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Abstract—Automotive information services utilizing vehicle
data are rapidly expanding. However, there is currently no
data centric software architecture that takes into account the
scale and complexity of data involving numerous sensors. To
address this issue, the authors have developed an in-vehicle data-
stream management system for automotive embedded systems
(eDSMS) as data centric software architecture. Providing the
data stream functionalities to drivers and passengers are highly
beneficial. This paper describes a vehicle embedded data stream
processing platform for Android devices. The platform enables
flexible query processing with a dataflow query language and
extensible operator functions in the query language on the
platform. The platform employs architecture independent of
data stream schema in in-vehicle eDSMS to facilitate smoother
Android application program development. This paper presents
specifications and design of the query language and APIs of the
platform, evaluate it, and discuss the results.

Keywords—Android, automotive, data stream management sys-
tem

I. INTRODUCTION

Automotive information services utilizing vehicle data are
rapidly expanding. Several standardizations have been put
into place for the rapid deployment of such services. Vehicle
data interfaces such as OpenXC and Mirrorlink have recently
been standardized and are expected to become more popular,
despite the fact that existing built-in car navigation systems use
proprietary and closed vehicle data. OpenXC defines APIs that
provide diagnostic data from a controller area network (CAN)
bus in a vehicle network [1]. The Car Connectivity Consortium
has recently standardized Mirrorlink, which defines interfaces
that connect smartphones with vehicle information [2]. Google
and Apple announced software platforms for automotive infor-
mation services, Android Auto[3] and CarPlay[4], respectively.
Android Auto provides functionalities with which Android
devices communicate to a vehicle. CarPlay is an iOS virtual
machine on top of OS in an in-vehicle system and enables
communication with iOS devices.

Automotive control is now undergoing the same tech-
nology trends described above. Intelligent control systems
have become popular due to their sophisticated, safe, and
environmentally friendly control exploiting numerous types of
data from a vehicle itself, its surroundings, and other vehicles.
Typical systems that employ such technologies include pre-
crash safety systems, adaptive cruise control, lane departure
warning systems, and intelligent parking assist systems. These
systems collect environmental data from sensors in a vehicle

and make decisions on the basis of this data to control
the vehicle on behalf of the driver. Jones used information
obtained from multiple on-board sensors to perform evasive
steering and, when collision is unavoidable, to activate brake
intervention to dampen the impact, thus decreasing damage
[5]. Such intelligent control systems acquire data from many
sensors, such as cameras and millimeter-wave radar. Google
and Urban Challenge, which is a competition funded by the
Defense Advanced Research Projects Agency, revealed that
self-driving in urban areas is both feasible and safe in terms
of autonomous driving [6], [7].

There are also more advanced information and control
techniques for automotive systems and services that use data
through communication. The automotive industry has been
studying cooperative intelligent transport systems (C-ITSs)
to improve transport safety, productivity, and reliability by
using data collected through vehicle-to-infrastructure 1 (V2I)
and vehicle-to-vehicle (V2V) communications, as well as
GPS from outside the vehicle and data collected on-board
[8][9][10]. Thus, C-ITS technologies enhance automotive in-
formation and control systems.

AUTOSAR 2, which is an automotive software standard-
ized organization, recently proposed a component-based soft-
ware platform and software development methodologies to ad-
dress the growing scale and complexity of automotive control
software [11]. AUTOSAR does not, however, take into account
the scale and complexity of data involving numerous sensors.
Moreover, application integration is becoming more complex
because access to one sensor requires communication with an
application that manages the sensor when each application
manages sensors by itself. When information from multiple
sensors is integrated or when new sensors or algorithms need
to be added, the software architecture needs to be redesigned
and reorganized. Those technologies mentioned above do not
provide solutions for those problems.

In response to these issues, the authors have researched
and developed a data centric software architecture for au-
tomotive systems. The evaluation results of both a database
management system (DBMS) and a data stream management
system (DSMS) showed advantage of the latter system because
the DSMS can already efficiently handle continuous incoming
data such as vehicle sensor data [12]. The above observation

1Infrastructure is a specific term in ITS that refers to the roads, centers, and
facilities around vehicles.

