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Abstract—We propose CEDA, a Copula-based Estimation of 
Distribution Algorithm, to increase the size, achieve high 
diversity and convergence of optimal solutions for a 
multiobjective optimization problem. The algorithm exploits the 
statistical properties of Copulas to produce new solutions from 
the existing ones through the estimation of their distribution. 
CEDA starts by taking initial solutions provided by any MOEA 
(Multi Objective Evolutionary Algorithm), construct Copulas to 
estimate their distribution, and uses the constructed Copulas to 
generate new solutions. This design saves CEDA the need of 
running an MOEA every time alternative solutions are requested 
by a Decision Maker when the found solutions are not 
satisfactory. CEDA was tested on a set of benchmark problems 
traditionally used by the community, namely UF1, UF2, ..., UF10  
and CF1, CF2, ..., CF10. CEDA used along with SPEA2 and 
NSGA2 as two examples of MOEA thus resulting in two variants 
CEDA-SPEA2 and CEDA-NSGA2 and compare them with 
SPEA2 and NSGA2. The results of The experiments show that, 
with both variants of CEDA, new solutions can be generated in a 
significantly smaller without compromising quality compared to 
those found SPEA2 and NSGA2. 

Keywords—Multiobjective Optimization Problems; 
Evolutionary Algorithms; Estimation of Distribution Algorithms; 
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I. INTRODUCTION 
A Multiobjective Optimization Problem (MOP) is an 

optimization problem that involves multiple functions with 
objectives that need to be optimized simultaneously. These 
objectives are usually contradictory so much so improving one 
objective may degrade many others. Under these 
circumstances, there does not exist a single solution that 
optimizes all functions. Instead, there typically are a number of 
optimal solutions, called Pareto solutions, which are considered 
equally good and cannot be ordered completely [1]. 

Although these Pareto solutions are considered equally 
good, a decision maker involved in working with the Pareto 
solutions obtained from solving a multiobjective problem may 
not be satisfied with some of them. In many of these cases, a 
decision maker may need to solve the multiobjective problem 
again with the expectation of finding another set of solutions 
that suit his needs in a better way. 

Searching for new solutions by running a multiobjective 
problem solver each time may not be practical as finding a new 
solution can be complex and require a significant amount of 
time and resources, particularly if the solution technique used 
is not appropriate. 

Motivating by the effort to make it more efficient for a 
decision maker to search for new solutions, this paper target 
reducing the time needed to generate new solutions without 
compromising their qualities. This paper propose, a Copula-
based Estimation of Distribution Algorithm. CEDA belongs to 
the class of Estimation of Distribution Algorithms (EDA) [2], 
which is itself a class of Evolutionary Algorithms (EA) [3] 
usually used to solve multiobjective problems. In contrast to 
EA where new solutions are generated using an implicit 
distribution defined by one or more variation operator 
(mutation, crossover), EDA uses an explicit probability 
distribution model to characterize the interactions between the 
solutions. This feature along with their good global searching 
ability makes EDA well suited for efficiently generating new 
solutions. 

Although there are many variants of EDA (See Section 4 
for details), the work (CEDA) based on Copulas [4] for their 
ability to provide a scale-free description of how Pareto 
solutions are distributed. With Copulas, a joint probability 
distribution function can be constructed which makes is 
particularly easy to generate new sample solutions according to 
that joint probability distribution function. This makes CEDA 
efficient in generating new solutions in quick way with a high 
degree of quality thereby making it convenient for a decision 
maker to search for new solutions that would better suit his 
needs. 

Briefly, this is achieved by the way CEDA operates, which 
starts by selecting the best individual using a MOEA (Multi 
Objective Evolutionary Algorithm)[5,6,7,8] from a population 
generated randomly. Then, CEDA uses the selected individuals 
to estimate their distribution using a Copula. The constructed 
Copula is used to generate a new population. CEDA continues 
with generating and selecting the best individuals until the stop 
condition is met. When CEDA stops, the latest generated 
individuals are considered Pareto optimal solutions and the last 
Copulas can be used in later calls of CEDA to generate 
alternative optimal solutions if those generated do not satisfy 
the needs of the Decision Maker. This design saves CEDA the 
need of running an MOEA every time alternative solutions are 
requested by a Decision Maker when the found solutions are 
not satisfactory. 

The main contributions of this paper are the following: 

• Devise a Copula-based EDA to increase the size, 
deliver high diversity, and achieve a quick convergence 
of Pareto optimal solutions for a multiobjective 
optimization problem. We achieve this by exploiting the 
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statistical properties of Copulas to produce new 
solutions from the existing ones through the estimation 
of their distribution. 

• Define a new performance metric called solution 
generation efficiency to measure the speed of 
generating new Pareto optimal solutions in terms of the 
number of objective function evaluations. 

• Thoroughly test CEDA on a set of benchmark problems 
traditionally used by the community, namely 
UF1,…,UF10, CF1,…,CF10, using SPEA2 [6] and 
NSGA2 [5] algorithms as two example candidates for 
MOEA selecting methods. Finding that new Pareto 
optimal solutions can be generated in a significantly 
smaller time compared to those found by NSGA2 and 
SPEA2, without compromising the quality 
(convergence and diversity) of these solutions. 

