
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

A Posteriori Pareto Front Diversification Using a
Copula-Based Estimation of Distribution Algorithm

Abdelhakim Cheriet
LESIA Laboratory, Biskra University

Algeria

Foudil Cherif
LESIA Laboratory, Biskra University

Algeria

Abstract—We propose CEDA, a Copula-based Estimation of
Distribution Algorithm, to increase the size, achieve high
diversity and convergence of optimal solutions for a
multiobjective optimization problem. The algorithm exploits the
statistical properties of Copulas to produce new solutions from
the existing ones through the estimation of their distribution.
CEDA starts by taking initial solutions provided by any MOEA
(Multi Objective Evolutionary Algorithm), construct Copulas to
estimate their distribution, and uses the constructed Copulas to
generate new solutions. This design saves CEDA the need of
running an MOEA every time alternative solutions are requested
by a Decision Maker when the found solutions are not
satisfactory. CEDA was tested on a set of benchmark problems
traditionally used by the community, namely UF1, UF2, ..., UF10
and CF1, CF2, ..., CF10. CEDA used along with SPEA2 and
NSGA2 as two examples of MOEA thus resulting in two variants
CEDA-SPEA2 and CEDA-NSGA2 and compare them with
SPEA2 and NSGA2. The results of The experiments show that,
with both variants of CEDA, new solutions can be generated in a
significantly smaller without compromising quality compared to
those found SPEA2 and NSGA2.

Keywords—Multiobjective Optimization Problems;
Evolutionary Algorithms; Estimation of Distribution Algorithms;
Copulas

I. INTRODUCTION
A Multiobjective Optimization Problem (MOP) is an

optimization problem that involves multiple functions with
objectives that need to be optimized simultaneously. These
objectives are usually contradictory so much so improving one
objective may degrade many others. Under these
circumstances, there does not exist a single solution that
optimizes all functions. Instead, there typically are a number of
optimal solutions, called Pareto solutions, which are considered
equally good and cannot be ordered completely [1].

Although these Pareto solutions are considered equally
good, a decision maker involved in working with the Pareto
solutions obtained from solving a multiobjective problem may
not be satisfied with some of them. In many of these cases, a
decision maker may need to solve the multiobjective problem
again with the expectation of finding another set of solutions
that suit his needs in a better way.

Searching for new solutions by running a multiobjective
problem solver each time may not be practical as finding a new
solution can be complex and require a significant amount of
time and resources, particularly if the solution technique used
is not appropriate.

Motivating by the effort to make it more efficient for a
decision maker to search for new solutions, this paper target
reducing the time needed to generate new solutions without
compromising their qualities. This paper propose, a Copula-
based Estimation of Distribution Algorithm. CEDA belongs to
the class of Estimation of Distribution Algorithms (EDA) [2],
which is itself a class of Evolutionary Algorithms (EA) [3]
usually used to solve multiobjective problems. In contrast to
EA where new solutions are generated using an implicit
distribution defined by one or more variation operator
(mutation, crossover), EDA uses an explicit probability
distribution model to characterize the interactions between the
solutions. This feature along with their good global searching
ability makes EDA well suited for efficiently generating new
solutions.

Although there are many variants of EDA (See Section 4
for details), the work (CEDA) based on Copulas [4] for their
ability to provide a scale-free description of how Pareto
solutions are distributed. With Copulas, a joint probability
distribution function can be constructed which makes is
particularly easy to generate new sample solutions according to
that joint probability distribution function. This makes CEDA
efficient in generating new solutions in quick way with a high
degree of quality thereby making it convenient for a decision
maker to search for new solutions that would better suit his
needs.

Briefly, this is achieved by the way CEDA operates, which
starts by selecting the best individual using a MOEA (Multi
Objective Evolutionary Algorithm)[5,6,7,8] from a population
generated randomly. Then, CEDA uses the selected individuals
to estimate their distribution using a Copula. The constructed
Copula is used to generate a new population. CEDA continues
with generating and selecting the best individuals until the stop
condition is met. When CEDA stops, the latest generated
individuals are considered Pareto optimal solutions and the last
Copulas can be used in later calls of CEDA to generate
alternative optimal solutions if those generated do not satisfy
the needs of the Decision Maker. This design saves CEDA the
need of running an MOEA every time alternative solutions are
requested by a Decision Maker when the found solutions are
not satisfactory.

The main contributions of this paper are the following:

• Devise a Copula-based EDA to increase the size,
deliver high diversity, and achieve a quick convergence
of Pareto optimal solutions for a multiobjective
optimization problem. We achieve this by exploiting the

 23 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

statistical properties of Copulas to produce new
solutions from the existing ones through the estimation
of their distribution.

• Define a new performance metric called solution
generation efficiency to measure the speed of
generating new Pareto optimal solutions in terms of the
number of objective function evaluations.

• Thoroughly test CEDA on a set of benchmark problems
traditionally used by the community, namely
UF1,…,UF10, CF1,…,CF10, using SPEA2 [6] and
NSGA2 [5] algorithms as two example candidates for
MOEA selecting methods. Finding that new Pareto
optimal solutions can be generated in a significantly
smaller time compared to those found by NSGA2 and
SPEA2, without compromising the quality
(convergence and diversity) of these solutions.

The rest of the paper is organized as follows. In Section 2 a
definition of multiobjective optimization problems is given. In
Section 3, provide an overview of the work carried out in the
area of multiobjective optimization. In Section 4, an overview
on EDA is presented and described how they generally operate.
In Section 5, provide a mathematical definition of Copula and
some of their features used in EDA. We present the
contribution CEDA Copula-based EDA in Section 6 and
evaluate its performance on various benchmark problems in
Section 7. We conclude our paper in Section 8.

II. MULTIOBJECTIVE OPTIMIZATION
A multi-objective optimization problem is an optimization

problem that involves multiple objective functions [1]. In
mathematical terms, a multi-objective optimization problem
can be formulated as follows.

