that a combination of symbols can be covered
more than once). This fact opens the possibility that some
symbols in certain positions are redundant and can be changed
for any value without affecting the coverage of a CA, these
symbols are referred to as redundant. To illustrate the existence
of redundant rows, consider the example provided in Fig. 1.
If the last row is deleted from the CA(10; 2, 4, 3) shown in
Fig. 1(a) then the matrix shown in Fig. 1(b) is obtained which
is still a covering array because all 2–combinations of symbols
are present. Hence, the last row is redundant and can be deleted
from the original matrix; then CA(9; 2, 4, 3) is better than the
original one.

B. Proposed approach

Let R be the set of possible realizations (t–tuples of Σ),
and I = (Ij)Mj=1 be the vector of interactions (t–tuples of
columns). The i–th row test ri can be represented by a vector
Si of the form

Si = (sij)
M
j=1, (1)

where the t–way interaction sij = (Ij , vij) associates the
interaction Ij to its realization vij ∈ R in the i–th test.

In the example shown in Fig. 2, the set of possible
realizations are R = {00, 01, 10, 11} and the interactions
are (I0, I1, I2) = (c0c1, c0c2, c1c2) and the row test r0 is
represented by S0 = ((c0c1, 10), (c0c2, 10), (c1c2, 00)), the
row test r1 by S1 = ((c0c1, 10), (c0c2, 11), (c1c2, 01)), and
so on.

Elements of Si can be used for building an index M that
maps t–way interactions to lists of row tests that cover each
interaction. That is,

M = ((eo,L(eo))No=1 (2)

where eo ∈ I ×R, and L(eo) is the list of rows that test e0.

For obtaining the reduced covering array, the lists of rows
in M are iteratively modified by removing elements. Given a
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map M, the vector of cardinality S#
i of row test ri is defined

as

S#
i = (f(sij))

M
j=1, (3)

where

f(sij) =

{
#L(sij) if sij ∈ keys(M)

N + 1 otherwise,
(4)

and #L(sij) is the size of the list L(sij).

For deciding which rows are included in the reduced
covering array, the vector S#

i is sorted in ascending order

Ss
i = sort(S#

i ). (5)

This array is an indicator of how a row test is required; when
the first element of Ss

i is one it means that the row is strictly
required. If all elements are set to N+1, then the i–th row test
is unnecessary. Hence, the order of elements in Ss

i is important;
then, for obtaining a reduced covering array vectors Ss

i of all
the rows are compared; the first row in the lexicographic order
–i.e., first unequal elements determine the order– is selected
as the best row test in each iteration; the selected row test is
included in the reduced covering array

C. Algorithm

Procedure PPCA(C) shown in the algorithm 1 illustrates
the proposed approach. The input C is a covering array of size
N×k and the algorithm produces a reduced covering array C ′.
The set L is used to store the row tests of C that are included
in C ′, initially L is set to empty. At line 3, the algorithm
creates a map M by analyzing each row test as stated in (2).
After that, the algorithm iterates the following steps while the
map M has entries, i.e. keys(M) 6= ∅: (a) Select the index
im such that S#

im
is the smaller according to the lexicographic

order (step 5), (b) Remove entries of M that include im (step
6), and (c) Add im to the set L (step 7). Finally, C ′ is obtained
by selecting rows L from C (step 9). Hence, the number of
rows of the resulting covering array, N ′ ≤ N , is equal to the
size of L.

Algorithm 1 A Post-Processing covering array algorithm
(PPCA).

Require: A covering array, C, of size N × k
Ensure: A reduced covering array, C ′, of size N ′ × k with

N ′ ≤ N
1: procedure PPCA(C)
2: L← ∅
3: M← CREATEMAP(C)
4: while keys(M) 6= ∅ do
5: im ← argmin

i∈1...N
Ss
i

6: keys(M)← keys(M) \ Sim
7: L← L ∪ {im}
8: end while
9: C ′ ← Select rows L from C

10: return C ′

11: end procedure

D. Example

The toy example shown in Fig. 2 is used for clarifying
algorithm 1, the matrix C of size 9 × 3 illustrates the test
cases; but some of them are redundant. For obtaining the
reduced covering array C ′ the PPCA algorithm proceeds as
is illustrated in Figure 3 and described in the following:

INITIALIZATION:
After creating the initial map M from C, and
obtaining Ss

i |i = 0, . . . , 8; the row i = 2 is
selected for the first iteration because it is the
smaller according to the lexicographic order; i.e.
Ss
2 [1, 2, 2] is selected because row 2 is strictly

required for covering (c0c2, 01).
ITERATION 1:

After inserting row 2 into the reduced covering
array, and updating the vectors Ss

i for i = {1, 6};
the row i = 4 is selected for the next iteration.

ITERATIONS 2,3:
Row s 3 and 0 were included in C ′. Note that
if one of the rows 1, 6 or 8 were selected in
iteration 3 (by a function other than the proposed),
the covering array C ′ must include one or more
additional rows for the complete covering. But,
by using (5) the optimal solution can be found
because row 0 completes the covering array.

ITERATION 4:
The algorithm finishes because keys(M) = ∅ and
the resulting selection L = {2, 4, 3, 0} are the row
tests included in the reduced covering array.

It is easy to show that all combinations of t = 2 are
included in the matrix C ′ that only includes rows {2, 4, 3, 0}
of C.