2http://www.autosar.org/
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Fig. 1: Current architecture in an automotive system.

Fig. 2: Data centric architecture in an automotive system

becomes a basis for developing a data-stream management sys-
tem for an automotive embedded system (eDSMS)[13], [14].
In addition, a data-stream-based local dynamic map (LDM)
was previously proposed [15]. The data-stream-based LDM
consists of layered data, including geography, circumjacent
vehicle status road conditions, and congestion and weather
circumstances and is a key technology in C-ITS.

Providing the data stream functionalities to drivers and
passengers are highly beneficial. This paper describes a ve-
hicle embedded data stream processing platform for Android
devices. The rest of this paper is organized as follows. A
brief overview of the data centric architecture and data stream
management system for embedded systems (eDSMS) is pre-
sented in Sec. II. Sections III and IV describe the architecture
and design, respectively, of the vehicle embedded data stream
processing platform for Android devices whose target is ve-
hicle information systems. SectionV shows a demonstration
program utilizing the platform. Evaluation results are presented
in Sec.VI. Related works are briefly discussed in Sec. VII and
conclusions are described in Sec. VIII.

II. DATA STREAM MANAGEMENT SYSTEM FOR VEHICLE
EMBEDDED SYSTEM: EDSMS

This section describes the data centric software architecture
based on data-stream processing for automotive systems. The
development of these systems has been discussed in previous
works [12], [13], [14].

A. Background

The architecture of current automotive systems is shown in
Fig. 1. Programs in an electrical control unit (ECU) 3 obtain
data from numerous sensors, process the data, and output
commands to actuators to provide control for automotive
systems, including control and information systems. Sensor

3An electric control unit (ECU) is a computer used for vehicle control.

data are duplicated and processed in application programs
in multiple ECUs because each application program has to
process sensor data in its own ECU. The cost of developing
and integrating application programs increases dramatically if
the number of sensor data types increases. This occurs because
many sensors are fixed to a vehicle or numerous data come
from outside the ego-vehicle 4.

Figure 2 shows a proposed data centric software archi-
tecture for an automotive system. This architecture provides
virtual data space for data not only in a vehicle but also from
other vehicles and infrastructures, thus hiding the data’s origin.
This architecture separates sensors from application programs
and provides common access methods for sensor data, which
is managed collectively in the logical data space. Moreover,
the proposed architecture increases opportunities for sensor
fusion, which enhances one piece of sensor data with other
sensor data.

To determine the feasibility of the data-centric software
architecture in vehicle software, they evaluated a DBMS and
a DSMS. The feasibility study used two application programs:
adaptive cruise control and intelligent parking assist. The
results of the evaluation demonstrated that DBMS is superior
at processing queries featuring large amounts of data at low
frequency while DSMS is superior at processing queries fea-
turing small amounts of data at high frequency. This results
in adopting DSMS in the data centric architecture of in-
vehicle systems because most data in automotive systems are
continuous sensor-generated data and have short lifetimes. At
the same time, the architecture use DBMS for static data such
as map information and convert the static data into stream data
to pass the data on to DSMS.

B. In-vehicle eDSMS

An embedded DSMS (eDSMS) is suitable for embedded
systems, especially in-vehicle embedded systems. Note that
software in embedded systems must be particularly customized
because CPU and memory capacities are limited and so real-
time processing and high reliability of the systems are required.

This section presents an overview of DSMS. The DSMS
input is stream data. DSMS obtains data in the stream specified
by a query and then outputs that data as a stream. The
DSMS query is issued for the data stream and is executed
continuously, unlike a query in DBMS. There are two types
of query language in DSMS: SQL-like declarative languages
and procedural languages, specifically, dataflow languages
[16][pp.723-743]. In the SQL-like query languages, a user
specifies selection predicates from streamed input data. Stream
data are then converted into relations in sliding windows in
DSMS. A query is executed over the sliding window similarly
to a conventional SQL query. The result of the query is then
converted into a stream again. In the dataflow query languages,
a user specifies a query with a dataflow graph, where a node
is a query operator (discussed later) and an edge is a stream.
Data from the input stream flows in the dataflow query. An
operator processes data in the dataflow query and detects
the specified data. In this way, a user can describe a query
procedure explicitly in the dataflow query languages.

