
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

88 | P a g e

www.ijacsa.thesai.org

An Approach to Extend WSDL-Based Data Types

Specification to Enhance Web Services

Understandability

Fuad Alshraiedeh

Computer Science Department

Philadelphia University

Amman- Jordan

Samer Hanna

Software Engineering Department

Philadelphia University

Amman- Jordan

Raed Alazaidah

Computer Science Department

Philadelphia University

Amman- Jordan

Abstract—Web Services are important for integrating

distributed heterogeneous applications. One of the problems that

facing Web Services is the difficulty for a service provider to

represent the datatype of the parameters of the operations

provided by a Web service inside Web Service Description

Language (WSDL). This problem will make it difficult for service

requester to understand, reverse engineering, and also to decide

if Web service is applicable to the required task of their

application or not. This paper introduces an approach to extend

Web service datatypes specifications inside WSDL in order to

solve the aforementioned challenges. This approach is based on

adding more description to the provided operations parameters

datatypes and also simplified the WSDL document in new

enrichment XML-Schema. The main contributions of this paper

are:

1. Comprehensive study of 33 datatypes in C# language, and

how they are represented inside WSDL document.

2. Classification of the previous mentioned datatypes into 3

categories: (Clear, Indistinguishable, and Unclear) datatypes.

3. Enhance the representation of 18% of C# datatypes that

are not supported by XML by producing a new simple

enrichment XML-based schema.

4. Enhance Web Service Understandability by simplifying

WSDL document through producing summarized new simple

enrichment schema.

Keywords—Datatypes; Understandability; Web Service

I. INTRODUCTION: WHAT ARE WEB SERVICES?

A review of the various studies showed that a large
number of definitions for Web Service have been proposed.
For example [1] defined the Web Service as software
components that allow access to functionality via a Web
interface network. Additionally, [2] and [3] defined it as a
software system designed to support machine-to-machine
interaction over a network. These brief definitions detail a new
breed of Web applications with self-contained, self-describing,
modular applications that can be published, located, and
invoked across the Web. According to this paper, Web
Services are defined as a collection of applications (interface
application) or a collection of systems (endpoints) interacting
with each other by exchanging data and information over

networks. Each service has its self-located, self-describing and
also self-operational properties. If one of these endpoints is to
provide service over network (Internet or intranet), then the
provider must publish a full and detailed explanation for this
service. This detailed explanation is called Web Service
Description Language (WSDL) [1][4]. WSDL makes it easier
for other endpoints which share the same network to know
more about the provided service, and then to decide if this
service is applicable for their needs or not

However, Web Service faces numerous challenges and
problems, including, but not limited to the following [5]:

a) The trustworthiness problem: The Service Requester

can only see the contract (WSDL) of a Web Service but not the

source code. This fact has caused Service Requesters to

question the trustworthiness of Web Service because Service

Requesters do not trust Web Services that were implemented

by others without seeing the source code. [6] mentioned that

this problem is limiting the growth of Web Service

applications and that these applications will not grow unless

researchers meet this trustworthiness challenge. [7] stated

that the current methods and technologies cannot ensure Web

Service trustworthiness and that for Web Services to grow,

researchers must address this challenge.

b) Vulnerability to invalid inputs by malicious Service

Requesters: Since Web Services are advertised in the Internet,

any Service Requester can access this Web Service and some

of these might be malicious Requesters that aim to do harm.

The Web Input manipulation vulnerability is 59.16% of the

overall Web Services vulnerabilities[8] and that is why Web

Services should be tested against this kind of fault to assess if

a Web service is vulnerable to input manipulation attacks in

order to increase Web service trustworthiness. [9] mentioned

that testing that a program does what it is supposed to do is

only half the battle, the other half is to test whether the

program does what is not supposed to do. In other words, to

check if a program is vulnerable to invalid input.