The rest of the paper is organized as follows. In Section 2 a 
definition of multiobjective optimization problems is given. In 
Section 3, provide an overview of the work carried out in the 
area of multiobjective optimization. In Section 4, an overview 
on EDA is presented and described how they generally operate. 
In Section 5, provide a mathematical definition of Copula and 
some of their features used in EDA. We present the 
contribution CEDA Copula-based EDA in Section 6 and 
evaluate its performance on various benchmark problems in 
Section 7. We conclude our paper in Section 8. 

II. MULTIOBJECTIVE OPTIMIZATION 
A multi-objective optimization problem is an optimization 

problem that involves multiple objective functions [1]. In 
mathematical terms, a multi-objective optimization problem 
can be formulated as follows. 

0)(subject to
),,,(= where)(min 10

≤xG
fffFxF m

   (1) 

With 𝐱 ∈ ℝn,𝐅(𝐱) ∈ ℝm,𝐆(𝐱) ∈ ℝp, we have m functions 
to optimize and p  constraints to satisfy. The main goal of 
optimization methods is to find an optimal solution for the 
problem described in (1). Note that a multiobjective problem 
has many objectives to achieve which are usually mutually 
contradictory. Therefore, a relation for assessing the goodness 
of a solution compared to another one should be defined. 
Typically, the Pareto Dominance relation (see Definitions 
below) is used to achieve this end. 

Definition 1Considering a minimization problem, a 
decision vector 𝐮 weakly dominates 𝐯 (𝐮 ≼ 𝐯) iff 

 },{0,1,),()( mivfuf ii ∈∀≤  and 

)(<)(},,{0,1, vfufmj jj∈∃ . 
Definition 2 Considering a minimization problem, a 

decision vector 𝐮 dominates 𝐯 (𝐮 ≺ 𝐯) iff  

},{0,1,),(<)( mivfuf ii ∈∀ . 

Definition 3 A solution x∗ is a Pareto optimal solution if 
and only if there is no other admissible solution x where f(x) 
dominates f(x∗). So the solution of a Multiobjective problem is 
a set of solutions which are not dominated by any other 
solution, we call this set the Pareto Solutions PS. The image 
of this set in the objective space form the Pareto Front PF: 

III. RELATED WORK 
There are in the literature many methods for solving a 

multiobjective problem. Those based on EA, referred to as 
MOEA (Multiobjective Optimization Evolutionary 
Algorithms) are among the most used ones due to the good 
quality/cost trade-off of the solutions they provide [9]. MOEA 
may be classified according to the following aspects: (1) the 
techniques used to solve the optimization problem and (2) the 
schemes used for the reproduction of the offspring. 

In the MOEA based on decomposition MOEA/D [9], the 
multiobjective problem (MOP) is decomposed into a number 
of scalar objective optimizations (SOPs). The objective of each 
SOP is called sub-problem. The population is composed in 
every generation with the best solution found for each sub-
problem [10]. 

The Indicator-based MOEA framework is a recent kind of 
resolution which uses the Quality Indicator of the 
approximated Pareto Front to guide the search, the 
Generational Distance and the Hypervolume are two examples 
of the indicators used in the work of [11, 12, 13]. 

Another type of the MOEA frameworks is the one that is 
based on preference. In this class of framework, the Decision 
Maker (DM) is involved in the choice of preferred solutions, so 
the MOEA method needs to get a Pareto Front of interest to the 
DM. Various algorithms exist according to the way of 
involving the DM, a priori, a posteriori, or interactively. 

In many a priori approaches (e.g. [14]), a preference point 
or region is given to guide the search for solutions process. The 
preference points are chosen according to the DM demands. 
After getting the preferred direction, the search process is 
executed from the begin to the end without involving the DM. 
Note that the solution obtained after executing the algorithm is 
usually not the best solution and may not even be close to the 
most preferred solution. 

In a posteriori methods (e.g. NSGAII [5], SPEA2 [6]), 
optimal solutions are obtained using an evolutionary algorithm 
ignoring the interaction with the DM. After getting the PS, the 
DM can choose one of the obtained solutions. A posteriori 
methods do not provide the DM with the option of guiding the 
search for new solutions thereby possibly leading to solutions 
that are not of interest to the DM. 

In interactive methods (e.g. [15, 16]), the DM directs the 
search for new solutions with the aim for finding solution that 
are of interest to them. Although these methods help the DM 
find good solutions to their problem, the interaction process 
significantly slows down the computation of solutions. 

MOEA can also be classified according to the method they 
use for reproduction (e.g. the DE (Differential Evolution)-
based algorithms [17], the Immune-based algorithms [18] , the 
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PSO (Particle swarm optimization)-based [19] algorithms, and 
the probabilistic model-based algorithms). 

The probabilistic model-based approaches are considered 
as a new paradigm in the evolutionary computation. Their 
principal idea is extracting the statistical information from their 
previous generations and trying to build a probabilistic 
distribution model of the best candidate solutions. This 
distribution is used to sample new individuals (solutions). 
Examples of probabilistic model-based algorithms include 
those using Ant Colony Optimization, Cross Entropy [20], and 
Quantum-inspired Genetic Algorithm [21]. 