4An ego-vehicle means the vehicle that is being focused upon.
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Fig. 3: Android eDSMS and in-vehicle eDSMS.

The in-vehicle eDSMS has three features of embedded
systems: dataflow query language, static query processing,
and optimization. First, a query language in the in-vehicle
eDSMS is a dataflow language that is similar to the one
in Borealis[17]. This is because a query in the dataflow
language is more flexible in terms of customizing and tuning
the processing for automotive applications. Second, a dataflow
language constructs a hierarchical structure of data easily from
physical layers to more abstract layers. Finally, a user can reuse
data in the arbitrary level of the dataflow query, which avoids
redundant usage of data.

In the automotive field, in-vehicle application programs
do not change dynamically. This means there is no updating,
adding, or deleting the application programs because the
programs are fixed to guarantee reliability and safety after the
long-term verification and validation of the programs. Thus,
the query processing in in-vehicle eDSMS does not change
dynamically either. The query, whose actual representation
is XML-form, is converted into C/C++ source programs that
are compiled into run-time routines on a PC, embedded into
the ECU in a vehicle, and executed as part of the vehicle’s
programs. The execution time of a query is predictable in in-
vehicle eDSMS. This predictability property is very important
in real-time systems such as vehicle systems because they need
to be guaranteed to finish their processes.

There are several optimization techniques in in-vehicle
eDSMS query processing for reducing the processing overhead
and ROM/RAM usage, including deleting operator dynamic
linking, linking selected operator modules only, and decreasing
the number of tasks used in in-vehicle eDSMS runtime.

III. EDSMS IN ANDROID PLATFORM

A. Requirements

Providing the data stream functionalities to drivers and
passengers are highly beneficial. The role of an embedded

data dream management system for an Android platform in a
device (Android eDSMS or AeDSMS) is to provide not only
straightforward usage of the in-vehicle data stream to drivers
and passengers but also various usage data streams between
in-vehicle and Android devices. The requirements of Android
eDSMS are considered in the following cases:

Case 1: Presenting services to drivers and passengers uti-
lizing the data stream in the in-vehicle eDSMS.
A simple application is to inform a driver of
warnings and cautions. Another application is to
retrieve information suitable for the driving situa-
tion (e.g., location, time, weather) from the stream
data from the in-vehicle eDSMS and present it to
the driver.

Case 2: Sending input information from Android ap-
plications as data stream or parameters to an
AeDSMS operator in the dataflow query to in-
vehicle eDSMS. For example, a driver may con-
trol a vehicle or inform other vehicles of a traffic
condition in the form of sensor data to the in-
vehicle eDSMS.

Case 3: Executing part of the eDSMS dataflow query from
the in-vehicle in the Android platform. The pur-
pose of this execution is to debug a query of the
in-vehicle EDSMS in a more convenient program-
ming environment or to offload query processing
in an Android device to better utilize resources
within the device itself. In offload usage, although
the processing time of the query becomes shorter,
predictability is lost because the operating system
of the offloaded Android device has a general
purpose OS.

B. Prototype

A prototype of eDSMS for Android devices has the fol-
lowing features for the feasibility evaluation [18]. The target
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Fig. 4: Query example.

of the prototype is Case 1 from the previous subsection. In the
Android eDSMS prototype, data is filtered from the in-vehicle
eDSMS data stream and passed on to the Android eDSMS. The
filtering is specified by an SQL-like query. The development
process of an Android application using the prototype is as
follows.

1) A developer creates a schema file in an XML format that
defines the field information of the stream data acquired
from the in-vehicle eDSMS.

2) The AeDSMS builder in a PC obtains a schema file as an
input and generates the Java source codes of a query in
the prototype, including the class of data received from
the in-vehicle eDSMS.

3) A developer integrates application source codes with the
query source codes and compiles them to produce an
application program in the PC for an Android device.

