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Abstract—This paper presents a Gibbs measure 

approximation method through the adjustment of the associated 

estimated potential. We use the information criterion to prove 

the accuracy of this approach and the bootstrap computation 

method to determine the explicit form. The Gibbs sampler is the 

tool of our simulations while taking advantage of the use of the 

only one MCMC inside of the multiple necessary MCMC in the 

classical approximation. We focus on the validity of our 

approach for the Gibbs measure of a Markov Random Field with 

an interaction potential function and the associated uniqueness 

condition. Some theoretical and numerical results are given. 
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I. INTRODUCTION 

It is well known that in computer vision, one of the first 
aims is to determine, for generic prior Gibbs model, the 
correct form of the potential function. Certainly, this later will 
be better if the parametric estimation is good enough [5], but 
this requires both ideal conditions and expensive costs. 
Furthermore, the Gibbs Random Fields have become an 
efficient instrument in image analysis. So, the associated 
statistical inference has attracted a great deal of interest, 
because of its great adequacy in important applications related 
to image processing, computer vision, neural modeling and 
perceptual inference. Nevertheless, to estimate the true 
parameter for the Gibbs model required a high cost in terms of 
computation time and modeling conditions. For example, the 
use of the maximum likelihood estimation (MLE) was 
impossible to be calculated and was substituted by the pseudo-
likelihood estimation [5] [18]. Fortunately, the intense 
developments in statistics accompanied by the evolution in 
computer systems allowed maximum likelihood estimation for 
Gibbs Random Fields to be constructed. For this, we propose 
the use of the resampling method [3] through Markov Chain 
Monte Carlo (MCMC). The bootstrap computation method 
and MCMC with Gibbs sampler is used to retrieve ever more 
the desired potential function for the parameter Gibbs 
distribution. 

Some technical changes make use of one MCMC instead 
of two chains, which is very promising to reduce the 
computational time. We prove that the KL-distance is 
minimized for the adjusted potential function. Moreover, the 
adjustment method proposed in this paper keeps the features 
of prior potential function for the associated Gibbs measure. 

This paper is organized as follows. In section 2, we present 
the necessary context of the Gibbs models that describes the 
validity of the proposed approximation. In section 3, we 
present the steps of the approximation proposed in this paper 
in particular the study of the information criterion for a Gibbs 
model from what we inspire the proper form of the adjusted 
potential and prove the accuracy of the associated 
approximation even though by the use of one MCMC . In 
section 4, we present some numerical results to explain the 
feasibility of the usefulness of the approximated expressions. 

II. THE THEORITICAL APPROACH OF A GIBBS RANDOM 

FIELD WITH POTENTIAL INTERACTION FUNCTION 

Before presenting the adjustment method for a parametric 
potential interaction function of a Gibbs distribution, it is 
necessary to review the concepts and results related to the 
Gibbs measure, which will clarify the necessity and 
importance of using the bootstrap approach and techniques 
that we introduce in this context. 

A. Click and neighborhood system 

It is quite obvious that a digital image is modeled by a 
matrix   of data on a network          instead of a linear 
data base. The shape of such model is a Random Field 
  (      ) instead of an ARMA model for example. 

In the network   , a system of neighborhood    
*      +  is defined as follows: 

                 
                         

   is a set of neighboring elements of   . So, a part   of    is 
called a click with respect to   if: 

   is reduced to a single site  

 or it contains at least two elements and each pair (s, t) of 

elements is formed of neighboring sites (with regard to 

 ). 
The boundary of a non-empty subset   of the network S is 

a subset    defined as: 

for         there exists an element     such that,       
Given a distance   on S, the neighborhood      of a site 

  with respect to a finite-range    is: 

   *    * +  (   )   + 
So, the boundary of a subset   of length   is, 

             *                      (   )   +    
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B. Random field on a nethwork 

We consider a random field   (      ) defined on a   
network     .   takes its values in the set of configurations 

   ( )     
  is the set of the different levels of a pixel s. The first way 

to define a probability measure of the random field   on   is 
to give a Kolmogorov projective family of marginal 
distribution on finite subsets V of S. Nevertheless, the right 
way is to define a kernel family of conditional probabilities 
[11], which is more appropriate in case of image processing 
and analysis. In other words, given a probability measure   
on  , the conditional probability kernel on a subset V of S is 
defined as follows: 

  (   )    (   )   ( )         ,   - 
                                                  (     )         (   )         (1) 

with, 

                              (   )     (   ⁄ )                            (2) 
is the conditional expectation on the Borel space  ( ) given a 
configuration   on the outside (   ) of V, such that for all 
     and    ( ) , we have almost surely:                                             
  ,  (   (   ))⁄  (    )-  ⁄   (   (   

 ))⁄    (3) 

This can be written as the following:   

                   ∫  (   )  
 
(    )     

 
(   )                (4) 

  almost surely for all      (    ). It is expressed as 
an operation      between two kernels   and  :                                                                                                

                         (   )  ∫ (   ) (    )                   (5) 

Using the operation      above, we give the definition of 
a specification below.   ( ) denotes the set of finite subsets 
of the network S. 

