
Ontology-based Change Propagation in Shareable

Health Information Applications

Anny Kartika Sari

Dept. of Computer Science and Electronics

Gadjah Mada University

Yogyakarta, Indonesia

Wenny Rahayu

Dept. of Computer Science and

Computer Engineering

La Trobe University

Melbourne, Australia

Abstract—One of the most important challenges to be ad-
dressed when establishing an integrated smart health environ-
ment is the availability of shareable health data and knowledge
which standardize the interoperability of components within
the environment. Health ontologies are commonly utilized to
enable interoperability between applications in such environment.
However, the dynamic nature of health knowledge causes the
need for frequent changes in health ontologies which then must
be propagated to the relevant applications. A change propagation
method that can efficiently streamline the change management
from an ontology to all the applications which reference to it
is proposed. A component called a mapper is used to manage
the mapping between application terms and ontology concepts.
The mapper is aimed to maintain the applications’ access to
the most up-to-date ontology concepts and to improve the
semantic mapping between the application terms and the ontology
concepts. Some rules are developed for the change propagation
process. The evaluation of the method shows that the mapper can
improve the mapping list in terms of: (i) correctness, by proposing
a new mapping entry to substitute an existing one which is not
valid anymore because ontology concept is deleted or changed;
(ii) currency maintenance, by recommending a better mapping
between an application term and a new ontology concept based
on the similarity value between the term and the new concept.

Keywords—health information system; ontology-based applica-
tion; ontology evolution

I. INTRODUCTION

Current developments in the health domain require pa-
tients’ data to be exchanged between information systems of
different health care providers. Today, people are highly mo-
bile, thus they can access health care treatment from different
providers who can be geographically separated. Specialization
in the health care domain also requires flexibility in the
exchange of patient data. However, it requires the availability
of shareable health data and knowledge which standardize the
interactions of components within the environment.

Semantic interactions in the environment can be standard-
ized using health ontologies. Several health ontologies such
as SNOMED CT (Systematized Nomenclature of Medicine–
Clinical Terms), UMLS (Unified Medical Language System)
and LOINC (Logical Observation Identifiers Names) have been
established to achieve semantic interoperability between differ-
ent health providers in the environment. While an ontology-
based health information system application must refer to the
most current ontology, health ontologies constantly change due
to changes in the knowledge of the health domain. The frequent

changes in health ontologies may become a problem in the
effort to ensure the applications refer to the most up-to-date
ontology concepts.

In the notion of ontology evolution, there is a phase
which is related to the effort of maintaining the currentness
of the ontology-based applications with regard to the ontology
to which they refer. This phase is named ontology change
propagation. The goal of this phase is to bring the changes
of the ontology to the depending artifacts such as other
ontologies or the applications based on it. Since ontologies and
applications have different characteristics, the ontology change
propagation process is classified into two types: ontology-
to-ontology change propagation and ontology-to-application
change propagation. In this work, the focus is on the change
propagation from a base ontology to the applications.

The complexity of change propagation process depends on
how the ontology bound to the applications. The process will
be easier for applications in which the concepts in the ontology
are not tightly bound to them. This means that the ontology
components are not hard-coded/embedded in the applications.
Such applications only access the ontology ’on the fly’, that
is, the applications only need it when they are executing a
process. For instance, in an ontology-based decision support
system, an ontology is needed during the reasoning process
to support decision making. In this type of application, there
is no continuous direct binding between ontology concepts
and application terms. The applications need the ontology as
a whole, not only particular components. Once the ontology
changes, the applications can be immediately directed to the
new ontology. The impact of the ontology changes to the ap-
plications is not significant because the ontology components
are not hard-coded in the applications.

For applications where ontology components are embed-
ded, different approaches should be used. In this type of
application, ontology components are used continuously, and
may be hard-coded in the applications. For instance, in ap-
plications which utilize ontology to achieve interoperability
between different health information systems, there may be
one-to-one mapping between each term in the application and
an ontology concept. In this type of application, changes in
ontology should be propagated to applications straight away
so that the applications always refer to the current ontology
and interoperability is maintained. However, direct propaga-
tion may affect the validity of data or cause inconsistency.
Furthermore, sometimes the nature of the applications make

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

295 | P a g e
www.ijacsa.thesai.org

it impossible to make frequent changes to the applications
because they may raise some technical issues. In this type
of application, a change propagation process which does not
directly affect the applications would be more appropriate.
To the best of our knowledge, there is no existing work on
ontology-to-application change propagation which considers
this matter.

In this paper, a method to handle ontology changes in an
ontology-based application is proposed. The main focus of
this work is the ontology-to-application change propagation
process, specifically from the ontology to the depending appli-
cations which are constantly bound to the ontology concepts.
A component, referred to as the mapper, is responsible for
managing the mapping list such that the application terms
can always be bound to the current ontology concepts. The
main advantage of the mapper is that the binding between
the application terms and the ontology concepts can be done
outside the application so that the ontology changes can be
handled without the need to modify the application. Some rules
are developed as guidelines for the mapper to perform its task.
The mapper has two important roles. Firstly, it can propose a
new mapping entry to substitute an existing one which is not
current due to a deletion or change of the ontology concept
listed in the entry. Secondly, the mapper can propose a better
mapping of an application term because a new concept in the
ontology is found to be more semantically similar to the term
than the existing concept previously bound to the term. In this
way, the mapping list can be kept up-to-date, while its quality
is improved.

The rest of the paper is structured as follows. Section
2 outlines related work. Section 3 presents the connection
mechanism between ontology and the applications. The main
focus of this work is discussed in Section 4, which explains the
method in propagating the changes from the ontology to the
applications and managing the mapping list when the ontology
changes. Section 5 discusses the evaluation of the method.
Section 6 concludes the work.