If the schema of a data stream from the in-vehicle eDSMS
changes, it is necessary to generate the query source codes
and compile source codes again. This is neither convenient
nor flexible.

C. Architecture of Android eDSMS

On the basis of the experience with the prototype develop-
ment, an enhanced embedded data stream management system
for an Android device has the following three features. The
purpose is to address the issues mentioned above in Cases 1
and 2 and to add features to improve the developing efficiency
from the perspective of the developer.

• Flexible query processing with a dataflow query lan-
guage and extensible function of operators in the query
language

• Facilitation of Android application program develop-
ment with architecture independent of data stream
schema in in-vehicle eDSMS and class libraries to
hide implementation details

• Capability of various usages in multiple Android ap-
plications by providing query processing as an An-
droid service

Android DSMS is part of a two-layer structure for an
embedded data stream platform for automotive systems, shown
in Fig. 3. Figure 3 (a), the bottom, is an in-vehicle eDSMS in
ECUs, and Fig. 3 (b), the top, is an Android eDSMS. In this
structure, the in-vehicle eDSMS obtains sensor data, processes
the data in the form of general purpose usage, and sends it to
the Android platform. The Android eDSMS receives the data
stream from the in-vehicle eDSMS and provides various usages
of the data stream between in-vehicle and Android devices,
such as driving situation services including location, time, and
weather.

D. A dataflow query of Android eDSMS

AeDSMS adopted a dataflow query language in the data
stream query the same as the one in in-vehicle eDSMS, which
is similar to the one in Borealis [17]. There are two types of
dataflow query files in the XML format: a schema file and
a query file. The schema file contains schema information of
the stream in a query and the query file describes operators
and connections between operators used in the query. Built-
in query operators in AeDSMS are listed in Table I, which
are also the same as in-vehicle eDSMS. An operator has input
streams, output streams, and parameters required for execution.
AeDSMS reads both files, translates them into an executable
query, and executes the query in an Android device (see Fig.
3). A developer can extend the functions of an operator, which
means these functionalities provide developers with easier,
more flexible application development.

An example of a query is shown in Fig. 4. This is a simple
query to determine the danger level according to the vehicle
speed and to select only those levels higher than 1. Below is
an excerpt of the query in the XML format.
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TABLE I: Operators in Android eDSMS.

Operator Description
Filter read data from an input stream, perform filtering in accordance with

the condition data, and write the result to an output stream
Map read data from an input stream, perform the specified method on it,

and write it to an output stream
Unite read data from multiple input streams, merge and write it to an output

stream
Join read data from an input stream, hold it for certain period of time,

combine the data held by the specific conditions, and write it to an
output stream

Aggregate read data from an input stream, hold it for certain period of time,
perform aggregate functions on the data, and write it to an output
stream

� �
<query name="speed_check">--(1)
<box name="test_map" type="Map">--(2)

<in stream="Stream1" />
<out stream="Stream2" />
<parameter name="speed_check"

class="SpeedCheck"/>--(3)
</box>
<box name="speed_filter" type="Filter">

<in stream="Stream2" />
<out stream="Stream3">
<parameter name="expression_0"

value="dangerlevel>1" />--(4)
</box>
</query>� �
A query element represents a query. A query name is

defined in a name attribute (1). In a box element, an operator
is defined and a type attribute specifies an operator type
(2). This example uses Map and Filter operators. The
box element consists of an operator name, input and output
streams for the operator, and operator parameters. A class
SpeedCheck is specified as a user defined class called by
the Map operator (3). The Filter operator specifies a condition
where data is passed to Stream 3 only if the value of the
variable dangerlevel representing the danger level exceeds
1 (4).

AeDSMS provides two operator extensions: an extensible
operator with a user defined class and a user defined operator.
A developer can write a class where a method is called from
an operator to extend and change the process and execution
conditions of that operator. Moreover, a developer can define
and add a new operator for implementing a flexible query.

Three methods exist in AeDSMS to communicate with in-
vehicle eDSMS: TCP, UDP, and Bluetooth. A developer can
select the method by specifying it in a query file.