Definition 1.1  

A specification is a family (  )    ( ) of probability 

kernels satisfying: 

a) For     ( ) and    ( )    (      ) is a random 

variable  (   )-measurable. 

b) For all     ( )      (      )       if    (   ). 

c) For all   and        ( )     
 
         

 
. 

Then, it follows that for a Markov Random Field given a 
Gibbs measure  , the associated specification can be written as 
(Dobrushin-Lanford-Ruelle–equation): 

for       ( )     
                              (      )    (   ⁄ (   ))              (6) 

The sufficient condition of the existence of a Gibbs 
measure given a specification can be written as: 

        ( ) and    ( ), 
                           

       | 
 ( (   )   )    ( (   )   )|

    
→          (7) 

 (   ) and   (   ) are the restriction configurations to 
(   )  and     respectively. It should be noted that the 
condition (7) is true for a Markov Random Field with finite-
range potential. 

C. The interaction potential function of a GibbsRandom field 

For a Markov Random field, the associated Gibbs measure     
“ ” is defined via the specification like: 

    (     )  ∫
 

  ( )
   ,   (   )- 

   ( )                (8) 

for all      ( )         (   ). Then “ ” is a positive 
measure defined on    and   (   )  is the energy function 
given by the potential (  )    ( ) such that, for    ( ) and  

   (   ): 
                        (   )  ∑    (   )                          (9) 

(   ) is the concatenation of the configuration   on D with 
boundary condition    on (S-D). We can recall the different 
results in this context; however, we are interested in conditions 
of existence and uniqueness of the Gibbs measure given a 
potential function specification. It is used in measuring the 
accuracy of parametric model estimation for a Markov random 
field. Because of this, it is introducing a quantity, for a given 
site   on S private the origin o: 

             
 

 
‖  (   )    (    )‖                            (10) 

The sup is taken over all configurations   and    on 
  * + identical everywhere except on s, and ‖ ‖ denotes the 
total variation norm of a measure    defined by: 

‖ ‖     *| ( )|  ‖ ‖   + 
The quantity    measures the maximum influence of the 

modality at the site s on the conditional distribution at the 
origin network of S.  So, the uniqueness condition of a Gibbs 
measure [11]  is of the form: 

                              ∑                                             (11) 
This is rewritten in [7] for a specification with a potential 

invariant under translation as well;     ,   , such that, 

                ∑ (| |   )‖  ‖       ( )                     (12) 

The expression (12) is more significant and useful than 
(11). 

D. Markov Chain Monte Carlo and paremeter estimation for 

Gibbs distribution 

We can find some papers that dealt with the maximum 
likelihood estimation for a Gibbs Random Field [5] [19]. The 
main problem in this topic is essentially the large computation 
time for a complete determination of the MLE based on 
maximizing: 

           
 (    )      (   (      ))  ( )                    (13) 

for an observed configuration    of the Gibbs Random 
Field   on a subset      ( ) , where    is a boundary 
configuration outside D. the expression (13) is the parametric 
version of (8) with respect to the parametric potential 
(  (   ))    ( ). The normalization constant is: 

 ( )  ∑     (   (     ))

   ( )

 

Recently the construction of the MLE is allowed due to 
computational system evolution. It is to solve the derivative 
equation: 

                            (   (   )     (    )        (14)  

http://en.wikipedia.org/w/index.php?title=Dobrushin-Lanford-Ruelle&action=edit&redlink=1
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   represents the gradient operator of partial derivative 
with respect to the parameter coordinates        where   

  1. The solution   ̂ (i.e. the MLE) of (14) in   is 
approximated by the limit of a stochastic sequence through a 

dynamic markovian algorithm using a MCMC (    )      via 

a Gibbs sampler controlled by the     term of the sequence: 

             ( ̂  (   (    )     (     ))         (15) 

where,  

 ̂  (   (    )  ∑   (    
   )

 

   

   

And it is allowed under the Gibbs sampler ergodic 
property. 

III. ADJUSTMENT OF THE INTERACTION POTENTIEL 

FUNCTIION OF A GIBBS MEASURE 

In this section, we to introduce the bootstrap methodology 
[4], as an adjustment tool for the parametric energy 

function    ( ̂    ) , given in (13), to obtain a more 
appropriate Gibbs measure compared to that associated with 
the estimated potential. This is proved using the information 
criterion. 