0)(subject to
),,,(= where)(min 10

≤xG
fffFxF m

 (1)

With 𝐱 ∈ ℝn,𝐅(𝐱) ∈ ℝm,𝐆(𝐱) ∈ ℝp, we have m functions
to optimize and p constraints to satisfy. The main goal of
optimization methods is to find an optimal solution for the
problem described in (1). Note that a multiobjective problem
has many objectives to achieve which are usually mutually
contradictory. Therefore, a relation for assessing the goodness
of a solution compared to another one should be defined.
Typically, the Pareto Dominance relation (see Definitions
below) is used to achieve this end.

Definition 1Considering a minimization problem, a
decision vector 𝐮 weakly dominates 𝐯 (𝐮 ≼ 𝐯) iff

 },{0,1,),()(mivfuf ii ∈∀≤ and

)(<)(},,{0,1, vfufmj jj∈∃ .
Definition 2 Considering a minimization problem, a

decision vector 𝐮 dominates 𝐯 (𝐮 ≺ 𝐯) iff

},{0,1,),(<)(mivfuf ii ∈∀ .

Definition 3 A solution x∗ is a Pareto optimal solution if
and only if there is no other admissible solution x where f(x)
dominates f(x∗). So the solution of a Multiobjective problem is
a set of solutions which are not dominated by any other
solution, we call this set the Pareto Solutions PS. The image
of this set in the objective space form the Pareto Front PF:

III. RELATED WORK
There are in the literature many methods for solving a

multiobjective problem. Those based on EA, referred to as
MOEA (Multiobjective Optimization Evolutionary
Algorithms) are among the most used ones due to the good
quality/cost trade-off of the solutions they provide [9]. MOEA
may be classified according to the following aspects: (1) the
techniques used to solve the optimization problem and (2) the
schemes used for the reproduction of the offspring.

In the MOEA based on decomposition MOEA/D [9], the
multiobjective problem (MOP) is decomposed into a number
of scalar objective optimizations (SOPs). The objective of each
SOP is called sub-problem. The population is composed in
every generation with the best solution found for each sub-
problem [10].

The Indicator-based MOEA framework is a recent kind of
resolution which uses the Quality Indicator of the
approximated Pareto Front to guide the search, the
Generational Distance and the Hypervolume are two examples
of the indicators used in the work of [11, 12, 13].

Another type of the MOEA frameworks is the one that is
based on preference. In this class of framework, the Decision
Maker (DM) is involved in the choice of preferred solutions, so
the MOEA method needs to get a Pareto Front of interest to the
DM. Various algorithms exist according to the way of
involving the DM, a priori, a posteriori, or interactively.

In many a priori approaches (e.g. [14]), a preference point
or region is given to guide the search for solutions process. The
preference points are chosen according to the DM demands.
After getting the preferred direction, the search process is
executed from the begin to the end without involving the DM.
Note that the solution obtained after executing the algorithm is
usually not the best solution and may not even be close to the
most preferred solution.

In a posteriori methods (e.g. NSGAII [5], SPEA2 [6]),
optimal solutions are obtained using an evolutionary algorithm
ignoring the interaction with the DM. After getting the PS, the
DM can choose one of the obtained solutions. A posteriori
methods do not provide the DM with the option of guiding the
search for new solutions thereby possibly leading to solutions
that are not of interest to the DM.

In interactive methods (e.g. [15, 16]), the DM directs the
search for new solutions with the aim for finding solution that
are of interest to them. Although these methods help the DM
find good solutions to their problem, the interaction process
significantly slows down the computation of solutions.

MOEA can also be classified according to the method they
use for reproduction (e.g. the DE (Differential Evolution)-
based algorithms [17], the Immune-based algorithms [18] , the

24 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

PSO (Particle swarm optimization)-based [19] algorithms, and
the probabilistic model-based algorithms).

The probabilistic model-based approaches are considered
as a new paradigm in the evolutionary computation. Their
principal idea is extracting the statistical information from their
previous generations and trying to build a probabilistic
distribution model of the best candidate solutions. This
distribution is used to sample new individuals (solutions).
Examples of probabilistic model-based algorithms include
those using Ant Colony Optimization, Cross Entropy [20], and
Quantum-inspired Genetic Algorithm [21].

Another very important class of the probabilistic-based
models are those based on the estimation of distribution,
known as the EDA (Estimation of Distribution Algorithms).
This class of algorithms was first introduced by Mühlenbein
and Paaß [22]. The rest of this paper mainly deals with this
class of algorithms, which will be explained in details in
Section 4.

IV. ESTIMATION OF DISTRIBUTION ALGORITHMS
The Estimation of Distribution Algorithms is a class of

Evolutionary Algorithms. It is a population based algorithm
which starts with an initial population usually a random one,
and then tries to select the best solutions using a fitness
function (for example in the experimentation, the best solution
is the one that is not dominated by any another solution). The
statistical properties of the selected solutions (individuals) are
used to find a distribution or a kind of function or law
representing all the selected solutions. The EDA algorithms try
in every generation of the algorithm to estimate the distribution
of the best solution in this generation. After finding or
estimating the distribution of the best-selected solutions, a
number of new individuals are generated using the created
function or law. In general, those new individuals have the
same proprieties of the best solutions of the precedent
generation. The algorithm runs many generations according to
the steps described above until a criterion stop is achieved [2].

The general steps followed by an EDA are described in
Algorithm 1:

Algorithm 1 Estimation of Distribution Algorithm

Initialization

While Not termination criteria do

 Select best Solutions

 Estimate the best Solutions Distribution

 Generate a candidate Solutions

End While

Most of Estimation of Distribution Algorithms may be
classified into two categories: those that deal with discrete
variables and those that deal with the real-valued vectors. In
the discrete variables class, we find algorithms that use
univariate models, which assume that the problem variables are
independent. Under this assumption, the probability
distribution of any individual variable should not depend on the
values of any other variables.

Mathematically, a univariate model decomposes the
probability of a candidate solution (X1, X2,⋯ , Xn) into the
product of probabilities of individual variables as

p(X1, X2 ,⋯ , Xn) = p(X1)p(X2)⋯ p(Xn)

where p(Xi) is the probability of variable Xi , and
p(X1, X2 ,⋯ , Xn) is the probability of the candidate solution
(X1, X2,⋯ , Xn). One of simplest algorithms that uses this idea
is the Univariate Marginal Distribution Algorithm (UMD).
UMDA works on binary strings and uses the probability vector
p = (p1, p2,⋯ , pn) as the probabilistic model, where pi
denotes the probability of a “1” at position i of solution strings.