II. RELATED WORK

Previous work on the management of ontology evolu-
tion has been proposed. Some of the important frameworks
are CONCORDIA ([1], [2]), CREAM ([3]), OntoView ([4]),
KAON ([5], [6]), CHAO ([7]), Evolva ([8], [9]), GOMMA
([10]), COnto-Diff ([11]) and CHO (Change History Ontology)
([12], [13], [14]). However, only a few of the frameworks
address the change propagation phase, such as [2], [6], [7],
[15], [16] and [17]. most of them only discusses the ontology-
to-ontology change propagation method, not the ontology-to-
application method. Our previous work in [18] and [19] also
discusses an ontology-to-ontology approach with the focus on
the change propagation from a base ontology to a sub-ontology.
While the approach in [18] is only based on the change
operations provided by the release of the health ontologies,
the method proposed in [19] considers the semantic of the
change operations.

The work on ontology evolution in ontology-based ap-
plications which is related to ontology-to-application change
propagation method is summarized in Table I. The proposed
approach differs from the existing work summarized in the

table in at least two issues. Firstly, the focus is on health
ontologies which have some specific characteristics as fol-
low: (i) they have been standardized; (ii) they change very
frequently; (iii) their size is very large, and; (iv) the domain is
very critical. The ontologies which have become the focus of
the existing work do not have these characteristics. Secondly,
the main interest of the change propagation in this work is the
change propagation to the applications which use the concepts
constantly in the direct binding between the concepts and the
application terms. To the best of our knowledge, there has not
been any existing work which focuses on this issue. In most
of the existing work on the ontology-to-application change
propagation, including the work listed in I, the applications
utilize ontologies in only two ways: instances and queries. In
[24], an ontology-based method to handle terminology changes
is proposed. The work focuses on International Classification
of Diseases (ICD-9-CM) terminology, which is one of the
standardized terminologies commonly used in medical area.
However, the work does not consider the change propagation
process from the terminology to the applications.

III. THE CONNECTION BETWEEN ONTOLOGY AND

APPLICATIONS

Figure 1 shows a description of the framework used in
distributed health provider systems. It consists of a main
ontology, a main ontology manager and several different health
provider systems, each of which contains an ontology suitable
for the system which is referred to as the referred ontology.
Each health provider system also contains some health in-
formation system applications. The ontology manager is the
key component in the framework. It manages the ontologies
by doing two tasks: 1) keeping the ontologies up-to-date by
propagating the changes which occur in the main ontology
to the relevant referred ontologies and; 2) giving notification
to each health provider system whenever there are changes
in its referred ontology as a consequence of the changes in
the main ontology. In this paper, only the second task is
discussed because it is related to the mapping mechanism
between ontology concepts and application terms.

As previously mentioned, continuous access to ontology
concepts by the applications will include direct reference or
mapping between the ontology concepts and the application
terms. To make the references more well-structured, a mapping
list is used. It includes the mapping between the terms used
in the applications and the concepts included in the referred
ontology. A component referred to as the mapper is also used
to manage the mapping list and to handle the changes when
the ontology evolves. Since the mapper and the mapping list
are not part of the applications, the ontology components do
not need to be hard-coded in the applications. By separating
the mapping list and the mapper from the applications, man-
agement of the mapping when the ontology changes will be
easier. The application does not need to do the adjustment
every time the ontology changes because the mapping in the
mapping list has been adjusted by the mapper.

Figure 2 shows the detail of the health provider system
components and the processes which occur when the referred
ontology changes. The tasks of the main ontology manager are
to provide the referred ontology with the ontology components
and to notify the mapper when there is an ontology change. It

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

296 | P a g e
www.ijacsa.thesai.org

TABLE I: Some existing works on ontology-to-application change propagation

Article Ontology Goal Application

[20] Legal Ontology To discover inconsistencies in a semantic web service de-
scription, whose repairing improves the agreement of the
ontology with the business rules

e-gov change manage-
ment system

[3], [5] not specified To enable consistency in the annotations of knowledge
sources in the case of changes in the domain ontology

CREAM, a semantic an-
notation framework

[21] The Ontology of Profes-
sional Judicial Knowl-
edge (OPJK)

To provide ontology managers and users with a tool that
helps to detect effects of changes in ontologies and select
versions based on their properties

MORE (Multi-version
Ontology REasoner)

[22],
[23]

CIDOC Conceptual Ref-
erence Model (CRM)
ontology

Ontology-based system could provide continuous and un-
changed services to the end-users

Applications based on
CIDOC CRM ontology

Referred
ontology A

Main ontology

Ontology components ,
ontology change notification ,

ontology changes

Main ontology
manager

Ontology
components ,

Ontology
changes

Health provider system A

Applications

Concepts (for
concept - term mapping)

Referred
ontology B

Health provider system B

Applications

Referred
ontology C

Health provider system C

Applications

Concepts (for
concept - term mapping)

Concepts (for
concept - term mapping)

Fig. 1: Framework of the distributed health provider systems

also provides the mapper with a list of the change operations
applied to the referred ontology. Based on the list of the
change operations, as well as the term-concept mapping data
provided by the mapping list, the mapper do the adjustment to
the mapping list. The applications, or to be more specific the
user/administrator of the applications, can accept or reject the
adjustment.