Another very important class of the probabilistic-based 
models are those based on the estimation of distribution, 
known as the EDA (Estimation of Distribution Algorithms). 
This class of algorithms was first introduced by Mühlenbein 
and Paaß [22]. The rest of this paper mainly deals with this 
class of algorithms, which will be explained in details in 
Section 4. 

IV. ESTIMATION OF DISTRIBUTION ALGORITHMS 
The Estimation of Distribution Algorithms is a class of 

Evolutionary Algorithms. It is a population based algorithm 
which starts with an initial population usually a random one, 
and then tries to select the best solutions using a fitness 
function (for example in the experimentation, the best solution 
is the one that is not dominated by any another solution). The 
statistical properties of the selected solutions (individuals) are 
used to find a distribution or a kind of function or law 
representing all the selected solutions. The EDA algorithms try 
in every generation of the algorithm to estimate the distribution 
of the best solution in this generation. After finding or 
estimating the distribution of the best-selected solutions, a 
number of new individuals are generated using the created 
function or law. In general, those new individuals have the 
same proprieties of the best solutions of the precedent 
generation. The algorithm runs many generations according to 
the steps described above until a criterion stop is achieved [2]. 

The general steps followed by an EDA are described in 
Algorithm 1: 

Algorithm 1 Estimation of Distribution Algorithm 

Initialization 

While Not termination criteria do 

 Select best Solutions 

 Estimate the best Solutions Distribution  

 Generate a candidate Solutions 

End While 

Most of Estimation of Distribution Algorithms may be 
classified into two categories: those that deal with discrete 
variables and those that deal with the real-valued vectors. In 
the discrete variables class, we find algorithms that use 
univariate models, which assume that the problem variables are 
independent. Under this assumption, the probability 
distribution of any individual variable should not depend on the 
values of any other variables. 

Mathematically, a univariate model decomposes the 
probability of a candidate solution (X1, X2,⋯ , Xn)  into the 
product of probabilities of individual variables as 

p(X1, X2 ,⋯ , Xn) = p(X1)p(X2)⋯ p(Xn) 

where p(Xi)  is the probability of variable Xi , and 
p(X1, X2 ,⋯ , Xn)  is the probability of the candidate solution 
(X1, X2,⋯ , Xn). One of simplest algorithms that uses this idea 
is the Univariate Marginal Distribution Algorithm (UMD). 
UMDA works on binary strings and uses the probability vector 
p = (p1, p2,⋯ , pn)  as the probabilistic model, where pi 
denotes the probability of a “1” at position i of solution strings. 

One of the main drawbacks of UMDA is the necessity of 
keeping the selected individuals to calculate the probability 
vector. To alleviate this problem, Incremental EDAs propose to 
update the probability vector incrementally to avoid keeping 
the list of all individuals. Population-Based Incremental 
Learning (PBIL) is an example of Incremental EDAs where 
probability vector elements are calculated according to the 
following equation: 

pi = (pi ∗ (1.0 − LR)) + (LR ∗ vi) 

where pi  is the probability of generating a 1 in bit at 
position i, vi is the ith position in the solution string and LR is 
the Learning Rate specified by the user. Although using 
univariate models is efficient particularly in saving memory 
usage, the assumption that problem variables are independent 
will often prevent efficient convergence to the optimum when 
problem variables interact strongly. 

Tree-based models are another EDAs that deal with 
discrete variables. This type of EDAs is capable of capturing 
some pair-wise interactions between variables. In tree-based 
models, the conditional probability of a variable may only 
depend on at most one other variable. The Mutual-Information-
Maximizing Input Clustering (MIMIC) uses a chain 
distribution to model interactions between variables. Given a 
permutation of the n variables in a problem,π = i1, i2,⋯ , in , 
MIMIC decomposes the probability distribution of 
p(X1, X2 ,⋯ , Xn) as 

pπ(X) = p(Xi1|Xi2)p(Xi2|Xi3)⋯ p(Xin−1|Xin)p(Xin) 

where p(Xij|Xij+1)  denotes the conditional probability of 
Xij given Xij+1. 

All EDAs motioned previously are applicable to problems 
with candidate solutions represented by fixed-length strings 
over a finite alphabet. However, candidate solutions for many 
problems are represented using real-valued vectors. In these 
problems, the variables cover an infinite domain so it is no 
longer possible to enumerate variables’ values and their 
probabilities. This gives rise to EDAs that deal with the real-
coded values. One example of dealing with the real-coded 
values is to manipulate these through discretization and 
variation operators based on a discrete representation. 
Typically, there are three different methods of discretization: 
fixed-height histograms, fixed-width histograms, and k-means 
clustering. 
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The next algorithms are examples of EDAs that work 
directly with the real-valued variables themselves. The 
Estimation of Gaussian Networks Algorithm (EGNA) works 
by creating a Gaussian network to model the interactions 
between variables in the selected population of solutions in 
each generation [2]. 