In this paper, we have investigated the problem of the Web
Services understanding, and how to distinguish between the
input/output parameters datatypes for the Web Service
operations. The result of our research is a tool and its
algorithm for extending the XML-Schema to represent the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

89 | P a g e

www.ijacsa.thesai.org

Web Services operations parameters datatypes to reach better
comprehension for the Web Service functionality. Unlike
previous approaches, which give a semantic for Web Services
during its WSDL documents, ignoring uncertainty of
operations parameters datatypes declarations, our proposed
approach can analyze all the operations of the Web Service
and then classify the input/output parameters that operations
need.

Section two discuses related work of web service
understandability. In section three we propose the model while
in section four brief discussion about the proposed tool. The
last section introduces the conclusion and future work.

II. RELATED WORK: WEB SERVICE UNDERSTANDABILITY

As it is well known Web Services include a large number
of research fields, many studies and researches have been
published in the Web Service area. For example, if we take a
sample of these studies, we note that some of the researches
focused attention on how to build a Web Service. Other
researchers proposed approaches for specifying semantic Web
Services composition using UML (Unified Modeling
Language) profile [10][11]. Other researchers recommend a
model-driven process for web services development [8], and
there are many others.

A. Overview

Many recent studies have been published in the field of
Web Service. The goal of these studies is to facilitate and
increase the communication among the distributed systems,
and also use Web Service reverse engineering to facilitate the
reuse and composition of the Web Services [12], to ultimately
facilitate the exchange of information over the networks. In
order to facilitate the understandability of the Web Services
functionality and what these Services are offering to its
requester [11] a way must be found to facilitate the description
of Web Services.

While reviewing several previous studies concerning the
field of Web Services, obviously it was necessary for all
researchers to mention several main concepts, such as XML,
UML, SOAP, XSD and also WSDL [13], which in turn are
used to perform selections, descriptions, discovery,
composition, and interaction with the Web Services [14]. All
researches attempted to built a bridge between the Web
Services providers and Web Services requesters to reach better
comprehension for Web Service functionality from the Web
Service requester to increase the exchangeability of
information between heterogeneous applications.

The related research to this paper is about representing the
information inside WSDL in a more understandable form.

In this paper, we classify the related Web Service
understandability into several aspects and we also give a brief
overview for each research and the limitations for each
research which we will try to solve in this paper.

B. Reverse Engineering Approach for Semantic Web Services

Composition

Reference [12] presented an approach to facilitate and
raise the degree of automation for Composition of Web

Services. The approach used UML-Model to give graphical
description for the Composition Web Services, The proposed
approach summarized in three steps of Web Services
Composition:

1) Using RE methodology to turn the selected Web

Services WSDL documents to one or more UML-Model

depending on the number of selected services.

2) Integrating these models into one UML-Model which

implements all integrated UMLs using one of the UML-tools.

3) In step 2 a new Web Service is created (Composition

Web Service) and by using one of the UML-tool a new

description for this Web Service is created which called OWL

(Web Ontology Language).
Here we can criticize this work in simple terms. The final

description OWL is dependent on UML-Models. These
models are created using different tools and also may
implement heterogeneous applications. Suppose one or more
of these applications is used by one of the Datatypes not
implemented clearly in WSDL, such as char, array, array of
objects. Here, the model which implements the Web Service
before composition will have ambiguity, but after it composes
with others, inevitably the ambiguity will increase, so that this
approach is good and will work properly if all of the datatypes
of Web Services parameters are represented clearly. If one or
more parameters are represented ambiguously, surely it will
face missed understanding for Web Services requesters and
developers. Our proposed approach seeks to overcome these
challenges and also to reach batter comprehension for Web
Service functionality.

C. Model-Driven Web Service Development

In this field [15] has been proposed another way to give
more comprehension for the Web Service description to make
it easy for a requester to decide if the selected Web Service is
applicable for his requirement or not.

The proposed approach summarized in three steps of
Model-Driven Web Service Development which divided into
following steps:

1) The WSDL are converted to graphical modeling

language (UML).