At any given time, the health provider keeps the valid
and up-to-date ontology, which is consistent with the main
ontology, to be referred to by the applications. However, due to
technical issues or data loss, sometimes there are applications
which still refer to the concepts from the previous version of
the ontology which are not included in the current version
because they have been deleted or changed. To anticipate this
situation, the old concepts are included as an extension of the
valid ontology, which is referred to as the extended concepts.
These extended concepts, together with the valid and up-to-
date ontology, construct the referred ontology. Figure 3 shows
the contents of a referred ontology. In the figure, ’Ontology’
refers to the valid and up-to-date ontology. The extended
concepts are not components of the valid ontology. Each of
the extended concepts is annotated with the information of
the concept in the valid referred ontology which is related
to it, that is, the new concept which replaces or represents

the extended concept. Moreover, information on the version
of the main ontology in which it was originally included is
also available. The formal definition of the annotation for the
extended concept ce follows.

Definition 1. Annotation for ce
A(ce) ≡< c, v > is the annotation for the extended
concept ce where c is the concept in the current
referred ontology related to ce and v is the version
of the referred ontology in which ce was included.

The mapping list contains several mapping entries, each of
which connects a term used in the application to a concept in
the referred ontology. The formal definition of the mapping
list is as follows.

Definition 2. Mapping list
L ≡ {l1, l2, ..., ln} is the mapping list with li ≡< ai, ti, ci,
vi, dfi, dti, si, ri > is the mapping entry.

In the definition, L is the mapping list which is a set of
mapping entries li. l is the mapping entry in the mapping list
and has the following structure:

<application id, term id, concept id, version, date-from,
date-to, status, reason >

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

297 | P a g e
www.ijacsa.thesai.org

Ontology change
notificationMain ontology

manager

Application 3

Application 2

Referred
ontology

Health provider system

Application 1

Ontology
concepts

Mapper

Mapping list

Term-concept
mapping

Term-concept
mapping

Decision on accepting /rejecting
the update

Data flow

Process flow

Ontology
components

List of ontology change
operations

Mapping
entry update

Fig. 2: The components inside a health provider system and the process and data flows when the main ontology changes.

Ontology

concepts

Extended
concepts

Mapping list

Referred
ontology

refers to

Fig. 3: The valid and up-to-date ontology and the extended
concepts construct the referred ontology.

Application id (a) is the ID of the application where the
term is used. Term id (t) is the ID of the term which refers to
the ontology concept. Concept id (c) is the ID of the concept in
the referred ontology. Each concept which ID is currently used
in the mapping list is referred to as a referred concept. Version
refers to the most current version of the referred ontology
where the concept is included. Date-from (df) is the date
when the mapping is created. Date-to (dt) is the date when
the mapping becomes obsolete due to ontology changes or
application changes. Status (s) is the status of the mapping
which can be: (i) ’valid’, which means that the mapping is
still used; (ii) ’invalid’, which means that the mapping is not
used anymore; (iii) ’new’, which means that the mapping is
produced by the mapper due to finding a new version of the
referred ontology; or (iv) ’obsolete’, which means that the
mapping should be checked for its validity due to the change in
the referred ontology. The reason (r) explains why a mapping
entry is not valid anymore.

During the change propagation process, the mapping list
can be changed. We define two operations which are related to
the change of the mapping entries in the mapping list: update
operation and addition operation. Deletion operation is not
defined because the history of the mapping entries should be

maintained in the mapping list. The formal definition of the
update and addition operations is as follows.

Definition 3. Mapping entry update operation
Given the mapping entry l1 ≡< a1, t1, c1, v1, df1, dt1, s1,
r1 > .
UpdateMap(< a1, t1, c1, v1, df1, dt1, s1, r1 >,< a2, t2, c2,
v2, df2, dt2, s2, r2 >) ≡ (a2 ← a1) ∧ (t2 ← t1) ∧ (c2 ← c1)
∧ (v2 ← v1) ∧ (df2 ← df1) ∧ (dt2 ← dt1) ∧ (s2 ← s1)
∧ (r2 ← r1)

Definition 4. Mapping entry addition operation
Given mapping list L ≡ {l1, l2, ..., ln}.
AddMap(ln+1, L) ≡ L← L∪{ln+1} with ln+1 ≡< an+1,
tn+1, cn+1, vn+1, dfn+1, dtn+1, sn+1, rn+1 > .

Basically, the mapping entry update operation is used to
update the field values of an existing mapping entry. One or
more of the field values can be changed to the new and correct
one. The mapping entry addition operation is applied when a
new mapping entry needs to be added to the mapping list.
The field values of the new mapping entry have been defined
before the addition of the mapping entry.

IV. CHANGE PROPAGATION PROCESS

The change operations in the ontology can be applied
to all components of an ontology which can be concepts,
relationships, description and description mappings. However,
since generally the applications of the health provider system
only use the concepts to be referred to, in this paper, only
the changes related to concepts are considered. There are four
types of concept change operations in the ontology:

1) AddCon(c): adds a new concept c to the ontology. The
concept can be a leaf or non-leaf concept.

2) DelCon(c): deletes an existing concept c from the ontol-
ogy. No new or existing concept is proposed to represent
the meaning of c.

3) ChangeCon(c1, c2): changes concept c1 into c2, and then
c1 is deleted from the ontology. This means that c2 can
be used to represent the meaning of c1.