One of the main drawbacks of UMDA is the necessity of
keeping the selected individuals to calculate the probability
vector. To alleviate this problem, Incremental EDAs propose to
update the probability vector incrementally to avoid keeping
the list of all individuals. Population-Based Incremental
Learning (PBIL) is an example of Incremental EDAs where
probability vector elements are calculated according to the
following equation:

pi = (pi ∗ (1.0 − LR)) + (LR ∗ vi)

where pi is the probability of generating a 1 in bit at
position i, vi is the ith position in the solution string and LR is
the Learning Rate specified by the user. Although using
univariate models is efficient particularly in saving memory
usage, the assumption that problem variables are independent
will often prevent efficient convergence to the optimum when
problem variables interact strongly.

Tree-based models are another EDAs that deal with
discrete variables. This type of EDAs is capable of capturing
some pair-wise interactions between variables. In tree-based
models, the conditional probability of a variable may only
depend on at most one other variable. The Mutual-Information-
Maximizing Input Clustering (MIMIC) uses a chain
distribution to model interactions between variables. Given a
permutation of the n variables in a problem,π = i1, i2,⋯ , in ,
MIMIC decomposes the probability distribution of
p(X1, X2 ,⋯ , Xn) as

pπ(X) = p(Xi1|Xi2)p(Xi2|Xi3)⋯ p(Xin−1|Xin)p(Xin)

where p(Xij|Xij+1) denotes the conditional probability of
Xij given Xij+1.

All EDAs motioned previously are applicable to problems
with candidate solutions represented by fixed-length strings
over a finite alphabet. However, candidate solutions for many
problems are represented using real-valued vectors. In these
problems, the variables cover an infinite domain so it is no
longer possible to enumerate variables’ values and their
probabilities. This gives rise to EDAs that deal with the real-
coded values. One example of dealing with the real-coded
values is to manipulate these through discretization and
variation operators based on a discrete representation.
Typically, there are three different methods of discretization:
fixed-height histograms, fixed-width histograms, and k-means
clustering.

25 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

The next algorithms are examples of EDAs that work
directly with the real-valued variables themselves. The
Estimation of Gaussian Networks Algorithm (EGNA) works
by creating a Gaussian network to model the interactions
between variables in the selected population of solutions in
each generation [2].

Recently a new approach to developing EDAs to solve real-
valued optimization problem has been developed that is based
on Copula theory. The main idea of Copulas is to decompose
the multivariate joint distribution into each univariate
distribution and a Copula. Copula is a function that embodies
the relationship of the variables [23, 24]. The use of Copula-
based models in continuous EDAs places these algorithms in
an advantageous position in comparison with other EDAs that
rely on the assumption of a particular multivariate distribution,
such as the multivariate normal distribution [25, 26]. By means
of Copulas, any multivariate distribution can be decomposed
into the marginal distribution and the Copula that determines
the dependence structure between the variables.

The main steps of a Copula-based EDA are resumed in the
Algorithm 1.a:

Algorithm 1.a Copula-based EDA

Generate initial population 𝐏𝟎

t = 1

While not stop criterion do

 𝐏𝐭𝐬=select best individual

 Use 𝐏𝐭𝐬 to learn (estimate parameters of) a Copula 𝐂

 𝐏𝐭+𝟏𝐬 = sample individuals from 𝐂

End while

Many types of Copula have been used in the literature. In
[26], the authors used T-Copula, in [27, 28, 29, 30] , the
authors used an Archimedean Copula, in [31] the authors used
Clayton Copula, and in [32, 33, 34] , the authors combined
more than one Copula to find the best estimation. This paper,
will focus on Archimedean Copulas for their ability to model
dependence in high dimensions with only one parameter,
which has the good effect of speeding up multiobjective
optimization computation time.

V. MATHEMATICAL OVERVIEW ON ARCHIMEDEAN
COPULAS

As defined in [4], Copulas are functions that join or couple
multivariate distribution functions to their one-dimensional
marginal distribution functions and as distribution functions
whose one-dimensional margins are uniform.

Definition 4 A function C is called a Copula if only if is
defined:

[0,1][0,1]: →dC

It has the following characteristics:

zero. toequal isu components its of one If 0=),,(i1 duuC

 ii uuC =,1),1,,1,(1,

In addition, C must be increasingd − . Example, for
2=d , we have:

[0,1][0,1]:),(2 →vuC

For any 10 ≤≤ u and 10 ≤≤ v we have the three
following conditions:

0=,0)(=)(0, uCvC

vvC =)(1,

uuC =,1)(

For any u and v , we define the increasing−2
propriety as:

0),(),(),(),(22122111 ≥+−− vuCvuCvuCvuC

Definition 5 According to srSkla ′ theorem, if C is a
Copula, and if dFF ,,1 are a cumulative distribution
functions (univariate), then:

))(,),((=),,(111 ddd xFxFCxxF

is a cumulative distribution function with a dimension d ,
where the marginals are dFF ,,1 exactly.

The converse is also true: if F is cumulative distribution
function with d dimension, there is a C Copula such as:

))(,),((=),,(111 ddd xFxFCxxF

where all iF are F marginals’ laws.

According to Sklar’s theorem, two steps are performed in
order to construct the joint probability distribution function of a
random vector. The first step is constructing the margins of
each random variable separately. The second step is selecting a
proper Copula to construct the joint distribution. Therefore,
Copulas can be used to study the distribution character of each
random variable and their relationship.

There are many families of Copulas. They can be
characterized by one parameter or by a vector of parameters.
These parameters measure the dependence between the
marginals and are called dependence parameters θ. This paper,
use Frank Copula, a variant of Archimedean Copulas, because
we obtained satisfactory results with it (see Section 6.1.3.1). In
general, Archimedean Copulas have one dependence parameter
θ that can be calculated using Kendall’s τ [4].