IV. DESIGN OF ANDROID EDSMS

The Android eDSMS has the following parts (see Fig.3):

Executable query generator:
The executable query generator reads the XML
format queries, generates executable queries, and
classes objects that have field information of the
data in the data stream to receive the data in an
Android device, as shown in Fig. 3(b).

Fig. 5: Stream data access using HashMap generated from
query file.

Executable query:
The executable query is the run time part of the
query.

Communication libraries:
Communication libraries hide the detail of the
inter-process communication and structure of
AeDSMS.

Query manager:
The query manager manages the executable query.

From the above architecture, especially the executable
query generator, a developer can change the schema in an
input data, the process, and the communication method simply
by rewriting the query file without generating any AeDSMS
code in a PC. A query in AeDSMS can dynamically change
in order to provide new services while the program of in-
vehicle eDSMS is embedded in a static structure. Also, it is
possible for multiple Android applications to use AeDSMS
through AeDSMS’s Android service.

A. Executable Query Generator

The executable query generator reads the schema in a
schema file and the query in a query file and then generates
the hash map at run time, as shown in Fig. 5, instead of
producing class files corresponding to the data from the in-
vehicle eDSMS during the development, as described in Sec.
III-B. At this time, a class AeDSMSFieddInfo is generated
that contains the field name, type and element numbers. Those
field are related in the hash map with HashMap. At this
time, the field name, type, and element numbers are related
in the hash map with HashMap. Data received from in-
vehicle eDSMS is initially stored in an Object type array. A
class AeDSMSTupleData corresponding to the tuple data
received from the in-vehicle eDSMS has getDouble()
and getInteger() methods that cast the data Object
type to a type specified by the method name and retrieve
the specified data with the hash map. Moreover, A class
AeDSMSTupleData provides methods putDouble() and
putInteger() to put data into a tuple data. Therefore, no
modification of the Android program is required, even if the
data schema obtained from the in-vehicle eDSMS has changed.
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B. Extension of an operator

AeDSMS provides two operator extensions: an ex-
tensible operator with additional class and a user de-
fined operator. For the extension of an operator, a de-
veloper can create a class that implements the interface
AeDSMSUserDefineClassBase, which has the following
methods.� �
interface AeDSMSUserDefineClassBase {

abstract public AeDSMSTupleData[]
execution(AeDSMSTupleData[] t,

Object[] args);
abstract public String getName();

}� �
An abstract method execution() is implemented in

the operator with parameters AeDSMSTupleData[] t and
Object[] args. The first parameter t is data for executing
the extension and the second one is additional.

Another method for an operator extension is a user defined
operator. Here, a developer writes a user defined operator in a
q query file. In the operator definition, a type attribute is the
name of the class where the user defined class is written.� �
<box name="test_map" type="UserOp">

<in stream="Streamx" />
<out stream="Streamy" />
<parameter "UserOp parmeters"/>

</box>� �
A user defined operator can be defined with inheri-

tance of an abstract class AeDSMSOperatorBase. The
class AeDSMSOperatorBase has the following methods.
In defining the user defined operator, a developer must write
how to parse the parameters of the operator defined in the
dataflow query file as above. To do that, the developer
writes parse() in the class definition of a user defined
operator. A method parse() is called when loading the
dataflow query file containing a user defined operator with
a loadXMLQuery() execution. A method execution()
is called from the executable query when the operator is
executed. A method isExecutable() returns information
on whether the operator is executable.� �
abstract class AeDSMSOperatorBase {

public abstract void
parse(Nodelist node_list);

public abstract void execution();
public abstract boolean isExecutable();

}� �
A developer writes a class for extension of an operator and

a user defined operator, compiles it, and stores it in Jar file
format in an Android device. The executable query generator
extracts class information from a user defined class in the Jar
format and translates it into an executable Dalvik dex (Dalvik
EXecutable) format, which is available on Android. A dx tool
in the Android SDK performs the translation. We assume that
classes for frequently used general processing can be prepared
in advance.

Fig. 6: Multiple process access to Android eDSMS by service.

The operators listed in Table I can also implement the
execution method. A scheduler in the executable query
calls the execution() method of each class instance of
the operator when the method is executable.