A. Information Criterion and Variational Principle of Gibbs 

Random fields 

In the framework of the modeling of a random field on a 
regular network, it is proved that the variational principle [21], 
i.e. the decision to assign a Gibbs measure     of a random 
field   when the true one is    , can be expressed in terms of 
an information criterion  (   ), and this vanishes if and only 
if    . The same result is given [8] in the restricted case; the 
information criterion  (   ) vanishes if and only if         
have the same interaction potential. 

For this reason it is obvious that the true Gibbs measure is 
not necessarily to be associated with the estimated 

potential (  ( ̂  ))    ( ) ; the fact that the maximum 

likelihood estimator for the Gibbs fields is substantially biased 
[19], which is the same case for the pseudo likelihood 
estimator [5]. So, the following adjustment of the estimated 
potential proposed in this paper has a considerable magnitude 
to dig up the accurate specification of the parametric Gibbs 
measure. 

Doing this, we consider firstly the kullback-Leibler 
function applied to the parametric Gibbs measure    and to 
another any Gibbs measure  , 

 (    )     
 
     (    ) 

Where, 

  (    )  {
  *    [

     

   
]+              

                                      

        (16) 

The symbol “     means that    is absolutely continuous 

with respect to   .  
     

   
  is the Radon–Nikodym derivative of 

the two restricted measures on the finite subset   of the 
lattice  . The specific information of    with respect to   is:  

                (    )         
 

| |
  (    )                (17) 

We recall that if    is the Gibbs measure of the 

specification  (  )    ( ) then,  (    )    if and only if   

has the same specification  (  )    ( ) . It means that for a 

specification with a finite-range interaction potential, 
 (    )    if and only if    and   have the same interaction 
potential. 

B. Adjustement of the Gibbs measure potential 

For a parametric Gibbs model, we note the following 
condition: 

                 (  )   (  )                             (18) 
It means that two different values of   give two different 

Gibbs measures. So, under this condition [18] we have the 
following result: 

          
 

| |
   [

   
 ( )

  
 ( )

]    (      )    (    )  (19) 

which exists almost surely, where    is the true value of 
the parametric Gibbs model for a Markov Random Field    
observed through an image   on the finite subset  . So, 

            (    )                                            (20) 
Furthermore, if    is a compact space of    , there exists a 

constant       , such that, for all   and    in  : 

     
 

| |
|   [   

 ( )]     [   
 ( )]|    |     |        (21) 

In practice, the observation window D is quite low with 
respect to the lattice S, in addition, the MLE has significant 

bias. So, the estimated value     ̂ is not so satisfying, but 
from (19) we can note for an estimation   of   : 

             [
   
 ( )

   
 ( )

]    | |   (     )                         (22) 

Also, from (9) and (13) we have:  

   
 ( )   

   , ∑   (    )     -

  (  )
    , | |   (     )-    (23) 

Then, this logical approximation induces the adjusted 
potential given an estimation    of the unknown true value of 
the parameter Gibbs model as follows: 

 ̃ ( )  ,
  (    )  

| |

|  |
   (     )        ( )   

                                                             
    (24)  

where   denote the finite-range of the potential (  )  and 
   *    ( )                ( )   + .So, it is 

easy to verify that ( ̌ )  is an interaction potential. This 
potential verifies the condition of Dobrushin’s theorem for the 
uniqueness of Gibbs measure (12) as well as the estimated 
potential (  (    )) . Indeed, from (21) and (24) we can write 
the following inequality for all     ( ): 

      ‖ ̃ ‖  
‖  (    )‖  

| |

|  |
  ‖     ‖ ,           (25) 

On the other hand, for a site s   , we have: 

∑(| |   )‖ ̃ ‖       

     

∑(| |   )
| |

|  |
‖     ‖  

     

 

Also, 

http://en.wikipedia.org/wiki/Absolutely_continuous
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∑(| |   )‖ ̃ ‖        

     

(    )
| |

|  |
| * +| ‖     ‖  

 It follows that the adjusted potential ( ̌ )  satisfies 
uniqueness condition if: 

‖     ‖  (   )
|  |

| | | * +|
,  (    )-      

Note that for    , the above result is trivial; otherwise, 
from the consistency of the Maximum Likelihood Estimator 
we can obtain for a sufficiently large window   ‖     ‖  
 . 

C. The Approximated Gibbs Measure 

We note by   ̃the Gibbs measure associated to the adjusted 

potential ( ̌ ) . The initial parametric Markov random field   
has almost surly the same previous potential. In fact, the 
specification information in (17) is minimized by construction 
as in (22). Then, if we note ( ̃ )  the specification associated 

to  ( ̌ )  in the sense of (8) and (9), we have exactly: 

   
 
     (     ̃)    

What implies that, under the uniqueness condition, the two 

Gibbs measures    and  ̃ are the same. In the case of the non- 

uniqueness,    and  ̃   have at least the same interaction 

potential function. 