4) MovCon(c): moves concept c to another branch in the
ontology graph. Movement of a concept does not influ-
ence the entries in the mapping list because the concept
still exists in the ontology.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

298 | P a g e
www.ijacsa.thesai.org

Figure 4 shows the processes which occur in the mapper
upon changes to the referred ontology. A list of the ontology
change operations is provided by the main ontology manager.
It contains the list of concepts which are deleted, added, moved
or changed. When the main ontology has been changed, the
main ontology manager performs the ’notify ontology changes’
process. This process triggers the processes performed by
the mapper. Three processes are performed by the mapper.
The first process is the ’check mapping entries’. This process
examines each mapping entry with a ’valid’ status and checks
whether the concept in that entry is listed in the list of the
ontology change operations provided by the main ontology
manager. The concepts which are not included in the mapper
but are referred to by any extended concepts through their
annotation are also examined. The second process is the
’update mapping list’. In this process, the mapper updates
the mapping list according to the rules for the mapping list
changes which will be discussed later. The updates, which
can be editing or addition of entries, are proposed to the user
for agreement. The last process is the ’update mapping list
according to the user’s decision’. In this process, the mapper
updates the mapping list based on the user’s decision on the
proposed mapping list produced by the earlier process. We
consider that a decision by the user (administrator, engineer
or expert) is needed in this process because the user might not
want to use the evolved version of the referred ontology or he
may reject some of the new entries proposed by the mapper
due to technical issues or other reasons. After the mapping list
is changed in accordance with the user’s decision, the referred
ontology should be adjusted to suit the decision of the user.
The adjustment is especially needed when the user chooses
not to change the mapping entry, which specifically influences
the extended concepts part of the referred ontology.

When the mapper receives notification from the main
ontology manager that the referred ontology has been changed,
it automatically searches for mapping entries with ’valid’ or
’not used’ status. If a concept in a mapping entry is also listed
in the list of changes, or if a concept in the list of changes
is referred to by an extended concept included in the mapper,
the mapper will do the adjustment to the mapping entry by
performing two actions:

1) It changes the status field from ’valid’ to ’obsolete’.
The reason field is also set to either ’deleted concept’,
’changed concept’, ’new child’ or ’new parent’, which
is chosen according to the type of change operation
corresponding to the entry.

2) As a replacement, it proposes new mapping entries with
the same application id and term id values, but the value
of the concept id field is different, which is determined
by several rules. The status field is set to ’new’.

Not all ’valid’ mapping entries are affected by the ontology
changes. Rules are defined to determine which mapping entries
must be updated due to the corresponding change operation.
The rules are built based on the type of change operation, as
described above. In the following description, the impact of
each change operation type is explained and underlies each
rule. As previously mentioned, the MoveConc operation does
not influence the mapping list, thus the rule for the operation is
not defined. Hence, there are only three rules which correspond
to the three types of change operations.

1) Impact on the concept deletion operation (Delcon(c1))
When the concept id field of a mapping entry refers
to a concept to be deleted in the ontology, or when a
concept to be deleted from the ontology is referred to
by an extended concept contained in a valid mapping
entry, the mapping entry must be updated. The value of
the concept id field must be changed to the ID of the
candidate concept, i.e. the most similar child or parent
concept of the deleted concept. The formal definition of
the rule follows.

Rule 1: Propagation of DelCon(c1) operation
∀ DelCon(c1) | ∃ l1 ∈ L, l1 ≡< a1, t1, cx, v1, dd/
mm/yyyy, null, ′valid′, null > ∧ (cx = c1 ∨ cx =
ce | ce is an extended concept ∧A(ce) ≡< c1,
vce >) :
ci is the candidate concept → UpdateMap(l1,
< a1, t1, cx, v1, dd/mm/yyyy, null, ′obsolete′,
deletion′ >)∧ AddMap(< a1, t1, ci, vcurrent, null,
null, ′new′, ′null′ >,L)

The candidate concept is determined in the following
way. The similarity between a concept c1 and its par-
ent c2 is defined as simcp(c1, c2) or simcp(c2, c1),
and the value is calculated using the child/parent
pair similarity formula proposed in [25]. If c1 is the
deleted concept, while c2, ..., cn are the set of parent
or child concepts of c1 in the previous referred on-
tology, simcp(c1, c2), simcp(c1, c3), ..., simcp(c1, cn) are
calculated. If there is ci with ci ∈ c2, ..., cn where
simcp(c1, ci) = max{simcp(c1, c2), ..., simcp(c1, cn)},
then ci is referred to as the candidate concept. If there
are ci, ci+1, ..., ci+x ∈ c2, ..., cn which have the same
child/parent similarity value to c1, MESH (Medical Sub-
ject Heading) vocabulary is used to find which of the
names of ci, ci+1, ..., ci+x are in the same descriptor
record to the name of c1, in which the root words of
the names of those concepts are used. If ci is the only
concept whose name is in the same descriptor record
to the name of c1 in MESH, ci is the candidate con-
cept. Otherwise, Jaro-Winkler distance is used to find
the candidate concept whose name is the most similar
to the name of c1. Jaro-Winkler distance is adequate
to find the candidate concept because using two level
of assessment, i.e. child/parent similarity and MESH
descriptor containment, basically the concepts have the
same similarity value to the deleted concept. Hence, they
are differentiated by their names.

2) Impact on the concept change operation
(ChangeCon(c1, c2))
When the concept id field of a mapping entry refers to
a concept to be changed in the referred ontology, that
mapping entry must be updated. The concept id field of
the new proposed mapping entry must refer to c2, which
is the concept to which c1 is changed in the ontology.
The formal definition of this rule follows.

Rule 2: Propagation of ChangeCon(c1, c2) operation
∀ ChangeCon(c1, c2) | ∃ l1 ∈ L, l1 ≡< a1, t1, cx, v1,
dd/mm/yyyy, null, ′valid′, null > ∧ (cx = c1 ∨
cx = ce | ce is an extended concept ∧ A(ce) ≡< c1,
vce >) :

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

299 | P a g e
www.ijacsa.thesai.org

Notify ontology
changes

Check mapping entries Update mapping list
Update mapping list

according to user �s decision
Adjust referred

ontology

Mapping
list

List of ontology
changes

Main ontology manager

Mapper

User

direction of operation

Referred
ontology

Local health
provider system

direction of data

Fig. 4: The process of updating the mapping list when the ontology changes.