26 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Kendall’s τ measures the concordance between two
continuous random variables X1 and X2. The relation between
Kendall’s τ and θ in Frank Copula used in this paper is defined
as:

τ = 1 −
4
θ

[1 − D1(θ)] where D1(θ) =
1
θ
�

t
et − 1

θ

0
dt

The Frank Copula function is defined by:

C(u, v;θ) = −
1
θ

ln�1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1
�where θ

∈ (−∞,∞)

The dependence parameter of a bivariate Copula can be
estimated using the maximum likelihood method (MLE). To
do so, we need to optimize the log-likelihood function given
by:

l(θ) = � ln
T

t=1

c(F(x1t), F(x2t); θ)

where T is the sample size. The value θ which maximizes
the log-likelihood l(θ) is called maximum likelihood estimator
θ̂MLE. Once the value of θ is estimated, the bivariate Copula is
well defined. For maximizing the likelihood function, we use
the nonparametric estimation of θ given by Kendall’s τ as an
initial approximation to θ̂MLE.

After the characterization of the Copula, the generation of
sample is performed as the following steps:

1) Generate two independent uniform (0,1) variables 𝑢
and 𝑡;

2) Set 𝑣 = 𝐶𝑢
(−1)(𝑡) , where 𝐶𝑢

(−1)(𝑡) denotes a quasi-
inverse of 𝐶𝑢(𝑣).

3) The desired pair is (𝑢, 𝑣).
4) (𝑥1, 𝑥2) is a sample of the specified joint distribution,

where 𝑥1 = 𝐹1
(−1)(𝑢), 𝑥2 = 𝐹2

(−1)(𝑣)

VI. CEDA: COPULA-BASED ESTIMATION OF DISTRIBUTION
ALGORITHM

The aim of the proposal is to help the decision maker to get
the solutions that are closest to its interest. To achieve this, a
two-stage algorithm is proposed, that is composed of the
Optimization stage which finds a set of the best solutions to a
given problem (see Section 6.1) and the Update stage which
finds another set of the best solutions until the decision maker
is satisfied (see Section 6.2). Note that the Update stage runs
much faster in finding new solutions compared to the initial
Optimization stage.

A. Optimization Stage
Like every evolutionary algorithm the proposed algorithm

(Algorithm 2) has two principal steps (i) the Selection and (ii)
the Reproduction. In the Selection step (performed by Function
SelectUsingMOEA), the proposal use the NSGA2 [5] or SPEA2

[6] to select the best individuals (solutions) that will be used in
the Reproduction step where CEDA makes use of Copulas to
estimate and regenerate new individuals (performed by
Functions ConstructCopulas and GenerateSolutions
respectively).

A pseudo-code of the algorithm that performs the
estimation of distribution using a Copula for solving
multiobjective problems can be viewed as follows (Algorithm
2).

Algorithm 2 Copula-based EDA

Function CEDA

 P0 = Initialization(m)

 P = SelectUsingMOEA(P0)

 While Not termination criteria do

 C = ConstructCopulas(P)

 P’ = GenerateSolutions(C)

 P” = SelectUsingMOEA([P’P]T)

 P = P”

 End while

 Return (P, C)

End function

1) Initialization
Initially CEDA assume that we have a population 𝐏𝟎 =

[𝐱𝟏, … , 𝐱𝐦] T where 𝐱𝐢, i ∈ [1, m] are the individuals. Each
individual 𝐱𝐢 = [xi1, … , xin] where xmin ≤ xij ≤ xmax . Both
xmin and xmax are reals. Where each xij is initially picked up
according to a uniform distribution in [xmin, xmax] . Note that
each individual 𝐱𝐢, (i ∈ [1, m]) is real-value coded vector, i.e.
every xij, (i ∈ [1, m] , j ∈ [1, n]) are real values.

2) Selection
In selection step achieved by the function

SelectUsingMOEA, CEDA use one of the classical algorithms
NSGA2 or SPEA2 as a MOEA.

The result of the selection is a set of individuals that will be
used in the reproduction step. The proposal call 𝐏 the matrix of
the individuals resulting from the selection process operated on
the precedent population. For the first generation, the algorithm
use the initial population 𝐏𝟎. 𝐏 is defined as the following:

𝐏 = �
x11 ⋯ x1n
⋮ ⋱ ⋮

xm1 ⋯ xmn
�

NSGA2 or SPEA2 selects the best individuals of the
population it operates on according to the dominance relation
defined in Section 2. Note that generated solutions (obtained
by GenerateSolutions) at a given step are not necessarily better
than those generated at the step that preceded it. Therefore, the
selection of the best solutions operates on the union of the two
sets: the solutions obtained from the current step and those
resulted from the step that preceded it, as shown in Algorithm
2.

27 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

3) Reproduction
To perform the reproduction, CEDA start by calculating the

dependency between the best individuals using Copula as
shown in Algorithm 3 and then generate new individuals using
these Copulas as shown in Algorithm 4.

a) Constructing Copulas
The Copula type used in this paper is Archimedean. The

Archimedean Copula deals with two vectors of variables 𝐮 and
𝐯; therefore, CEDA divided each one of the decision variable
vectors into two sub vectors to fit into the variables 𝐮 and 𝐯.
CEDA performed this division into two sub vectors in each
generation of the algorithm.

𝐏 = �
x11 ⋯ x1n
⋮ ⋱ ⋮

xm1 ⋯ xmn
� = [𝐰𝟏, … ,𝐰𝐧]

CEDA operate on the transpose of the matrix 𝐏, and take
each vector 𝐰𝐣 = (x1j, x2j, . . . , xmj)T the proposal take each
vector 𝐰𝐣(j ∈ [1, n]) to construct the sub vectors
𝐮𝟏, … ,𝐮𝐧, 𝐯𝟏, … , 𝐯𝐧 according to the following: 𝐮𝟏, 𝐯𝟏 are
extracted from 𝐰𝟏 where the size of each of 𝐮𝟏 and 𝐯𝟏 are
equal to m/2. The elements of 𝐮𝟏 are taken randomly from
𝐰𝟏, and 𝐯𝟏 is constructed from the rest of the elements of 𝐰𝟏.
For the sake of simplicity, CEDA assume that m is an even
number. In the case where m is odd, CEDA remove one
individual from the initial population to make its size even. The
computation of the other sub vectors 𝐮𝟐, … ,𝐮𝐧 and 𝐯𝟐, … , 𝐯𝐧 is
performed in a similar way as for 𝐮𝟏 and 𝐯𝟏 respectively.