C. Query management

An Android application can read multiple queries and
make selections from within those queries. AeDSMS prepared
a class QueryManager to manage the multiple queries.
QueryManager also manages the multiple threads needed
for a query execution. An excerpt of the member methods is
shown below. QueryManger holds a query in ArrayList.
A method addQuery () adds a query in the List. A method
startQuery() starts execution of the specified query.� �
class QueryManager{

public void addQuery(AeDSMSQuery query);
public void deleteQuery(String name);
public void startQuery(String name);
public void cancelQuery(String name);
public AeDSMSQuery getQuery(String name);

}� �
D. Usage from multiple processes by service.

If activity in an Android application creates an AeDSMS
instance and runs it, it means that the AeDSMS instance is
equal to the number of applications that exist. Moreover, uti-
lizing a single AeDSMS from multiple applications or remote
usage of other Android devices is desired. Therefore, AeDSMS
is separated from an application to solve this problem and is
executed as a separate process with the Android service, shown
in Fig. 6. A developer can either select an Android service in
an application or perform AeDSMS in an application, where
AeDSMS is executed as part of an activity.

E. Process communication and communication library

When running the Android service and an application
in separate processes, using inter-process communication for
exchanging data is necessary. Android eDSMS implements
process communication with Messenger/Handler, which is one
of inter-process communication mechanism in Android.

AeDSMS provide a communication library to hide the
details of the inter-process communication and programming
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in an Android application, rendering it independent of the
inter-process communication. One class of the library is shown
below as an example.� �
class AeDSMSComm{

public void loadXMLSchema(String name);
public void loadXMLQuery(String name);
public void startAeDSMSQuery(String name);
public void cancelAeDSMSQuery(String name);
public AeDSMStream

getAeDSMStream(String name);
}
class AeDSMSStream {

public AeDSMSTupleData
getAeDSMSTupleData();

public void
putTupleData(AeDSMSTupleData t);

}� �
A class AeDSMSComm provides the following methods.

• A method loadXMLSchema loads a name schema
file and a method loadXMLQuery loads a name
query file in the XML format into AeDSMS and
generates the executable query.

• A method startQuery starts execution of the name
query in the loaded query file and cancelQuery
stops the execution.

• A method getAeDSMStream returns the result of
the query in the named output stream in the query
file.

A class AeDSMSStream contains a result of the query that
is specified in the named output stream in the query file. The
Android application program calls a method getInteger()
or getDouble() with the field name a developer wants to
get from the tuple and obtains the value of the tuple as� �
AeDSMSComm ac = new AeDSMSComm();
ac.loadXMLSchema("speed_check_schema.xml");
ac.loadXMLQuery("speed_check.xml");
ac.startAeDSMSQuery("speed_check");

:
AeDSMSStream s = getAeDSMSStream("Stream3");
AeDSMSTupleData t = s.getAeDSMSTupleData();
int ts = t.getIneger("timestamp");
int dl = t.getInteger("dangerlevel");� �
When a developer send a tuple data to an input of an

AeDSMS executable query, he or she generates an input stream
for AeDSMS with getAeDSMSStream and a tuple data of
AeDSMSTupleData. A method putDouble() puts a value
to the specified field and addTupleData() adds the tuple
data to the stream. Suppose that AeDSMS sends speed control
values to the in-vehicle eDSMS. A speed value 50.0 is set to
“speed” field in a tuple and the tuple is output to the Stream4,
which is connected to the in-vehicle eDSMS.

Fig. 7: Hiding implementation details by communication li-
brary.

Fig. 8: Robocar 1/10.

� �
AeDSMSStream s = getAeDSMSStream("Stream4");
AeDSMSTupleData t =

new AeDSMSTupleData(finfo);
t.putDouble("speed", 50.0);
s.addTupleData(t);� �
A developer can write an application using

StartAeDSMSQuery() and getAeDSMSStream(),
as shown in Fig. 7, without being aware of the process
communication.