UpdateMap(l1, < a1, t1, cx, v1, dd/mm/yyyy, null,
′obsolete′, ′change′ >) ∧ AddMap(< a1, t1, c2,
vcurrent, null, null, ′new′, null >, L)

3) Impact on the concept addition operation (AddCon(c2))
When the concept id field of a mapping entry refers
to concept c1 which happens to be the parent or child
concept of the new added concept c2, that mapping
entry must be checked for the possibility of update.
If t1 is the value of the term id in the mapping entry
and sim(t1, c2), i.e. the similarity value between t1
and c2, is higher than sim(t1, c1), the mapping entry
must be updated and a new mapping entry is proposed,
otherwise nothing happens. The formal definition of the
rule follows.

Rule 3: Propagation of AddCon(c2) operation
∀ AddCon(c2) | (∃ l1 ∈ L, l1 ≡< a1, t1, cx, v1, dd/
mm/yyyy, null, ′valid′, null > ∧ (cx = c1 ∨ cx =
ce | ce is an extended concept ∧A(ce) ≡< c1, vce >))
∧(c1 is the parent or child concept of c2) :
sim(t1, c2) > sim(t1, c1) → UpdateMap(l1, < a1,
t1, c1, v1, dd/mm/yyyy, null,′ obsolete′,′ addition′ >)
∧ AddMap(< a1, t1, c2, vcurrent, null, null, ′new′,
null >, L)

To evaluate the similarity values, MESH is used. If the
name of c2 is in the same descriptor record as the
name of t1 while it is not the case for the name of
c1, sim(t1, c2) > sim(t1, c1). If it is the other way
around, then sim(t1, c1) > sim(t1, c2). The similarity
value cannot be determined using MESH if one of these
cases occurs: 1) the name of t1 is not found in MESH
descriptor records; 2) the names of c1 and c2 are in the
same descriptor record as the name of t1; 3) neither the
name of c1 nor c2 is in the same descriptor record as the

name of t1. In these cases, Jaro-Winkler distance is used
to find which concept name is more similar to the name
of t1.

After the mapper updates the mapping list based on the
above rules, the user receives a notification that the mapping
list has been updated due to the ontology change. This is
included in the ’update mapping list by the user’ process
described in Figure 4. The user examines all mapping entries
with status value ’new’. He should change the ’new’ status to
’valid’ if he agrees to the new mapping, or ’invalid’ if he does
not accept it. Following the changes by the user, the mapper
adjusts the mapping list using the following guidelines:

• If the ’new’ status is changed to ’valid’, the status
of the corresponding mapping entry with the same
application ID and term ID with ’obsolete’ status is
changed to ’invalid’ by the mapper and the date-to
field is set to the current date. The date-from value of
the new entry is set to the current date. Hence, the new
mapping entry is used by the applications to replace
the old one.

• On the other hand, if the ’new’ status is changed to
’invalid’, the status of the other mapping entry with
the same application ID and term ID with ’obsolete’
status is changed back to ’valid’ by the mapper. The
status field of the new entry is set to ’not used’. The
’not used’ status of a mapping entry indicates that the
entry has not been used by the applications since the
changes to the referred ontology. In other words, the
’valid’ mapping entry with the same application ID
and term ID does not refer to the current ontology.

The mapping list adjustment due to the decision by the
user may have an impact on the referred ontology, especially
to the extended concepts. This happens when the user decides

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

300 | P a g e
www.ijacsa.thesai.org

not to use the new proposed mapping entry to replace the
obsolete one in the case of deletion and change operations. If
the concept ce referred to by the obsolete mapping entry has
not been included in the extended concepts part of the referred
ontology, it is included in that part with A(ce) ≡< c1, v >
where c1 is the concept proposed by the mapper to replace ce
in the mapping list and v is the version of the referred ontology
where ce originated. If concept ce has been included in the
extended concepts part, only the value of c in the annotation
needs to be changed to c1.

V. EVALUATION AND DISCUSSION

The proposed method is evaluated by presenting a case
study in which a health archetype is used as an example
of the application. Following the case study is discussion
on the efficiency of the use of the mapper compared to the
common method and the maintenance of the semantic currency
contained in the applications due to the new mapping entries
proposed by the mapper.

A. Application of the Method to the Archetype Term Binding
Process

In this section, an application of the proposed method is
presented for managing the mapping between the application
terms and the ontology concepts when changes occur in the
referred ontology. We used an archetype as the representation
of an application which refers to the referred ontology. An
archetype is a model of specific domain knowledge, in this
case, clinical knowledge. Each archetype describes a complete
clinical knowledge concept such as ’diagnosis’ or ’test result’
[26]. For the referred ontology, a sub-ontology, which is
derived from SNOMED CT as the main ontology, is developed.
The method proposed in [27] is used to build the sub-ontology.

For this work, an archetype is created as a repre-
sentation of an application. The archetype was named
tooth care summary. The archetype was created by consid-
ering the concepts changed in SNOMED CT so that the
types of change operations in the sub-ontology can be shown
in the archetype. Thus, the archetype itself is a modified
version to fulfill the above requirement. The definition of the
tooth care summary archetype is shown in Figure 5, which
is previewed using the Archetype Editor -arc built by Ocean
Informatics. It contains 40 terms, each of which is bound
to a SNOMED CT concept. Based on the concepts required
by the binding, a sub-ontology is built. The sub-ontology
was extracted from the 20110131 version of the International
SNOMED CT edition. The sub-ontology contains 557 concepts
and 645 relationships of SNOMED CT. Based on the archetype
terms and the sub-ontology concepts, the mapper created a
mapping list.

Figure 6 shows part of the initial binding between the
archetype terms and the 20110131 version of SNOMED CT
concepts viewed by the Archetype Editor. The node column
presents the term names, the code column refers to the bound
SNOMED CT concepts, while the release column shows the
version of SNOMED CT in which each of the concepts is
initially included. Note that this is not the actual mapping list.