The algorithm create Archimedean Copulas, represented by
the vector C = [C1 … Cj … Cn] , using the sub vectors
𝐮𝟏, … ,𝐮𝐧, 𝐯𝟏, … , 𝐯𝐧 , where each Copula Cj, j ∈ [1, n] is
constructed from the sub vectors 𝐮𝐣 and 𝐯𝐣 as shown in
Algorithm 3.

Algorithm 3 Construct Copulas

Function ConstructCopulas(P,type)

 For all wj a vector in P do

 uj = RandomPick(wj)

 vj = Remainder(wj,uj)

 Cj = Copula(uj, vj, type)

 End for

 Return C = [C1 … Cj … Cn]

End function

Note that there are many types of Archimedean Copulas. In
this paper, CEDA considered three of them namely Gumbel,
Clayton and Frank Copula. CEDA have experimented with
them on various optimization problems and found that Frank
Copulas provides better results in the configurations tested on.

b) Generating New Individuals
The proposal uses the constructed Copulas C1, … , Cn to

generate new individuals. The set of the new generated
individuals 𝐗′ = [𝐰′𝟏, … ,𝐰′𝐧] where 𝐰′𝐣 is the concatenation

of 𝐮′𝐣 and 𝐯′𝐣 which are sampled using Copula Cj. Note that the
vector 𝐰′𝐣 (resulting from the concatenation of 𝐮′𝐣 and 𝐯′𝐣) is of
size m′ that is not necessarily the same of the initial population
size m. The new individuals are therefore the vectors 𝐱′𝐢, i ∈
[1,m′] where 𝐗′ = [𝐱′𝟏, … , 𝐱′𝐦′] T . Algorithm 4 summarizes
theses steps.

Algorithm 4 Generate Solutions

Function GenerateSolutions(C, m’)

 For all Cj in C do

 (uj’, vj’) = GenerateFromCopula(Cj, m’)

 w’j = Concat(u’j, v’j)

 End for

 return X’ = [w’1 … w’j … wn’]

End function

The function used to generate individuals form the
estimated Copula C is performed in the same way defined in
Section 5. CEDA start by picking u and t form (0,1) uniform
function then we get v by calculating the Cu

(−1)(t) the quasi-
inverse function of Cu. The generated variables x1 and x2 are
produced from the quasi-inverse function of each marginal
distribution. In every iteration (see Algorithm 4.a), CEDA
insert x1 to the list 𝐋𝐢𝐬𝐭𝐗𝟏 and x2 to 𝐋𝐢𝐬𝐭𝐗𝟐 . Finally, after
generating m samples of x1 and x2 we return the two lists.

Algorithm 4.a GenerateFromCopula

Function GenerateFromCopula(C, m)

For i=1, m do

 𝐮 = 𝐮𝐧𝐢𝐟𝐨𝐫𝐦(𝟎,𝟏);

 𝐭 = 𝐮𝐧𝐢𝐟𝐨𝐫𝐦(𝟎,𝟏);

 𝐯 = 𝐂𝐮
(−𝟏)(𝐭);

 𝐱𝟏 = 𝐅𝟏
(−𝟏)(𝐮);

 𝐱𝟐 = 𝐅𝟐
(−𝟏)(𝐯);

Insert (𝐱𝟏,𝐋𝐢𝐬𝐭𝐗𝟏)

Insert (𝐱𝟐,𝐋𝐢𝐬𝐭𝐗𝟐)

End for

Return (𝐋𝐢𝐬𝐭𝐗𝟏,𝐋𝐢𝐬𝐓𝐗𝟐)

End function

B. Update Stage
The Optimization stage allows us to calculate new solutions

as shown in Algorithm 2. These solutions may not suit the
needs of the decision maker and thus another stage of new
solutions generation is needed. The Update stage that proposed
in this paper (as shown in Algorithm 5) makes it possible for
the decision maker to find other new solutions quickly by using
the Copulas constructed in the Optimization stage. Specifically,
CEDA achieves this by calling Function GenerateSolutions
with arguments C (the Copulas constructed in the Optimization

28 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

phase), and m″ the number of new individuals required. The
output of the Update stage is the population Pupdate. If the
decision maker is still not satisfied with the obtained solutions,
only another round of the Update stage is required thus saving
the need for running the Optimization stage another time.

Algorithm 5 Update Solutions

Function UpdateSolutions(C,m”)

 Ptmp = GenerateSolutions(C,m”)

 Pupdate = SelectUsingMOEA(Ptmp)

 Return Pupdate

End function

It is important to note that Copulas used as input in the
Update Solution Algorithm have been constructed using a set
of the best solutions obtained in the last generation of the
algorithm used in the Optimization stage. Therefore, those
Copulas inherently characterize the distribution of the best
solutions thereby making the new individuals Ptmp among the
best solutions. The returned solutions at this stage (Update
stage) Pupdate are selected from the temporary individuals Ptmp
according to one of the MOEA to select the best solutions as
shown in Algorithm 5.

VII. EXPERIMENTATION

A. Used Benchmark problems
To evaluate the efficiency of the proposed algorithm, we

chose to test it on a set of benchmark problems usually used in
the literature. Specifically, CEDA uses the benchmark
problems UF1, UF2, …, UF10, CF1, CF2, …, and CF3 defined
in CEC2009 competition [35]. CEDA operates on 100
individuals and set the maximum number of evaluation to
300000. Each algorithm runs independently 30 times for each
benchmark problem, as recommended by CEC2009 settings.
We vary the number of DM calls and show the results obtained
with 5 and 20 DM calls.

B. Used Metrics
In addition to considering the metrics traditionally used to

assess the quality of the obtained solutions, namely diversity
and convergence, the proposal defines a new metric, directed
regeneration speed, to measure how quickly new solutions
can be obtained. The new metric allows showing the efficiency
of the algorithm that enables finding new solutions according
to the decision maker needs quickly without compromising
their qualities.

Both the diversity and the convergence are calculated from
the set of solutions obtained by the used algorithms (CEDA,
SPEA2, NSGA2). The diversity of a set of solutions is
calculated using the IGD metric defined in [10] to assess the
quality of the distribution of the obtained solutions over the PF
and the convergence to the PF.