IV. RESULTS AND DISCUSSION

This section presents an experimental design and results de-
rived from the methodology described in the previous section.
An experiment consisting of 85 covering arrays was designed,
each covering array was built using a tool called IPOG (one

00 01 10 11

I

R

c0c1

c0c2

c1c2

C

2,6 4 0,1,5 3,7,8

4,6 2 0,5,8 1,3,7

0,5,6 1,2 8,4 3,7

i c0c1c2

1 1 0 1

3 1 1 1
2 0 0 1

4 0 1 0
5 1 0 0
6 0 0 0

0 1 0 0

7 1 1 1
8 1 1 0

Fig. 2: Left: A covering array with k = 3, t = 2, and
Σ = {0, 1}. Right: an illustration of the t–way interactions
of row tests used for generating the map M that relates
realizations R to interactions I.
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INITIALIZATION
M

eO L(eO) #L(eO)
(I0, 00) [2,6] 2
(I0, 01) [4] 1
(I0, 10) [0,1,5] 3
(I0, 11) [3,7,8] 3
(I1, 00) [4,6] 2
(I1, 01) [2] 1
(I1, 10) [0,5,8] 3
(I1, 11) [1,3,7] 3
(I2, 00) [0,5,6] 3
(I2, 01) [1,2] 2
(I2, 10) [8,4] 2
(I2, 11) [3,7] 2

i Ss
i

0 [3,3,3]
1 [2,3,3]
2 [1,2,2] ⇐
3 [2,3,3]
4 [1,2,2]
5 [3,3,3]
6 [2,2,3]
7 [2,3,3]
8 [2,3,3]

L = ∅

ITERATION 1
M

eO L(eO) #L(eO)
(I0, 01) [4] 1
(I0, 10) [0,1,5] 3
(I0, 11) [3,7,8] 3
(I1, 00) [4,6] 2
(I1, 10) [0,5,8] 3
(I1, 11) [1,3,7] 3
(I2, 00) [0,5,6] 3
(I2, 10) [8,4] 2
(I2, 11) [3,7] 2

i Ss
i

0 [3,3,3]
1 [3,3,9]
3 [2,3,3]
4 [1,2,2] ⇐
5 [3,3,3]
6 [2,3,9]
7 [2,3,3]
8 [2,3,3]

L = {2}

ITERATION 2
M

eO L(eO) #L(eO)
(I0, 10) [0,1,5] 3
(I0, 11) [3,7,8] 3
(I1, 10) [0,5,8] 3
(I1, 11) [1,3,7] 3
(I2, 00) [0,5,6] 3
(I2, 11) [3,7] 2

i Ss
i

0 [3,3,3]
1 [3,3,9]
3 [2,3,3] ⇐
5 [3,3,3]
6 [3,9,9]
7 [2,3,3]
8 [3,3,9]

L = {2, 4}

ITERATION 3
M

eO L(eO) #L(eO)
(I0, 10) [0,1,5] 3
(I1, 10) [0,5,8] 3
(I2, 00) [0,5,6] 3

i Ss
i

0 [3,3,3] ⇐
1 [3,9,9]
5 [3,3,3]
6 [3,9,9]
8 [3,9,9]

L = {2, 4, 3}

ITERATION 4
M L = {2, 4, 3, 0}

Fig. 3: PPCA for reducing the covering array instance shown
in Fig. 2, the reduced covering array C ′ is obtained by selecting
the rows {2, 4, 3, 0} from C.

TABLE I: Results of post-processing binary covering arrays,
with 2 ≤ t ≤ 6 and k ≤ 50. The number in each entry is the
value N −N ′ for the instance with values k, t.

t
k

2 3 4 5 6
2 0 - - - -
3 1 0 - - -
4 1 0 0 - -
5 1 1 1 0 -
6 1 1 0 9 0
7 0 0 3 3 4
8 0 0 1 3 4
9 1 0 0 2 3
10 1 1 0 2 3
11 0 1 0 0 1
12 0 0 0 0 0
13 0 0 0 0 0
14 1 0 1 0 0
15 0 0 0 0 0
16 0 0 0 0 0
17 1 0 0 0 0
18 0 0 0 0 1
19 0 0 0 0 0
20 1 0 0 0 0 total

# tested instances 19 18 17 16 15 85
# reduced instances 9 4 4 5 6 28

of the most popular tools in the state-of-the-art of covering
arrays construction).

The results derived from our experiment are shown in
table I. In this analysis, binary covering arrays are grouped by
the number of their columns and their strength. Every group of
t contains the different values of the alphabet for each covering
array. Every cell of the this table shows the number of rows
reduced in the corresponding binary covering array. As seen
in the last row, the results reported a reduction in the size of
28 covering arrays (∼33%).

Section II summarizes the techniques for constructing
covering arrays, they can be grouped into: algebraic, greedy,
exact and metaheuristics techniques. The best known solutions
for CA with t = 2, 3, . . . , 6 are publicly available [8]. By
analyzing that results, one can see that metaheuristics tech-
niques produce better bounds but they are computationally
expensive. For this reason, these techniques have concentrated
on the construction of CA with k < 100. Algebraic and
greedy techniques are better suited for large covering arrays,
i.e. v > 3, k > 100 and t > 3; therefore, PPCA algorithm
can be used for post-processing solutions constructed by these
heuristics.

V. CONCLUDING REMARKS AND FUTURE WORK

This paper presents a post-processing strategy, called
PPCA, for reducing the size of a covering array. The post-
processing reduces the number of rows of a covering array
through iteratively including the best row in the reduced
covering array –the row that is most important for guaranteeing
covering–. In some cases, the reduced covering array could be
optimized but here we are interested just in reducing the size
of a previously constructed CA, not in building a new one.

A dataset of 85 covering arrays constructed by the state-of-
the-art algorithm IPOG was used to test the PPCA algorithm.
The results show a reduction in ∼33% of the instances.
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In conclusion, PPCA has already proved being effective for
reducing a wide variety of covering arrays.

We are designing a parallel version of the PPCA algorithm,
in order to address problems with high strength, many factors
or rows.
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