After the 20110131 version, SNOMED CT has been
changed and the newer version is the 20110731 SNOMED

CT. To accommodate the changes, the sub-ontology has been
changed as well. Some change operations were performed.
The mapper checked the mapping entries to see if the change
operations were affected by the change operations. Apparently,
there were seven operations which were related to the mapping
entries. The effect of each change operation to the related
mapping entry is summarised in Table II. In Figure 6, the
highlighted rows contain the concepts which are affected by
the change operations.

The highlighted rows in Figure 7 are the binding between
archetype terms and the SNOMED CT concepts which are
affected by the sub-ontology changes. It can be seen that
the rows contain different concepts ids and release versions
of SNOMED CT from the concept ids and release versions
contained in Figure 6.

B. Discussion

There are several issues related to the proposed method
which will be discussed in this section. These issues are
elaborated as follows.

The use of sub-ontologies to increase efficiency in change
propagation process

In the proposed method, applications refer to sub-
ontologies instead of the base ontology. The number of con-
cepts in a sub-ontology is smaller than the number of concepts
in a base ontology. When the base ontology changes, only the
relevant changes are propagated to each of the sub-ontologies.
In this way, the number of changes in each of the sub-
ontologies is also smaller than the number of changes in the
base ontology.

After updating its components according to the changes
propagated by the base ontology, a sub-ontology then
propagates these changes to the applications referring to
it. This process is performed by the mapper by updating
its mapping list according to the rules of sub-ontology to
application change propagation. Since the number of change
operations in the sub-ontology is smaller than the number of
change operations in the base ontology, the mapper does not
need much time to examine all the change operations which
occurred in the sub-ontology. The time needed to examine
the change operations will be longer if the sub-ontology
does not exist, which implies that the mapper must look up
all the change operations in the base ontology. In the case
of SNOMED CT used in the evaluation of the method, the
number of changes which occurred to Version 20110131,
which is included in Version 20110731, is 8,697 operations.
It will take time for the mapper to check whether each of
the operations falls into one of the rules for propagating the
changes to applications.

Benefits of the use of the mapper

There are several advantages of the use of the mapper in
the change propagation process to applications as follows.

• The mapper maintains the history of the application
term references to ontology concepts.
The mapper never deletes its entries. Invalid (not used)
entries are only marked by the ’invalid’ value of the

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

301 | P a g e
www.ijacsa.thesai.org

Fig. 5: The definition of tooth care summary archetype.

Fig. 6: The binding between the terms in the archetype and the SNOMED CT concepts before the sub-ontology changes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

302 | P a g e
www.ijacsa.thesai.org

TABLE II: Change operations found in the sub-ontology which are related to the mapping entries

Change
operation in
sub-ontology

Related mapping entry and the change
Term id Term name Concept id of

the existing
entry

Decision by the
mapper

Reason Concept id
of the new
entry

MergeCon
(263513008,
410675002)

at0037 Drug
admin-
istration
route

263513008 Status is changed to
obsolete, new entry
is proposed

Concept is merged 410675002

InsertCon
(447964005)

at0038 Digestive
route

26643006 Status is changed to
obsolete, new entry
is proposed

The term name is more
similar to the name of the
new concept

447964005

DelCon
(17751009)

at0039 External
route

17751009 Status is changed to
obsolete, new entry
is proposed

The deleted concept has
only 1 parent concept
(284009009), but no child
concept

284009009

MoveCon
(372449004)

at0040 Dental
route

372449004 No need to update The moved concept is
still included in the sub-
ontology

-

InsertCon
(372454008)

at0041 Gastro-
intestinal
stoma
route

418136008 No need to update The term name is not more
similar to the name of the
inserted concept

-

AddLeaf
(448399001)

at0004 Dental
hospital

22232009 Status is changed to
obsolete, new entry
is proposed

The term name is more
similar to the name of the
new leaf concept

448399001

AddLeaf
(447896001)

at0012 Dental
pack is
replaced

234718000 Status is changed to
obsolete, new entry
is proposed

The term name is more
similar to the name of the
new leaf concept

447896001

Fig. 7: The binding between the terms in the archetype and the SNOMED CT concepts after the sub-ontology changes.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

303 | P a g e
www.ijacsa.thesai.org

status field. In this way, the history of references of
application terms can be preserved. All references to
a particular application term have the same values
of application id and term id fields. Each invalid
reference has a value for its reason field which records
the reason why the reference is not used. Furthermore,
the user can also check if there are application terms
which are out-of-date and may need to be changed.
The mapping entries with the most current value of
the version field and ’not used’ value of reason show
that the corresponding application terms still refer to
older ontology concepts.

• The mapper enables the semi-automatic update pro-
cess of the mapping list.
A fully manual update is error prone and obviously
takes a longer time. In the sub-ontology used in the
evaluation, there are 40 terms to be mapped to the sub-
ontology concepts. In the case of a manual process,
when the sub-ontology changes, the user must check
each term to see whether it refers to a deleted sub-
ontology concept or not. Since there are 557 concepts
in the sub-ontology, the manual checking process is
hardly feasible. The mapper can do the checking faster
because it has the mapping list which includes the
concept ids. Hence, the mapper only needs to find
the concept ids which are included in the list of sub-
ontology changes given by the central sub-ontology
manager.

• The mapper facilitates the management of the map-
ping between the application terms and the sub-
ontology concepts such that the sub-ontology changes
can be handled without the need to modify the appli-
cations.
This can be done because the mapping is managed
outside the applications. The separation between the
mapping mechanism and the applications is important
because, unlike an ontology which can be changed
automatically, the decision to change an application
cannot be made instantly because it may affect the
existing data and raise some technical issues related
to the application development.