V. DEVELOPING ANDROID APPLICATION USING
AEDSMS

This section presents a demonstration application using
AeDSMS in NEXUS 7 with ASUS and Google. The vehi-
cle in this demonstration is a miniature of ZMP’s RoboCar
1/105, shown in Fig. 8. The Android application has a sensor
information display function, a battery power display function,
and a speed-meter display function.

Figures 9 and 10 show screen shots of the application.
Figure 9 provides basic information of the driving. Steering
angle and infrared sensor information are displayed using
animation on the left side of the screen. A user can tap the
speed on the screen of Fig. 9 and transit to the screen shown
in Fig. 10, where the current speed measured by a meter is
displayed. A developer can thus write various kinds of Android
applications more easily and productively.

VI. EVALUATION

This section describes performance evaluation of the An-
droid eDSMS on NEXUS7 with the program in Fig. 4. The

5http://www.zmp.co.jp/?lang=en
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TABLE II: Specification of NEXUS 7

CPU NVIDIA Tegra 3 (1.3 GHz)
Memory 1GB

OS Android 4.4.2

Fig. 9: User interface of Android application using Android
eDSMS.

measurement time was the end-to-end duration with the oper-
ators from time at Stream 1 to time at Stream 3 in Fig.
4 as well as the duration of empty operators, which indicates
the overhead of the query execution time in AeDSMS. This
measurement was performed 100 times and the averages was
calculated. The results are shown in TABLE III. These values
show that the overhead of the query execution time is relatively
small compared with the execution time of the operator, and
thus demonstrating the feasibility of implementing AeDSMS.

The overhead of a query in a single process as an “Activity”
and query execution using the inter-process communication
as a “Service” are different because of the separate pro-
cesses used. The execution contains an ‘empty’ query with
one empty operator and two streams to measure this differ-
ence and found that it takes 4.70 ms to execute a method
loadXMLQuery(); in the single process and 8.76 ms using
the AeDSMS service. This measurement was performed 100
times and the averages was calculated. Those executions
involve garbage collection time. This difference is the overhead
of the inter-process communication as a “Service.” A developer
should choose to run a query as a single process if there will
be no multiple application usages of AeDSMS.

If an Android program consumes memory, garbage collec-
tion (GC) occurs and pauses program execution. The execution
contains the same ‘empty’ query and observed its GC when
a tuple with one int field was input at intervals of 10 ms
over 500 s. GC occurred six times during the execution and
the average pause time was 18.5 ms. GC is unavoidable in
Java and Android, however, one way to prevent GC is that
a program generates and reserves tuples that are used before
program execution, and gets a tuple from the tuple reservation
instead of the instance creation at runtime. In this case, there
is a limit of the number of received tuples within a certain
time.

VII. RELATED WORKS

For general-purpose DSMS, prototype and commercial
systems of Aurora [19] and its successor Borealis [17] and
STREAM [20] have been developed. Aurora and Borealis

Fig. 10: Another user interface of Android application using
Android eDSMS.

TABLE III: Measurement results

processing time with stream operators using AeDMSM 150 µs
processing time with empty operators using AeDMSM 90 µs

adopt a dataflow language as a query language while STREAM
has an SQL-like query language. In the finance field, DSMSs
are used in applications related to algorithmic trading and
financial monitoring. In the case of algorithmic trading, it
is necessary to reduce the response time of query process-
ing, as this directly affects profit. In addition, finance-based
DSMSs must update queries immediately when the algorithm
is updated. These systems enhance features, such as providing
several types of windows between stream operators for real
world applications. However, all stream operators, queues
(variable length), and TCP communication are embedded as
the standard executable code, which leads to larger code
size. Part of receiving a query result in an application can
be executed in the same thread in the commercial version
of STREAM to reduce receiving time latency. Conventional
DSMSs are also often applied across the Internet. Such DSMSs
process packets as a stream, requiring high throughput rather
than adherence to any deadline, unlike in the automotive field.
In addition, Internet-based DSMSs often use overlay networks,
which are different from in-vehicle networks.