Recently a new approach to developing EDAs to solve real-
valued optimization problem has been developed that is based 
on Copula theory. The main idea of Copulas is to decompose 
the multivariate joint distribution into each univariate 
distribution and a Copula. Copula is a function that embodies 
the relationship of the variables [23, 24].  The use of Copula-
based models in continuous EDAs places these algorithms in 
an advantageous position in comparison with other EDAs that 
rely on the assumption of a particular multivariate distribution, 
such as the multivariate normal distribution [25, 26]. By means 
of Copulas, any multivariate distribution can be decomposed 
into the marginal distribution and the Copula that determines 
the dependence structure between the variables. 

The main steps of a Copula-based EDA are resumed in the 
Algorithm 1.a: 

Algorithm 1.a Copula-based EDA 

Generate initial population 𝐏𝟎 

t = 1 

While not stop criterion do 

 𝐏𝐭𝐬=select best individual 

 Use 𝐏𝐭𝐬 to learn (estimate parameters of) a Copula 𝐂 

 𝐏𝐭+𝟏𝐬 = sample individuals from 𝐂 

End while 

Many types of Copula have been used in the literature. In 
[26], the authors used T-Copula, in [27, 28, 29, 30] , the 
authors used an Archimedean Copula, in [31] the authors used 
Clayton Copula, and in [32, 33, 34] , the authors combined 
more than one Copula to find the best estimation. This paper, 
will focus on Archimedean Copulas for their ability to model 
dependence in high dimensions with only one parameter, 
which has the good effect of speeding up multiobjective 
optimization computation time. 

V. MATHEMATICAL OVERVIEW ON ARCHIMEDEAN 
COPULAS 

As defined in [4], Copulas are functions that join or couple 
multivariate distribution functions to their one-dimensional 
marginal distribution functions and as distribution functions 
whose one-dimensional margins are uniform. 

Definition 4 A function C  is called a Copula  if only if is 
defined: 

[0,1][0,1]: →dC  

It has the following characteristics: 

zero.  toequal isu components its of one If   0=),,( i1 duuC 

 ii uuC =,1),1,,1,(1,   

In addition, C  must be increasingd − . Example, for 
2=d , we have: 

[0,1][0,1]:),( 2 →vuC  

For any 10 ≤≤ u  and 10 ≤≤ v  we have the three 
following conditions: 

0=,0)(=)(0, uCvC  

vvC =)(1,  

uuC =,1)(  

For any u  and v , we define the increasing−2  
propriety as: 

0),(),(),(),( 22122111 ≥+−− vuCvuCvuCvuC  

Definition 5 According to srSkla ′  theorem, if C  is a 
Copula, and if dFF ,,1   are a cumulative distribution 
functions (univariate), then: 

))(,),((=),,( 111 ddd xFxFCxxF   

is a cumulative distribution function with a dimension d , 
where the marginals are dFF ,,1   exactly. 

The converse is also true: if F  is cumulative distribution 
function with d  dimension, there is a C  Copula such as: 

))(,),((=),,( 111 ddd xFxFCxxF   

where all iF  are F  marginals’ laws. 

According to Sklar’s theorem, two steps are performed in 
order to construct the joint probability distribution function of a 
random vector. The first step is constructing the margins of 
each random variable separately. The second step is selecting a 
proper Copula to construct the joint distribution. Therefore, 
Copulas can be used to study the distribution character of each 
random variable and their relationship. 

There are many families of Copulas. They can be 
characterized by one parameter or by a vector of parameters. 
These parameters measure the dependence between the 
marginals and are called dependence parameters θ. This paper, 
use Frank Copula, a variant of Archimedean Copulas, because 
we obtained satisfactory results with it (see Section 6.1.3.1). In 
general, Archimedean Copulas have one dependence parameter 
θ that can be calculated using Kendall’s τ [4].  
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Kendall’s τ  measures the concordance between two 
continuous random variables X1 and X2. The relation between 
Kendall’s τ and θ in Frank Copula used in this paper is defined 
as: 

τ = 1 −
4
θ

[1 − D1(θ)] where D1(θ) =
1
θ
�

t
et − 1

θ

0
dt 

The Frank Copula function is defined by: 

C(u, v;θ) = −
1
θ

ln�1 +
(e−θu − 1)(e−θv − 1)

e−θ − 1
�where θ

∈ (−∞,∞) 

The dependence parameter of a bivariate Copula can be 
estimated using the maximum likelihood method (MLE). To 
do so, we need to optimize the log-likelihood function given 
by: 

l(θ) = � ln
T

t=1

c(F(x1t), F(x2t); θ) 

where T is the sample size. The value θ which maximizes 
the log-likelihood l(θ) is called maximum likelihood estimator 
θ̂MLE. Once the value of θ is estimated, the bivariate Copula is 
well defined. For maximizing the likelihood function, we use 
the nonparametric estimation of θ given by Kendall’s τ as an 
initial approximation to θ̂MLE. 