The solution updating speed metric, referred to as Inew,
measures the number of new solutions obtained over a period
of time (expressed in terms of the number of function
evaluations) as shown in (3).

To show the new aspect guaranteed with the algorithm,
which is the ability to get new PS with a very short time
(negligible) we have proposed a metric that calculate the
number of different PS between two set of PS that can be
defined as follows:

t

T

t

t

T

t
ew

FE

PS
I

∑

∑

0=

0=
n

||
= (3)

where |PSt| represents the number of Pareto Solutions
obtained at iteration t , |FEt| is the number of the function
evaluations, and T is the number of iterations (the number of
times the decision maker calls the algorithm again to find new
solutions).

C. Simulation Results
This section, shows that the proposed CEDA method

achieves good diversity and convergence compared to those
obtained with state-of-the-art methods such as SPEA2 and
NSGA2 by considering benchmark problems (UF1, ..., UF10
and CF1, …, CF10) taken from CEC2009 [35].

1) Solution Qualities
Figure 1, shows that the Pareto Front solutions obtained

when solving the considered benchmark problems with the
proposed method CEDA-SPEA2 (CEDA using SPEA2 as
selection method) and CEDA-NSGA2 (CEDA using NSGA2
as selection method). We show that both CEDA algorithms
find solutions with similar qualities independently of the
algorithm used for the selection (SPEA2 or NSGA2), because
solutions are generated according to the same Copulas-based
technique — SPEA2 or NSGA2 are only used for the selection.

Figure 2 shows that CEDA-NSGA2 and CEDA-SPEA2
provide solutions with different qualities on benchmarks UF2
and UF1 because they use different techniques to find new
solutions. Figure 1 and Figure 2 also show that the proposal
always provides solutions that are close to the optimal Pareto
Front, particularly on benchmarks UF7, UF4, and CF1.

Figure 3 shows that the proposed CEDA algorithm
generates more Pareto Solutions compared to those obtained by
traditional algorithm NSGA2. Similar results have been
obtained with CEDA compared to traditional SPEA2.

We show that both variants of CEDA converge to the
optimal Pareto Front in a way that is similar to NSGA2 and
SPEA2 (see Figure 1, 2, and 3). This shows that the Copula
estimator is very good and comparable to the classical genetic
operators (mutation and crossover) in terms of reproduction.

2) Solution Convergence and Diversity
To evaluate the convergence and the diversity of CEDA

during, the measure the IGD Indicator obtained with both
CEDA variants (CEDA-NSGA2 and CEDA-SPEA2) as well as
those obtained with NSGA2 and SPEA2.

Figure 4 and Figure 5 show that CEDA-NSGA2 (resp.
CEDA-SPEA2) algorithm achieves mean IGD values that are

29 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

close to those obtained with NSGA2 (resp. SPEA2), with both
5 DM and 20 calls. Those IGD values reflect the good
convergence and diversity qualities achieved by the method.

3) Solution Update Speed (Update Stage)
Figure 6 shows the IGD of the Pareto Front using the

CEDA-NSGA2 and CEDA-SPEA2 in function of the number
of function evaluations. Lower IGD values reflect better
solution qualities. We show that the speed of generating better
solutions achieved by the CEDA algorithms is higher than that
achieved by traditional algorithms. For example, to decrease
the value of IGD of the approximated Pareto Solutions of the
UF4 problem using CEDA-NSGA2, from the beginning of the
execution of the algorithm to 0.8, needs 500 function
evaluations compared to 10000 required by NSGA2.

For example, in the plot of CEDA-NSGA2 in the subfigure
corresponding to the UF1 benchmark, the results
corresponding to one call are represented in the leftmost point.
That point was found after running 1000 evaluations (as
represented in the x-axis). The point next to it on the right
corresponds to two calls, which was found after running 2000
evaluations (see corresponding value on the x-axis). The point
next to the second point represents the results obtained for
three calls, and so on until we reach the rightmost point, which
corresponds to the results obtained for 20 calls. The same
explanation applies to CEDA-SPEA2, as well as NSGA2 and
SPEA2 in the other subfigures.

Note that counting the number of function evaluations in
the optimization stage starts from the beginning of finding of
new solutions until their convergence to the optimal Pareto
Front. However, during the update stage, the CEDA algorithms
generate new solutions, which assess the quality by calculating
the IGD and compare it with the IGD found in the first phase.
If the IGD of the update stage is smaller or equal to the one of
the optimization stage which consider that the update stage
converged too, which gives DM good alternative solutions.

4) New Solution Count (Update Stage)
Figure 4 and Figure 5, plots the number of new solutions

obtained when a Decision Maker wants to generate new ones.
CEDA tested the solution with two cases. In the first case, the
Decision Maker makes 5 calls to Algorithm 5, and in the
second one the Decision Maker 20 calls to the same Algorithm.
By considering these two cases, the work aim to reflect various
decision making needs requiring different numbers of
algorithm calls to obtain Decision Maker satisfaction. We
plotted the mean value of the number of new solutions
averaged over a 30 simulation runs, as well as the standard
deviation, maximum and minimum values. The work shows

that CEDA-based algorithms, both CEDA-SPEA2 and CEDA-
NSGA2, generate a significantly greater number of new
solutions per objective function evaluation (i.e. new solutions
are obtained with fewer objective function evaluations),
compared to traditional SPEA2 and NSGA2 algorithms. This is
because Copulas based techniques reduce the search space
which becomes closer to the optimal Pareto Front thereby
making it easier to find new solutions with a smaller number of
objective function evaluations compared to SPEA2 and
NSGA2.

VIII. CONCLUSIONS
CEDA was presented, a Copula-based Estimation of

Distribution Algorithm, to improve the efficiency of solving
multiobjective optimization problems. CEDA is based on the
statistical properties of Copulas to estimate the distribution of a
population and thus its ability to generate new individuals with
similar properties. This feature makes CEDA particularly
designed to promptly help a Decision Maker find alternative
solutions to a multiobjective problem when the solutions
obtained by traditional algorithms such as SPEA2 and NSGA2
do not satisfy his/her needs. The production of alternative
solutions by CEDA is accelerated by the fact that they are
generated according the probabilistic model established by the
use of Copulas thereby saving the need for running the costly
traditional MOEA algorithms another time to find new
solutions.