• The mapper can propose a better mapping of the
application terms
In the example, there are three terms which are
mapped to the new concepts which are semantically
more similar to the terms. In the previous mapping,
the terms are mapped to the less similar concepts
because they are the best choice in the previous sub-
ontology. The new concepts added to the sub-ontology
apparently have better similarity to the terms. Again,
a manual examination takes time because there are 40
terms to be checked. The mapper can quickly propose
the new mapping based on the rule of mapping list
changes due to an addition of a leaf concept or an
insertion of a concept. This will improve the quality
of the mapping between the archetype terms and the
ontology concepts. Otherwise, the application terms
will maintain their references to less similar concepts,
while there are actually concepts which have better
similarity to them. At this moment, a mapping is

improved by changing the referred concept to its new
child or parent concept only in the changed sub-
ontology. In the future, improvements might be made
by changing the referred concept to any new concept
in the sub-ontology or even any new concept in the
base ontology. However, a discussion on this issue is
beyond this thesis.

Validity of the mapping entries with regard to the current
sub-ontology

A concept deleted from the sub-ontology indicates that
the concept is not available in the current sub-ontology. In
some ontologies such as SNOMED CT, a concept merged to
another one is also considered a deleted concept. A reference
to a non-existent concept is obviously not valid, and hence,
should not exist in the mapping list. In the sub-ontology,
the concept to be deleted is concept 17751009, while the
concept to be merged is concept 263513008. In Figure 6,
those two concepts are listed in the binding list between the
archetype terms and the sub-ontology concepts. However, in
Figure 7, these two concepts are not listed in the binding
list. This is correct since the two concepts do not exist in the
current sub-ontology. The terms previously bound to the two
concepts are now binding to other concepts which exist in the
sub-ontology. This shows that the proposed method is able to
keep the application terms referring to the valid concepts in
the current sub-ontology.

Possibility of application change due to sub-ontology change

The changes to the sub-ontology suggest that the knowl-
edge has changed as well. For an application which has a
very high requirement for knowledge update, the changes in
the sub-ontology can be interpreted as an indication that the
application needs to be updated. For instance, if a concept
referred to by an application term is deleted from the sub-
ontology, it may be the case that the term should be deleted
from the application due to its obsoleteness. The mapper can
give notification to the applications with regard to the changes,
and it is the decision of the applications to update the terms
included in them. If the terms are updated, the sub-ontology
must be updated too because the selected concepts which are
referred to by the application terms might be changed. This
leads to another process of sub-ontology changes.

VI. CONCLUSION

In this paper, a change propagation mechanism from an
ontology to the depending application has been proposed. A
mechanism which is able to manage the continuous access
of the applications to the ontology they refer to is proposed.
Using the mechanism, the applications keep referring to the
up-to-date ontology even when the ontology changes.The heart
of the mechanism is the component called the mapper, which
includes a mapping list. The mapping list contains mapping
entries, each of which represent the mapping between an
application term and an ontology concept. The task of the
mapper is to manage the mapping list in the event of ontology
changes so that the reference to a non-existing concept is
avoided and the quality of the mapping entries can be improved
by proposing new mapping entries which contain more relevant
pairs of application terms and ontology concepts. Some rules,

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

304 | P a g e
www.ijacsa.thesai.org

which are based on the ontology change operations, have been
created for the mapper to update the mapping list.

The proposed method has been applied to an application
together with its referred ontology. An archetype is used to
represent an application, while an ontology has been developed
based on the SNOMED CT ontology and the archetype terms.
It is shown that the mapper offers more efficient change
propagation than the commonly used method in terms of the
number of change operations which should be propagated to
the applications. The use of the mapper also enables semi-
automatic updating to the mapping list which is obviously
faster than manual inspection. Moreover, the rules used by
the mapper can maintain the semantic currency of the mapping
because the mapper can propose a new mapping entry in which
the application term is semantically more similar to the new
concept than the previous one.

For future work, the application of the method in other
domains, such as bioinformatics and Internet of Things, can be
observed. Similar to the application of the method in health do-
main, the application to other domains requires the availability
of a standardised ontology, the distributed environment nature,
and the reference of application terms to ontology concepts.
Technical aspects of the application of the approach may also
be interesting for future work. The performance, reliability and
scalability of the deployment of the approach in distributed
environment needs to be examined.

REFERENCES

[1] D. E. Oliver and Y. Shahar, “Change management of shared and local
health-care terminologies,” Methods of Information Medicine, vol. 39,
pp. 278–290, 2000.

[2] D. E. Oliver, Y. Shahar, E. H. Shortliffe, and M. A. Musen, “Rep-
resentation of change in controlled medical terminologies,” Artificial
Intelligence in Medicine, vol. 15, pp. 53–76, 1999.

[3] N. Stojanovic, L. Stojanovic, and S. Handschuh, “Evolution in the
ontology-based knowledge management systems,” in Proceedings of the
10th European Conference on Information Systems, Gdansk, Poland,
2002, pp. 840–850.

[4] M. Klein, D. Fensel, A. Kiryakov, and D. Ognyanov, “Ontology
versioning and change detection on the web,” in Proceedings of the 13th
International Conference on Knowledge Engineering and Knowledge
Management (EKAW02), LNAI 2473, A. Gomez-Perez and V. Ben-
jamins, Eds. Springer-Verlag, Berlin, Heidelberg, 2002, pp. 197–212.

[5] L. Stojanovic, A. Maedche, B. Motik, and N. Stojanovic, “User-
driven ontology evolution management,” in Proceedings of the 13th
International Conference on Knowledge Engineering and Knowledge
Management. Ontologies and the Semantic Web, ser. EKAW ’02.
London, UK: Springer-Verlag, 2002, pp. 285–300.