After the characterization of the Copula, the generation of 
sample is performed as the following steps: 

1) Generate two independent uniform (0,1) variables 𝑢 
and 𝑡; 

2) Set 𝑣 = 𝐶𝑢
(−1)(𝑡) , where 𝐶𝑢

(−1)(𝑡)  denotes a quasi-
inverse of 𝐶𝑢(𝑣). 

3) The desired pair is (𝑢, 𝑣). 
4) (𝑥1, 𝑥2) is a sample of the specified joint distribution, 

where 𝑥1 = 𝐹1
(−1)(𝑢), 𝑥2 = 𝐹2

(−1)(𝑣) 

VI. CEDA: COPULA-BASED ESTIMATION OF DISTRIBUTION 
ALGORITHM 

The aim of the proposal is to help the decision maker to get 
the solutions that are closest to its interest. To achieve this, a 
two-stage algorithm is proposed, that is composed of the 
Optimization stage which finds a set of the best solutions to a 
given problem (see Section 6.1) and the Update stage which 
finds another set of the best solutions until the decision maker 
is satisfied (see Section 6.2). Note that the Update stage runs 
much faster in finding new solutions compared to the initial 
Optimization stage. 

A. Optimization Stage 
Like every evolutionary algorithm the proposed algorithm 

(Algorithm 2) has two principal steps (i) the Selection and (ii) 
the Reproduction. In the Selection step (performed by Function 
SelectUsingMOEA), the proposal use the NSGA2 [5] or SPEA2 

[6] to select the best individuals (solutions) that will be used in 
the Reproduction step where CEDA makes use of Copulas to 
estimate and regenerate new individuals (performed by 
Functions ConstructCopulas and GenerateSolutions 
respectively). 

A pseudo-code of the algorithm that performs the 
estimation of distribution using a Copula for solving 
multiobjective problems can be viewed as follows (Algorithm 
2). 

Algorithm 2 Copula-based EDA 

Function CEDA 

 P0 = Initialization(m) 

 P = SelectUsingMOEA(P0) 

 While Not termination criteria do 

  C = ConstructCopulas(P) 

  P’ = GenerateSolutions(C) 

  P” = SelectUsingMOEA([P’P]T) 

  P = P” 

 End while  

 Return (P, C) 

End function 

1) Initialization 
Initially CEDA assume that we have a population 𝐏𝟎 =

[𝐱𝟏, … , 𝐱𝐦] T  where 𝐱𝐢, i ∈ [1, m] are the individuals. Each 
individual 𝐱𝐢 = [xi1, … , xin] where xmin ≤ xij ≤ xmax . Both 
xmin and xmax  are reals. Where each xij is initially picked up 
according to a uniform distribution in [xmin, xmax] . Note that 
each individual 𝐱𝐢, (i ∈ [1, m] ) is real-value coded vector, i.e. 
every xij, (i ∈ [1, m] , j ∈ [1, n] ) are real values. 

2) Selection 
In selection step achieved by the function 

SelectUsingMOEA, CEDA use one of the classical algorithms 
NSGA2 or SPEA2 as a MOEA. 

The result of the selection is a set of individuals that will be 
used in the reproduction step. The proposal call 𝐏 the matrix of 
the individuals resulting from the selection process operated on 
the precedent population. For the first generation, the algorithm 
use the initial population 𝐏𝟎.  𝐏  is defined as the following: 

𝐏 = �
x11 ⋯ x1n
⋮ ⋱ ⋮

xm1 ⋯ xmn
� 

NSGA2 or SPEA2 selects the best individuals of the 
population it operates on according to the dominance relation 
defined in Section 2. Note that generated solutions (obtained 
by GenerateSolutions) at a given step are not necessarily better 
than those generated at the step that preceded it. Therefore, the 
selection of the best solutions operates on the union of the two 
sets: the solutions obtained from the current step and those 
resulted from the step that preceded it, as shown in Algorithm 
2. 
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3) Reproduction 
To perform the reproduction, CEDA start by calculating the 

dependency between the best individuals using Copula as 
shown in Algorithm 3 and then generate new individuals using 
these Copulas as shown in Algorithm 4. 

a) Constructing Copulas 
The Copula type used in this paper is Archimedean. The 

Archimedean Copula deals with two vectors of variables 𝐮 and 
𝐯; therefore, CEDA divided each one of the decision variable 
vectors into two sub vectors to fit into the variables 𝐮 and 𝐯. 
CEDA performed this division into two sub vectors in each 
generation of the algorithm. 

𝐏 = �
x11 ⋯ x1n
⋮ ⋱ ⋮

xm1 ⋯ xmn
� = [𝐰𝟏, … ,𝐰𝐧] 

CEDA operate on the transpose of the matrix 𝐏, and take 
each vector 𝐰𝐣 = (x1j, x2j, . . . , xmj)T    the proposal take each 
vector 𝐰𝐣(j ∈ [1, n])  to construct the sub vectors 
𝐮𝟏, … ,𝐮𝐧, 𝐯𝟏, … , 𝐯𝐧  according to the following: 𝐮𝟏, 𝐯𝟏  are 
extracted from 𝐰𝟏  where the size of each of 𝐮𝟏  and 𝐯𝟏  are 
equal to m/2. The elements of 𝐮𝟏  are taken randomly from 
𝐰𝟏, and 𝐯𝟏 is constructed from the rest of the elements of 𝐰𝟏. 
For the sake of simplicity, CEDA assume that m is an even 
number. In the case where m  is odd, CEDA remove one 
individual from the initial population to make its size even. The 
computation of the other sub vectors 𝐮𝟐, … ,𝐮𝐧 and 𝐯𝟐, … , 𝐯𝐧 is 
performed in a similar way as for 𝐮𝟏 and 𝐯𝟏 respectively. 