2) Integrate with other UMLs for a composition Web

Service.

3) A new Web Service descriptions are exported.
This approach is not different from the previous one but it

added a Pure UML modeling strategy supported by
implementation of two-way conversion rules from WSDL to
UML and also from UML to WSDL documents. But this rule
does not avoid the issues and problems which we are trying to
solve, so the same challenges of understandability are still
present.

D. Reverse Engineering Existing Web Service Applications

One of other approaches which proposed to deal with Web
Services description is MIDAS-CASE. It aimed to extend the
UML language to support the modeling of the Web Services
description, and then automatic generation of the WSDL
document for concerned Web Service [16].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

90 | P a g e

www.ijacsa.thesai.org

As we illustrated before, a WSDL file is an independent
XML-based standard which is proposed by W3C to represent
the Web Services functionality [16]. One of the other
properties for WSDL is that it is XML-based version of
Interface Definition Language (IDL), so MIDAS-CASE is one
of the framework methodologies that aimed to facilitate the
development of Web Service Information System depending
on Model Driven Architecture (MDA). MDA has three
dimensions: CIM (Computation Independent Model), PIM
(CIM Platform Independent Model), and finally PSM
(Platform Specific Model), [16] used in his approach.

This approach is divided into three steps:

1) The client defines extended UML model which is then

stored as XML-based.

2) Reference [16] defined an XML-Schema to describe

Meta-Model for extended UML which was introduced in step

one, and then WSDL document is automatic generated using

one of the existing tools.

3) The XML document now becomes an instance of the

XML-Schema. The XML document is not valid according to

the XML-Schema, thus we conclude that the model is not

valid, since the model does not carry out the meta model.
This MIDAS-CASE web service architecture is one of the

most important approaches[17] used for a Web Service
development, but as shown it doesn’t deal with WSDL
document which are automatically generated and also built
according for extended UML model. UML models introduced
and extended are vulnerable for the risks and challenges
previously mentioned and never get clear understandability for
Web Services functionality.

III. THE PROPOSED MODEL: EXTENDING THE XML-

SCHEMA DATATYPES SPECIFICATION TO REACH BETTER

COMPREHENSION OF THE WSDL

Based on the previous review of Web Service
understanding we noted that no approach attempted to solve
the inconsistency and ambiguity in defining the Web Service
operations parameters datatypes.

1) Datatypes Description
The previous approaches solved the problems of the Web

Services understanding, reusing and comprehension by using
UML to give graphical definitions for Web Services and its
functionality. These approaches have several advantages such
as :

a) The graphical implementation gives a full summary

for the Web Service functionality but with few details.

b) The graphical implementation is easier to understand

than textual implementation (WSDL document).

c) Can be easily understood even by non-specialists in

Web services.

However the graphical implementation ignores the most
important part which is the needed data that must be used to
bind with Web Services, on which we are focusing in this
paper. As motioned in chapter two, messages are used to bind
with Web Services by filing an application which published
by the Web Service provider with parameters. Surely these

parameters must clearly appear to the users without ambiguity;
because any error in the filling of these parameters will lead to
Web Service failure which we always seek to ensure does not
happen. Therefore we are proposing an approach based on
extending the XML-Schema to reach better comprehension
and reusing the Web Services functionality, which in turn
leads users to understand all Web Services operations and also
to determine all the parameters datatypes which Web Services
need.The proposed approach is accompanied with a tool in
order to prove the approaches usefulness and compare it with
other approaches. The tool can be auto run when the user tries
to bind with the Web Service. This tool can answer the major
question of this paper, that is: Can we extend the XML
Schema datatypes to reach for a better comprehension of the
WSDL documents by the service requester and provider of
Web Services? Other questions could be inspired from the
previous major question, such as:

a) Do all of the parameters datatypes need to be

extended ?

b) Can the tool distinguish between the parameters

datatypes ?

c) How can we reach better comprehension for the Web

Services ?