CEDA was tested on a set of benchmark problems from the
CEC2009[35] traditionally used by the community for the
evaluation of multiobjective problem solving algorithms and
shown that the proposal provides solutions with good
convergence and diversity compared to state-of-the-art
algorithms such as SPEA2 and NSGA2. This work have also
particularly shown that the time needed to generate these
solutions is substantially smaller than that needed by state-of-
the-art algorithms, which makes the algorithm suitable for
prompt alternative solution generation.

CEDA was tested with traditional NSGA2 and SPEA2 as
the selection methods. Although the results are encouraging,
better results with other methods such as the MOEA/D or a
hybrid evolutionary algorithm [36-39] as substitutes for
NSGA2 and SPEA2 is expected. CEDA Algorithms may also
be used for solving MaOPs (Many-Objective Problems) where
the there are more than four objectives to optimize. In addition,
Copulas creations are independent and thus can be done in
parallel, which will even enhance the performance on parallel
computers.

30 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Fig. 1. Pareto front of the CF1 and CF6 Constrained problems

Fig. 2. Pareto front of the UF1,UF2,UF4 and UF7 unconstrained problems

Fig. 3. Pareto Front of the CEDA-NSGA2 and NSGA2 of the UF9 problem

31 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Fig. 4. Mean/Deviation of the IGD and Inew metrics for the constrained problems benchmarks

32 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Fig. 5. Mean/Deviation of the IGD and Inew metrics for the unconstrained problems benchmarks

33 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

Fig. 6. The evolution of the means/standard deviations of IGD values of the approximate solution sets obtained with the number of function evaluations for the
test instances

34 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 12, 2015

REFERENCES
[1] Deb K. Multi-objective optimization using evolutionary algorithms. John

Wiley & Sons, 2001.
[2] Hauschild M, Pelikan M. An introduction and survey of estimation of

distribution algorithms. Swarm Evol Comput 2011; 1: 111–128.
[3] Auger A, Doerr B. Theory of Randomized Search Heuristics:

Foundations and Recent Developments. vol. 1. World Scientific; 2011.
[4] Nelsen RB. An introduction to Copulas. Springer; 2006.
[5] Deb K, Pratap A, Agarwal S, Meyarivan T. A fast and elitist

multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput
2002; 6: 182–197.

[6] Zitzler E, Laumanns M, Thiele L. SPEA2: Improving the Strength
Pareto Evolutionary Algorithm for Multiobjective Optimization. In:
Evolutionary Methods for Design, Optimisation, and Control; 2002;
Barcelona, Spain. pp. 95–100.

[7] Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary
algorithms: Empirical results. Evol Comput 2000; 8: 173–195.

[8] Fonseca CM, Fleming PJ. Multiobjective optimization and multiple
constraint handling with evolutionary algorithms II Application example.
IEEE Trans Syst Man Cybern Part A Syst Humans 1998; 28: 38–47.

[9] Zhou A, Qu BY, Li H, Zhao SZ, Suganthan PN, Zhang Q.
Multiobjective evolutionary algorithms: A survey of the state of the art.
Swarm Evol Comput 2011; 1: 32–49.

[10] Zhang Q, Li H. MOEA/D: A Multiobjective Evolutionary Algorithm
Based on Decomposition. IEEE Trans Evol Comput 2007; 11: 712–731.

[11] Zitzler E, Simon K. Indicator-Based Selection in Multiobjective Search.
In: Yao X, Burke EK, Lozano J, Smith J, Merelo-Guervos JJ, Bullinaria
JA, Rowe JE, Tino P, Kabàn A, Schwefel HP,editors. 8th International
Conference on Parallel Problem Solving from Nature.Berlin, Heidelberg:
Springer, 2004. pp. 832–842.

[12] Brockhoff D, Zitzler E. Improving hypervolume-based multiobjective
evolutionary algorithms by using objective reduction methods. In: IEEE
Congress on Evolutionary Computation; Sept 2007; Singapore. IEEE.
pp. 2086–2093.

[13] Bader J, Zitzler E. HypE: an algorithm for fast hypervolume-based
many-objective optimization. Lect Notes Comput Sc 2011; 19: 45–76.

[14] Branke J, Deb K. Integrating User Preferences into Evolutionary Multi-
Objective Optimization. In: Jin Y, editor. Knowledge Incorporation in
Evolutionary Computation. vol. 167.Berlin, Heidelberg: Springer, 2005.
pp. 461–477.

[15] Deb K, Jain H. An Evolutionary Many-Objective Optimization
Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints. IEEE Trans
Evol Comput 2014; 18: 577–601.

[16] Sinha A, Korhonen P, Wallenius J, Deb K. An interactive evolutionary
multi-objective optimization algorithm with a limited number of decision
maker calls. Eur J Oper Res 2014; 233: 674–688.

[17] Fleetwood K. An Introduction to Differential Evolution, New ideas in
optimization. UK, Maidenhead, UK: McGraw-Hill Ltd, 1999.

[18] Coello CAC, Cortés NC. Solving multiobjective optimization problems
using an artificial immune system. Genet Progam Evolvable Mach 2005;
6: 163–190.

[19] Reyes-Sierra M, Coello CC. Multi-objective particle swarm optimizers:
A survey of the state-of-the-art. International journal of computational
intelligence research 2006; 2: 287–308.

[20] Ünveren A, Acan A, editors. Multi-objective optimization with cross
entropy method: Stochastic learning with clustered pareto fronts. In:
IEEE Congress on Evolutionary Computation; 25-28 Sept. 2007;
Singapore. IEEE. pp. 3065 – 3071.

[21] [21] Han KH, Kim JH. Quantum-inspired evolutionary algorithm for a
class of combinatorial optimization. IEEE Trans Evol Comput 2002; 6:
580–593.

[22] Muhlenbein H, Paaß G. From Recombination of Genes to the Estimation
of Distributions I. Binary Parameters. In: Voigt HM, Ebeling W,
Rechenberg I, Schwefel HP, editors. Parallel Problem Solving from
Nature PPSN IV. Springer Berlin Heidelberg, 1996. pp. 178–187.