The algorithm create Archimedean Copulas, represented by 
the vector C = [C1 … Cj … Cn] , using the sub vectors 
𝐮𝟏, … ,𝐮𝐧, 𝐯𝟏, … , 𝐯𝐧 , where each Copula Cj, j ∈ [1, n] is 
constructed from the sub vectors 𝐮𝐣  and 𝐯𝐣  as shown in 
Algorithm 3. 

Algorithm 3 Construct Copulas 

Function ConstructCopulas(P,type) 

 For all wj a vector in P do 

  uj = RandomPick(wj) 

  vj = Remainder(wj,uj) 

  Cj = Copula(uj, vj, type) 

 End for 

 Return C = [C1 … Cj … Cn] 

End function 

Note that there are many types of Archimedean Copulas. In 
this paper, CEDA considered three of them namely Gumbel, 
Clayton and Frank Copula. CEDA have experimented with 
them on various optimization problems and found that Frank 
Copulas provides better results in the configurations tested on. 

b) Generating New Individuals 
The proposal uses the constructed Copulas C1, … , Cn  to 

generate new individuals. The set of the new generated 
individuals 𝐗′ = [𝐰′𝟏, … ,𝐰′𝐧] where 𝐰′𝐣  is the concatenation 

of 𝐮′𝐣 and 𝐯′𝐣 which are sampled using Copula Cj. Note that the 
vector 𝐰′𝐣 (resulting from the concatenation of 𝐮′𝐣 and 𝐯′𝐣) is of 
size m′ that is not necessarily the same of the initial population 
size m. The new individuals are therefore the vectors 𝐱′𝐢, i ∈
[1,m′] where 𝐗′ = [𝐱′𝟏, … , 𝐱′𝐦′] T . Algorithm 4 summarizes 
theses steps. 

Algorithm 4 Generate Solutions 

Function GenerateSolutions(C, m’ ) 

 For all Cj in C do 

  ( uj’, vj’) = GenerateFromCopula(Cj, m’) 

  w’j = Concat(u’j, v’j ) 

 End for 

 return X’ = [w’1 … w’j … wn’] 

End function 

The function used to generate individuals form the 
estimated Copula C is performed in the same way defined in 
Section 5. CEDA start by picking u and t form (0,1) uniform 
function then we get v by calculating the Cu

(−1)(t) the quasi-
inverse function of Cu. The generated variables x1 and x2 are 
produced from the quasi-inverse function of each marginal 
distribution. In every iteration (see Algorithm 4.a), CEDA 
insert x1  to the list 𝐋𝐢𝐬𝐭𝐗𝟏  and x2  to 𝐋𝐢𝐬𝐭𝐗𝟐 . Finally, after 
generating m samples of x1 and x2 we return the two lists. 

Algorithm 4.a GenerateFromCopula 

Function GenerateFromCopula(C, m) 

For i=1, m do 

 𝐮 = 𝐮𝐧𝐢𝐟𝐨𝐫𝐦(𝟎,𝟏); 

 𝐭 = 𝐮𝐧𝐢𝐟𝐨𝐫𝐦(𝟎,𝟏); 

 𝐯 = 𝐂𝐮
(−𝟏)(𝐭); 

 𝐱𝟏 = 𝐅𝟏
(−𝟏)(𝐮); 

 𝐱𝟐 = 𝐅𝟐
(−𝟏)(𝐯); 

Insert (𝐱𝟏,𝐋𝐢𝐬𝐭𝐗𝟏) 

Insert (𝐱𝟐,𝐋𝐢𝐬𝐭𝐗𝟐) 

End for 

Return (𝐋𝐢𝐬𝐭𝐗𝟏,𝐋𝐢𝐬𝐓𝐗𝟐) 

End function 

B. Update Stage 
The Optimization stage allows us to calculate new solutions 

as shown in Algorithm 2. These solutions may not suit the 
needs of the decision maker and thus another stage of new 
solutions generation is needed. The Update stage that proposed 
in this paper (as shown in Algorithm 5) makes it possible for 
the decision maker to find other new solutions quickly by using 
the Copulas constructed in the Optimization stage. Specifically, 
CEDA achieves this by calling Function GenerateSolutions 
with arguments C (the Copulas constructed in the Optimization 
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phase), and m″ the number of new individuals required. The 
output of the Update stage is the population Pupdate. If the 
decision maker is still not satisfied with the obtained solutions, 
only another round of the Update stage is required thus saving 
the need for running the Optimization stage another time. 