Section 3.2 shows the model which this paper proposes to
solves the datatypes description problems, and we used
several datatypes as case studies to illustrate all model steps.
These datatypes can be divided into three categories:

a) Clear Datatypes .

b) Indistinguishable Datatypes .

c) Unclear Datatypes .

Figure 1 shows how the tool deals with these datatypes.

Fig. 1. The datatypes processing

2) The Proposed Model
The proposed model consists of five phases: a) extract the

WSDL document, b) extract datatype specification, c) add
more description and annotation, d) add constraining facets to
the datatypes, and e) extract UML class diagram using any
published tool. Figure 2 shows the general structure of the
proposed model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

91 | P a g e

www.ijacsa.thesai.org

Fig. 2. The proposed model

The input of proposed approach is a WSDL document.
WSDL description document is complex in nature, usually
automatically generated by one of the Web Services
development tools such as .NET, Apache Axis, Java etc.[15].
Each of these tools has its own particular way to define or to
implement the input and output parameters datatypes for each
of the Web Services operations. Here we are attempting to
overcome these differences. The first step addresses the
question of how to extract the WSDL document. WSDL
documents are compulsorily published with Web Service; the
provider cannot publish his own service application until its
description (WSDL) generated, so that any developer or user
wanting to know more about the operations or services then he
can review the provided WSDL document. There are many
ways to extract WSDL document, but here we are looking to
make our proposed tool to run automatically when the Web
Service client, user, and also developer want to bind with the
Web Service and in the final stage give him a clear and simple
description for Web Service input/output parameters
datatypes. The proposed tool extracts the WSDL document
and then extracts the XSD. Then the tool can distinguish
between the input/output parameters datatypes which may
need more description and constraints with which do not need.

First we discuss how different .NET , Java Datatypes are
specified inside WSDL, given that WSDL documents
depends on the XML Schema Data types (XSD) system,
datatype specification produced when using an Axis2 based
tool to build a Web Services is also compared. Suppose we
have a method with byte and char Datatypes parameters, the
question here is: how do these parameters will be
implemented inside WSDL using the aforementioned
platforms?. Next examples will illustrate that.

1- byte Data Type

a) The byte in C# :

TABLE I. BYTE DATA TYPE AND ITS ALIAS (BYTE)

Short Name C# Class Type

Byte Byte Unsigned integer

XSD Equivalence of C# byte :

byte or its alias Byte are equivalent to unsignedByte in
XSD

Example 1

For the following method

byte byteExample(Byte bytepar)

The input and output parameters datatypes of previous
method are specified by XSD inside WSDL as

a. <xs:element type="xs:unsignedByte"

name="bytepar" >.

b. <xs:elementtype="xs:unsignedByte"

name="byteExampleResult">.

b) byte in Java :

TABLE II. BYTE DATA TYPE AND ITS WRAPPER (BYTE)

Name Wrapper Class Type

Byte Byte Signed integer

XSD Equivalence of Java byte

byte or its Wrapper class Byte are equivalent to byte in
XSD.

Example 2

For the following method

 byte byteExample(Byte bytepar)

 The input and output datatypes for above method are
specified by XSD inside WSDL:

a. <xs:element type="xs:byte" name="arg0"

minOccurs="0"/>.

b. <xs:element type="xs:byte" name="return"/>.

c) Axis2 Equivalence of byte

Example 3

For the following method

byte byteExample(Byte bytepar).