D. Bootstrap Approximation of Gibbs measure 

It is clear that the approximation Gibbs measure depends 
on the unknown value    of the parameter Gibbs model. So, 
we propose the use of the Bootstrap methodology [3], which is 
successfully developed in different areas of applied statistic. It 
is to estimate the quantity   (     )  in (24) by    (     

 ), 
which is completely determined given the same initial 
observed realization   of the Markov Random Field  . The 
value    

  is the bootstrap estimation of the unknown value 
   given the same initial observed configuration    of    .  
because of this, we introduce the Bootstrap approximation of 

the adjusted interaction potential ( ̌ )  as follow: 

 ̃  ( )  ,
  (    )  

| |

|  |
   (     

 )        ( )   

                                                             
    (26) 

And we use the ergodic approximation of the MCMC 

(  )   with invariant distribution   for the expected quantity 

as: 

 ̂ ( )  
 

 
∑   

 

   
 

However, to obtain an approximation of the quantity 
  (     

 ) in (26), we need more than two MCMC, due to the 
fact that we have as in (16) and (17): 

           | |   (     
 )     *    (

   
 ( )

    
 ( )

)+                   (27) 

 
 what requires a important computational time. 

Fortunately, we can write easily the following expression: 

                   
  (  )

  (  
 )
     ,   (   )-                             (28) 

Where, 

                     ( )    (  
   )    (    )    

Also,  

        *    (
   
 ( )

    
 ( )

)+       *
   
 ( )

    
 ( )

     (
   
 ( )

    
 ( )

)+      (29) 

  The right value in (27) may be finally written as the 
following expression:   

   *    (
   
 ( )

    
 ( )

)+   
    *(   )    ,   -+

    ,   (   )-
    {    ,   (   )-} 

Thus, we get the following approximation of the 
adjustment term in (24): 

  | | ̃ (     
 )   ∑  ( )   (  ) 

       [
 

 
∑    (  (  )) 
   ]      (30) 

The  ( ) coefficient is determined by: 

                             ( )  
    (  (  ))

∑     (  (  )) 
   

                               (31) 

Using an unique MCMC (  )        simulated by the 

Gibbs sampler under the invariant measure     . 

IV. SIMULATION EXAMPLES 

To implement our approximation we consider an 
interaction potential function for a parametric Gibbs model 
with a finite-rang     and has an invariant interaction 
coefficient in a click with regard to a system of 
neighborhood   .  So, the model parameter   is in     . 
Firstly we expose the simulated MCMC for this mode in 
different stats, followed by a numerical computation of the 
adjusted term. Finally we examine graphically the main 

property of the approximated quantity  ̃ (     ). 

a) MCMC silmulation example : 

From this Gibbs model and for a numeric value of   , we 
put up different configurations generated by the Gibbs 
sampler. We obtain the different stats at the given moments 
(Fig.1.). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Simulated stats of MCMC for a finite-range interaction potential 
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           Image, N=40 

 
 

 

 

 

 

 

 

 

 

 

 

 
       Image, N=100 

 
        Image, N=150 

 
         Image, N=300 
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b) Example of the approximation function  ̃ (     
 ): 

For the same Gibbs model above, we calculate the 

approximation function   ̃ (     )  for two various 
values         , to examine the evolution of this function with 
regard to the difference between         , using the MCMC 
simulated until different two states(N=600 and N=1000). The 
case indicated by NA means that the denominator of  ( ) in 
(31) becomes a very high number. 

TABLE I.  THE VALUE OF  ̃ (     ) FOR DIFFERENT VALUES OF            

Value of     Value of     |       | N=600 N=1000 

-10 -9 1 0.0139 0.0116 

-2 -1.5 0.5 0.0077 0.0102 

-1 -0.23 0.77 0.0112 0.0086 

-0.1 -0.002 0.098 0.0039 0.0038 

-0.3 0 0.3 0.0054 0.008 

0 0.5 0.5 0.0104 0.0106 

0.1 0.9 0.8 0.0166 0.0098 

0.3 1 0.7 0.0117 0.0110 

1 2 1 0.0162 0.0133 

2 3 1 0.0125 0.0106 

10 11 1 0.0120 0.0154 

10 12 2 0.01704 0.01593 

10 15 5 NA NA 

This gives the shape of the two graphs of this function as 
follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The variation of the approximated function based on the difference 

between          ; the dotted-line curve for N=600 stats of the MCMCm and 

the continuous-line curve for N=1000 

We can notice that the approximate function keeps the 
theoretical properties of the initial function, such as 

 ̃ (     )     if        

The main advantage of this approximation is in its easy use 
while keeping its strong properties as information criterion 
and adjusted term for the estimated potential. This assures the 
validity of the approximation of the Gibbs measure given 
above. 
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