[6] A. Maedche, B. Motik, L. Stojanovic, R. Studer, and R. Volz, “Man-
aging multiple ontologies and ontology evolution in ontologging,” in
Intelligent Information Processing. Kluwer, 2002, pp. 51–63.

[7] N. F. Noy, A. Chugh, W. Liu, and M. A. Musen, “A framework for
ontology evolution in collaborative environments,” in Proceedings of
the 5th International Semantic Web Conference , ser. LNCS Volume
4273. Springer, 2006, pp. 544–558.

[8] F. Zablith, “Dynamic ontology evolution,” in International Semantic
Web Conference (ISWC) Doctoral Consortium , Karlsruhe, Germany,
2008.

[9] F. Zablith, M. Sabou, M. d’Aquin, and E. Motta, “Ontology evolution
with evolva,” in Proceedings of the 6th European Semantic Web
Conference (ESWC) LNCS 5554. Springer-Verlag, Berlin, Heidelberg,
2009, pp. 908–912.

[10] T. Kirsten, A. Gross, M. Hartung, and R. Erhard, “Gomma: a
component-based infrastructure for managing and analyzing life science
ontologies and their evolution,” Journal of Biomedical Semantics, vol. 2,
2011.

[11] M. Hartung, A. Grob, and E. Rahm, “Conto-diff: generation of
complex evolution mappings for life science ontologies,” Journal of
Biomedical Informatics, vol. 46 (2013), pp. 15–32, 2013. [Online].
Available: http://dx.doi.org/10.1016/j.jbi.2012.04.009

[12] A. M. Khattak, K. Latif, S. Khan, and N. Ahmed, “Managing change
history in web ontologies,” in Proceedings of the Fourth International
Conference on Semantics, Knowledge and Grid, China, 2008.

[13] A. M. Khattak, Z. Pervez, S. Lee, and Y.-K. Lee, “After effects of
ontology evolution,” in Proceedings of the 5th International Conference
on Future Information Technology (FutureTech) , 2010, pp. 1 – 6.

[14] A. M. Khattak, K. Latif, and S. Lee, “Change management in evolving
web ontologies,” Tsinghua Science and Technology, vol. 37 (2013),
pp. 1–16, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.knosys.
2012.05.005

[15] J. Mapoles, C. Smith, J. Cook, and B. Levy, “Strategies for updating
terminology mappings and subsets using snomed ct,” in Proceedings
of the 3rd international conference on Knowledge Representation in
Medicine, R. Cornet and K. Spackman, Eds., 2008.

[16] A. Shaban-Nejad and V. Haarslev, “Bio-medical ontologies maintenance
and change management,” in Biomedical Data and Applications , ser.
Studies in Computational Intelligence Volume 224, A. Sidhu and
T. Dillon, Eds. Springer, 2009, pp. 143–168.

[17] R. Palma, O. Corcho, A. Gmez-Prez, and P. Haase, “A holistic approach
to collaborative ontology development based on change management,”
Web Semantics: Science, Services and Agents on the World Wide Web,
vol. 9, pp. 299–314, September 2011.

[18] A. K. Sari and W. Rahayu, “A methodology for change propagation in
health ontology,” in Proceedings of the 15th Pacific Asia Conference
on Information Systems, Brisbane, Australia, 2011.

[19] A. K. Sari, W. Rahayu, and M. Bhatt, “An approach for sub-ontology
evolution in a distributed health care enterprise,” Information Systems,
vol. 38, pp. 727–744, July 2013.

[20] L. Stojanovic, A. Abecker, N. Stojanovic, and R. Studer, “On managing
changes in the ontology-based e-government,” in Proceedings of the 3rd
International Conference on Ontologies, Databases and Application of
Semantics (ODBASE 2004), ser. LNCS Volume 3291. Springer Verlag,
2004, pp. 1080–1097.

[21] Z. Huang and H. Stuckenschmidt, “Reasoning with multi-version
ontologies: A temporal logic approach,” in Proceedings of the 4th
International Semantic Web Conference (ISWC), 2005, pp. 398–412.

[22] Y. Liang, H. Alani, D. Dupplaw, and N. Shadbolt, “An approach to
cope with ontology changes for ontology-based applications,” in Second
Advanced Knowledge Technologies DTA Symposium, Aberdeen, Scot-
land, 2006.

[23] Y. Liang, H. Alani, and N. Shadbolt, “Changing ontology breaks the
queries,” in Doctoral Symposium of The 5th International Semantic Web
Conference, ser. LNCS Volume 4273. Athens, GA, U.S.A: Springer-
Verlag, 2006, pp. 982–985.

[24] A. C. Yu and J. J. Cimino, “A comparison of two methods for
retrieving icd-9-cm data: The effect of using an ontology-based method
for handling terminology changes,” Journal of Biomedical Informatics,
vol. 44, pp. 289–298, 2011.

[25] H. Gu, J. Geller, L.-m. Liu, and M. Halper, “Using a similarity mea-
surement to partition a vocabulary of medical concepts,” in Proceedings
of the 10th International Conference on Database and Expert Systems
Applications (DEXA ’99). London, UK: Springer-Verlag, 1999, pp.
712–723.

[26] H. Leslie and S. Heard, “Archetypes 101,” in HIC 2006, J. Westbrook
and J. Callen, Eds. Sydney: Health Informatics Society of Australia
Ltd (HISA), 2006.

[27] A. K. Sari, W. Rahayu, and M. Bhatt, “Archetype sub-ontology: Im-
proving constraint-based clinical knowledge model in electronic health
records,” Knowledge Based Systems, vol. 26, pp. 75–85, February 2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 6, No. 2, 2015

305 | P a g e
www.ijacsa.thesai.org