DSMS has started being utilized in embedded systems. The
first utilizations have been in the automotive field. Schweppe
et al. proposed on-board stream processing for engineering
testing and diagnosis in vehicle systems [21]. One of their
main features was the adaptation of the behavior of data
stream processing in diagnosis when critical events occur,
e.g., when the reading rate of sensor data increases. However,
their streaming platforms cannot schedule data processing so
as to meet deadlines. StreamCars, which is most similar to
in-vehicle eDSMS in terms of purpose, proposed a software
development platform for vehicle embedded systems. Although
StreamCars provides sensor fusion operators, the performance
and implementation have not been described in detail.

The Cooperative Cars (CoCar) project at Aachen University
is developing a data stream mining platform for automotive
systems [22]. Examples of its application include queue-end
detection and traffic state estimation. These are processed on
the server-side rather than in an automotive embedded system.
Although such applications must perform spatial operations to
determine which road a vehicle is driving on, the deadline
constraint is looser than in driving assistance systems. Unlike
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in-vehicle eDSMS, the CoCar platform processes spatial op-
erations using an RDBMS. Data quality (DQ) is important in
DSMS, but it is not extensive. Their group also generalized
the DQ of a data stream using ontology [23].

Researching real-time scheduling of DSMS is popular
because real-time processing from inputs and to outputs is a
key property in embedded systems such as automotive systems.
[24] presented a real-time scheduling algorithm to guarantee
the required quality-of-service level in embedded DSMS. They
define the quality-of-service level and resources needed for
computation by DSMS operators and provide a framework
where a user negotiates the quality in DSMS. Son et al.
proposed a periodic query model for real-time applications
and an admission control mechanism for an overload situation
with irregular stream data arrival [25]. As another scheduling
approach, a preemptive rate-based operator scheduling has
been proposed [26]. The rate-based scheduling enables earlier
execution operators on an operator path in the data stream
to perform processing with higher priority. An operator with
higher priority can be immediately executed by preempting the
current executing operator if the operator is ready. In [27], a
task processes data on an operator path in a dataflow query
and an operator scheduling algorithm is examined in which
a task is earlier executed corresponding to data in the stream
with the earliest deadline among the waiting data.

In the second, data processing in a sensor network can
be regarded as a data stream [28]. DSMSs are applied to
applications such as traffic monitoring and environmental mon-
itoring. As in the embedded field, a small footprint is required
because low-specification nodes are often used. Additionally,
many applications require distributed processing, and minimal
network usage is necessary to preserve battery power and
save precious network bandwidth. However, these networks
are basically peer-to-peer, which differ from in-vehicle net-
works. Several previous works based on sensor network ideas,
resource saving DSPSs that can be installed in embedded
systems, have been developed for the purpose of aggregating
and monitoring sensor data [29], [30]. Müller’s DSMS[30] is
for a wireless sensor node. A query is registered statically
and converted into intermediate codes executed on a virtual
machine. In the virtual machine, 37 instructions are borrowed
from a Java virtual machine and 27 instructions are specified
for the data stream processing. They adopted a declarative
query language, making it possible to increase the abstraction
level and enable in-network programming in a sensor network,
reduce the program size in a sensor node, and easily reprogram
sensor nodes.

Gigascope [31] is a DSMS for the network equipment in
the base station. A query is statically registered and converted
into C and C++ source codes, the same as in-vehicle in-vehicle
eDSMS. Details have not been published for Gigascope,
and there is no description of the optimization of in-vehicle
eDSMS.

VEDAS [32] and Minefleet [33] are DSPSs that mainly
target mobile computing devices. Their applications relate to
data stream mining, i.e., vehicle-health monitoring and driver
characterization. They distribute stream processing among
mobile computing devices so as to reduce battery usage and
wireless communication. However, they are not intended for
in-vehicle networks.

VIII. CONCLUSION

This paper presented a vehicle embedded data stream pro-
cessing platform for Android devices to provide the data stream
functionalities to drivers and passengers with many benefits.
The platform enables flexible query processing with a dataflow
query language and extensible operator functions in the query
language in the platform. The platform has an architecture
independent of data stream schema in in-vehicle eDSMS to
facilitate Android application program development. Future
work includes adopting SQL-like query language for program-
ming that is familiar to Android application programmers and
asynchronous query execution for the data stream.
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