Algorithm 5 Update Solutions 

Function UpdateSolutions(C,m”) 

 Ptmp = GenerateSolutions(C,m”) 

 Pupdate = SelectUsingMOEA(Ptmp) 

 Return Pupdate 

End function 

It is important to note that Copulas used as input in the 
Update Solution Algorithm have been constructed using a set 
of the best solutions obtained in the last generation of the 
algorithm used in the Optimization stage. Therefore, those 
Copulas inherently characterize the distribution of the best 
solutions thereby making the new individuals Ptmp among the 
best solutions. The returned solutions at this stage (Update 
stage) Pupdate are selected from the temporary individuals Ptmp 
according to one of the MOEA to select the best solutions as 
shown in Algorithm 5. 

VII. EXPERIMENTATION 

A. Used Benchmark problems 
To evaluate the efficiency of the proposed algorithm, we 

chose to test it on a set of benchmark problems usually used in 
the literature. Specifically, CEDA uses the benchmark 
problems UF1, UF2, …, UF10, CF1, CF2, …, and CF3 defined 
in CEC2009 competition [35]. CEDA operates on 100 
individuals and set the maximum number of evaluation to 
300000. Each algorithm runs independently 30 times for each 
benchmark problem, as recommended by CEC2009 settings. 
We vary the number of DM calls and show the results obtained 
with 5 and 20 DM calls. 

B. Used Metrics 
In addition to considering the metrics traditionally used to 

assess the quality of the obtained solutions, namely diversity 
and convergence, the proposal defines a new metric, directed 
regeneration speed, to measure how quickly new solutions 
can be obtained. The new metric allows showing the efficiency 
of the algorithm that enables finding new solutions according 
to the decision maker needs quickly without compromising 
their qualities. 

Both the diversity and the convergence are calculated from 
the set of solutions obtained by the used algorithms (CEDA, 
SPEA2, NSGA2). The diversity of a set of solutions is 
calculated using the IGD metric defined in [10] to assess the 
quality of the distribution of the obtained solutions over the PF 
and the convergence to the PF. 

The solution updating speed metric, referred to as Inew, 
measures the number of new solutions obtained over a period 
of time (expressed in terms of the number of function 
evaluations) as shown in (3). 

To show the new aspect guaranteed with the algorithm, 
which is the ability to get new PS with a very short time 
(negligible) we have proposed a metric that calculate the 
number of different PS between two set of PS that can be 
defined as follows: 

t

T

t

t

T

t
ew
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PS
I

∑

∑

0=

0=
n

||
=      (3) 

where |PSt|  represents the number of Pareto Solutions 
obtained at iteration t , |FEt|  is the number of the function 
evaluations, and T is the number of iterations (the number of 
times the decision maker calls the algorithm again to find new 
solutions). 

C. Simulation Results 
This section, shows that the proposed CEDA method 

achieves good diversity and convergence compared to those 
obtained with state-of-the-art methods such as SPEA2 and 
NSGA2 by considering benchmark problems (UF1, ..., UF10 
and CF1, …, CF10) taken from CEC2009 [35]. 

1) Solution Qualities 
Figure 1, shows that the Pareto Front solutions obtained 

when solving the considered benchmark problems with the 
proposed method CEDA-SPEA2 (CEDA using SPEA2 as 
selection method) and CEDA-NSGA2 (CEDA using NSGA2 
as selection method). We show that both CEDA algorithms 
find solutions with similar qualities independently of the 
algorithm used for the selection (SPEA2 or NSGA2), because 
solutions are generated according to the same Copulas-based 
technique — SPEA2 or NSGA2 are only used for the selection. 

Figure 2 shows that CEDA-NSGA2 and CEDA-SPEA2 
provide solutions with different qualities on benchmarks UF2 
and UF1 because they use different techniques to find new 
solutions. Figure 1 and Figure 2 also show that the proposal 
always provides solutions that are close to the optimal Pareto 
Front, particularly on benchmarks UF7, UF4, and CF1. 

Figure 3 shows that the proposed CEDA algorithm 
generates more Pareto Solutions compared to those obtained by 
traditional algorithm NSGA2. Similar results have been 
obtained with CEDA compared to traditional SPEA2. 

We show that both variants of CEDA converge to the 
optimal Pareto Front in a way that is similar to NSGA2 and 
SPEA2 (see Figure 1, 2, and 3). This shows that the Copula 
estimator is very good and comparable to the classical genetic 
operators (mutation and crossover) in terms of reproduction. 

2) Solution Convergence and Diversity 
To evaluate the convergence and the diversity of CEDA 

during, the measure the IGD Indicator obtained with both 
CEDA variants (CEDA-NSGA2 and CEDA-SPEA2) as well as 
those obtained with NSGA2 and SPEA2. 

Figure 4 and Figure 5 show that CEDA-NSGA2 (resp. 
CEDA-SPEA2) algorithm achieves mean IGD values that are 
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close to those obtained with NSGA2 (resp. SPEA2), with both 
5 DM and 20 calls. Those IGD values reflect the good 
convergence and diversity qualities achieved by the method. 