[23] Salinas-Gutierrez R, Hernandez-Aguirre A, Villa-Diharce ER.
Estimation of Distribution Algorithms Based on Copula Functions. In:
Proceedings of the 13th Annual Conference Companion on Genetic and
Evolutionary Computation; 12-16 July 2011; New York, NY, USA:
ACM. pp. 795–798.

[24] Wang L, Wang Y, Zeng J, Hong Y. An estimation of distribution
algorithm based on Clayton copula and empirical margins. In: Li K ,Li X
,Ma S ,Irwin GW, editors .Life System Modeling and Intelligent
Computing. Berlin, Heidelberg: Springer, 2010. pp. 82–88.

[25] Salinas-Gutiérrez R, Hernàndez-Aguirre A, Villa-Diharce ER. Using
copulas in estimation of distribution algorithms. In: Aguirre AH, Borja
RM, Garcià CAR, editors. MICAI 2009:Advances in Artificial
Intelligence. Berlin, Heidelberg: Springer, 2009. pp. 658–668.

[26] Gao Y, Peng L, Li F, Liu M, Hu X. EDA-Based Multi-objective
Optimization Using Preference Order Ranking and Multivariate
Gaussian Copula. In: Guo C, Hou ZG, Zeng Z, editors. Advances in
Neural Networks. Berlin, Heidelberg: Springer, 2013. pp. 341–350.

[27] Gao Y, Peng L, Li F, Liu M, Hu X. Multiobjective Estimation of
Distribution Algorithms Using Multivariate Archimedean Copulas and
Average Ranking. In: Wen Z, Li T, editors. Foundations of Intelligent
Systems. Berlin, Heidelberg Springer, 2014. pp. 591–601.

[28] Wang LF, Zeng JC, Hong Y. Estimation of distribution algorithm based
on archimedean copulas. In: Proceedings of the first ACM/SIGEVO
Summit on Genetic and Evolutionary Computation. ACM; June 12-14
2009 ; Shanghai, China. New York, NY, USA :ACM. pp. 993–996.

[29] Salinas-Gutiérrez R, Hernàndez-Aguirre A, Villa-Diharce ER. D-vine
EDA: a new estimation of distribution algorithm based on regular vines.
In: Proceedings of the 12th annual conference on Genetic and
evolutionary computation; 7-11 July 2010; Portland, Oregon. New York,
NY, USA :ACM. pp. 359–366.

[30] Gao Y. Multivariate estimation of distribution algorithm with laplace
transform archimedean copula. In: Information Engineering and
Computer Science, 2009. ICIECS 2009. International Conference on.
IEEE; 2009. pp. 1–5.

[31] Wang L, Wang Y, Zeng J, Hong Y. An estimation of distribution
algorithm based on clayton copula and empirical margins. In: Life
System Modeling and Intelligent Computing. Springer; 2010. pp. 82–88.

[32] Wang X, Gao H, Zeng J. Estimation of Distribution Algorithms Based
on Two Copula Selection Methods. Int J Comput Sci Math. 2012 Jan; 3:
317–331.

[33] Chang C, Wang L. A multi-population parallel estimation of distribution
algorithms based on Clayton and Gumbel copulas. In: Deng H, Miao D,
Lei J, Wang FL, editors. Artificial Intelligence and Computational
Intelligence .Berlin, Heidelberg: Springer, 2011. pp. 634–643.

[34] Wang L, Guo X, Zeng J, Hong Y. Using gumbel copula and empirical
marginal distribu- tion in estimation of distribution algorithm. In:
Advanced Computational Intelligence (IWACI), 2010 Third
International Workshop on; 25-27 Aug 2010; Suzhou, Jiangsu IEEE.
2010.pp.583–587.

[35] Zhang, Q., Zhou, A., Zhao, S., Suganthan, P.N., Liu, W., and Tiwari, S.:
‘Multiobjective optimization test instances for the CEC 2009 special
session and competition’, University of Essex, Colchester, UK and
Nanyang technological University, Singapore, special session on
performance assessment of multi-objective optimization algorithms,
technical report, 2008, pp. 1-30

[36] Mashwani, W.K., and Salhi, A.: A decomposition-based hybrid
multiobjective evolutionary algorithm with dynamic resource allocation,
Applied Soft Computing, 2012, 12, (9), pp. 2765-2780

[37] Mashwani, W.K.: ‘Hybrid Multiobjective Evolutionary Algorithms: A
Survey of the Stateof-the-art’, International Journal of Computer Science
Issues (IJCSI), 2011, 8, (6), pp. 374-392

[38] Mashwani, W.K.: ‘Comprehensive Survey of the Hybrid Evolutionary
Algorithms’, Int. J. Appl. Evol. Comput., 2013, 4, (2), pp. 1-19

[39] Mashwani, W.K., and Salhi, A.: ‘Multiobjective memetic algorithm
based on decomposition’, Applied Soft Computing, 2014, 21, pp. 221-
243

35 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	II. Multiobjective Optimization
	III. Related Work
	IV. Estimation of Distribution Algorithms
	V. Mathematical Overview on Archimedean Copulas
	1) Generate two independent uniform (0,1) variables 𝑢 and 𝑡;
	2) Set 𝑣=,𝐶-𝑢-(−1).(𝑡), where ,𝐶-𝑢-(−1).(𝑡) denotes a quasi-inverse of ,𝐶-𝑢.(𝑣).
	3) The desired pair is (𝑢,𝑣).
	4) (𝑥1,𝑥2) is a sample of the specified joint distribution, where ,𝑥-1.=,𝐹-1-(−1).(𝑢),,𝑥-2.=,𝐹-2-(−1).(𝑣)

	VI. CEDA: Copula-Based Estimation of Distribution Algorithm
	A. Optimization Stage
	1) Initialization
	2) Selection
	3) Reproduction
	a) Constructing Copulas
	b) Generating New Individuals

	B. Update Stage

	VII. Experimentation
	A. Used Benchmark problems
	B. Used Metrics
	C. Simulation Results
	1) Solution Qualities
	2) Solution Convergence and Diversity
	3) Solution Update Speed (Update Stage)
	4) New Solution Count (Update Stage)

	VIII. Conclusions
	References