3) Solution Update Speed (Update Stage) 
Figure 6 shows the IGD of the Pareto Front using the 

CEDA-NSGA2 and CEDA-SPEA2 in function of the number 
of function evaluations. Lower IGD values reflect better 
solution qualities. We show that the speed of generating better 
solutions achieved by the CEDA algorithms is higher than that 
achieved by traditional algorithms. For example, to decrease 
the value of IGD of the approximated Pareto Solutions of the 
UF4 problem using CEDA-NSGA2, from the beginning of the 
execution of the algorithm to 0.8, needs 500 function 
evaluations compared to 10000 required by NSGA2. 

For example, in the plot of CEDA-NSGA2 in the subfigure 
corresponding to the UF1 benchmark, the results 
corresponding to one call are represented in the leftmost point. 
That point was found after running 1000 evaluations (as 
represented in the x-axis). The point next to it on the right 
corresponds to two calls, which was found after running 2000 
evaluations (see corresponding value on the x-axis). The point 
next to the second point represents the results obtained for 
three calls, and so on until we reach the rightmost point, which 
corresponds to the results obtained for 20 calls. The same 
explanation applies to CEDA-SPEA2, as well as NSGA2 and 
SPEA2 in the other subfigures. 

Note that counting the number of function evaluations in 
the optimization stage starts from the beginning of finding of 
new solutions until their convergence to the optimal Pareto 
Front. However, during the update stage, the CEDA algorithms 
generate new solutions, which assess the quality by calculating 
the IGD and compare it with the IGD found in the first phase. 
If the IGD of the update stage is smaller or equal to the one of 
the optimization stage which consider that the update stage 
converged too, which gives DM good alternative solutions. 

4) New Solution Count (Update Stage) 
Figure 4 and Figure 5, plots the number of new solutions 

obtained when a Decision Maker wants to generate new ones. 
CEDA  tested the solution with two cases. In the first case, the 
Decision Maker makes 5 calls to Algorithm 5, and in the 
second one the Decision Maker 20 calls to the same Algorithm. 
By considering these two cases, the work aim to reflect various 
decision making needs requiring different numbers of 
algorithm calls to obtain Decision Maker satisfaction. We 
plotted the mean value of the number of new solutions 
averaged over a 30 simulation runs, as well as the standard 
deviation, maximum and minimum values. The work shows 

that CEDA-based algorithms, both CEDA-SPEA2 and CEDA-
NSGA2, generate a significantly greater number of new 
solutions per objective function evaluation (i.e. new solutions 
are obtained with fewer objective function evaluations), 
compared to traditional SPEA2 and NSGA2 algorithms. This is 
because Copulas based techniques reduce the search space 
which becomes closer to the optimal Pareto Front thereby 
making it easier to find new solutions with a smaller number of 
objective function evaluations compared to SPEA2 and 
NSGA2. 

VIII. CONCLUSIONS 
CEDA was presented, a Copula-based Estimation of 

Distribution Algorithm, to improve the efficiency of solving 
multiobjective optimization problems. CEDA is based on the 
statistical properties of Copulas to estimate the distribution of a 
population and thus its ability to generate new individuals with 
similar properties. This feature makes CEDA particularly 
designed to promptly help a Decision Maker find alternative 
solutions to a multiobjective problem when the solutions 
obtained by traditional algorithms such as SPEA2 and NSGA2 
do not satisfy his/her needs. The production of alternative 
solutions by CEDA is accelerated by the fact that they are 
generated according the probabilistic model established by the 
use of Copulas thereby saving the need for running the costly 
traditional MOEA algorithms another time to find new 
solutions. 

CEDA was tested on a set of benchmark problems from the 
CEC2009[35] traditionally used by the community for the 
evaluation of multiobjective problem solving algorithms and 
shown that the proposal provides solutions with good 
convergence and diversity compared to state-of-the-art 
algorithms such as SPEA2 and NSGA2. This work have also 
particularly shown that the time needed to generate these 
solutions is substantially smaller than that needed by state-of-
the-art algorithms, which makes the algorithm suitable for 
prompt alternative solution generation. 

CEDA was tested with traditional NSGA2 and SPEA2 as 
the selection methods. Although the results are encouraging, 
better results with other methods such as the MOEA/D or a 
hybrid evolutionary algorithm [36-39] as substitutes for 
NSGA2 and SPEA2 is expected. CEDA Algorithms may also 
be used for solving MaOPs (Many-Objective Problems) where 
the there are more than four objectives to optimize. In addition, 
Copulas creations are independent and thus can be done in 
parallel, which will even enhance the performance on parallel 
computers.
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Fig. 1. Pareto front of the CF1 and CF6 Constrained problems 

 

 
Fig. 2. Pareto front of the UF1,UF2,UF4 and UF7 unconstrained problems 

 
Fig. 3. Pareto Front of the CEDA-NSGA2 and NSGA2 of the UF9 problem 
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Fig. 4. Mean/Deviation of the IGD and Inew metrics for the constrained problems benchmarks 
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Fig. 5. Mean/Deviation of the IGD and Inew metrics for the unconstrained problems benchmarks 
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Fig. 6. The evolution of the means/standard deviations of IGD values of the approximate solution sets obtained with the number of function evaluations for the 
test instances 
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