The input and output datatypes are specified by XSD
inside WSDL as:

a. <element name="bytePar"type="xsd:byte"/>

b. <element name="byteExampleReturn"

 type="xsd:byte"/>

2- char datatype

a) char in .NET

http://msdn.microsoft.com/en-us/library/system.byte(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/system.byte(v=vs.80).aspx

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

92 | P a g e

www.ijacsa.thesai.org

TABLE III. CHAR DATA TYPE AND ITS ALIAS

XSD Equivalence of .NET char

The WSDL document for the Web Service which used
char or Char alias datatype as request and response operations
is defined as custom datatype (ns : char) where (ns) is a .NET
namespace. char or its alias Char defined inside WSDL as the
following example:

Example 4

For the following method

public char charExample(Char charPar)

The char datatypes are specified by XSD inside WSDL as:

a. <xs:element xmlns:q1="http://schemas.microsoft.co

m/2003/10/Serialization/" minOccurs="0" name="ch

arInput" type="q1:char"/>.

b. <xs:element xmlns:q2="http://schemas.microsoft.co

m/2003/10/Serialization/" minOccurs="0" name="ch

arExampleResult" type="q2:char"/>

b) char in Java

TABLE IV. CHAR DATA TYPE AND ITS ALIAS (BYTE)

Name
Wrapper
Class

Type

char Character A single Unicode character

 XSD Equivalence of Java char

char or its Wrapper class Character are equivalent to
unsignedShort in XSD

Example 5

For the following method

 char charExample(Character charPar)

The char datatypes for previous method are specified by
XSD insideWSDLas:

a. <xs:element name="arg0"type="xs:unsignedShort"min

Occurs="0"/>.

b. <xs:element name="return" type="xs:unsignedShort"/>

Axis2

 For the following method

 char charExample(Character charPar)

 The following warning was generated

The service class "wtp.Datatypes" does not comply with
one or more requirements of the JAX-RPC 1.1 specification,
and may not deploy or function correctly.

The method "charExample" on the service class
"wtp.Datatypes" uses a data type, "char," that is not supported
by the JAX-RPC specification. Instances of the type may not
serialize or deserialize correctly. Loss of data or complete
failure of the Web service may result, and the following
datatype specification was generated inside WSDL.

<element name="charPar" type="xsd:anyType"/>
In this section, we illustrate the implementation differences

between three tools, and we also show how each of these tools
implement byte, char input output parameter datatypes. These
differences create misunderstandings for the Web Services
requesters, clients, users and also developers because these
datatypes are not implemented in the same and formal way as
we have seen in char datatype. But here in our paper we want
to implement our proposed approach on .NET tool as case
study.

3) Constraints Modification
In all of the previous examples we provided an illustration

for parameters datatypes but other aspect will process by our
proposed tool which is the constraints for these parameters, so
in next paragraphs we illustrate this aspect.

We noted in previous figures, WSDL contain the <

xs:element.. minOccurs="0" name ...> part, it contains

minOccur="0" and also in other case may contain maxOccur

=" " .
To illustrate this aspect we discussed some possible case

studies. Figure 3 includes three examples of occurrences of a
specific element.

1. <element name=‖one‖ type=‖string‖ minOccurs=”3”

maxOccurs=”4”/>.

2. <element ref=‖target:one‖ maxOccurs=”10”/>.

3. <element name=‖position‖ ―‖minOccurs=”0”

maxOccurs=”unbounded”/>.

Fig. 3. min/max occurrence cases

In example 1 Figure 3 declares that element <one>
should appear within the instance document a minimum of
three time and a maximum of four times. Example 2 declares
an element using a reference to global <one> declaration with
maximum attribute with 10 time appearance. The last example
specifies the element <position> which may not appear at all
‖minOccurs=”0” and it may also appear for infinite number
of times maxOccurs=”unbounded" . The default value for
each minimum and maximum is 1 time appearance, meaning
if not specified by provider, then the element must be appear
for one time at least. An additional constraint to which the
provider must adhere when specifying min and max
occurrence is that the max value must always be greater than
or equal to the min value.

4) Proposed Tool Environment
The tool solves the understandability problem by the

creation of new XML-Schema called enrichment schema. This
schema, simplified as much as possible, consists of just the
WSDL parts which the requesters need to know what the
concerned Web Service serve. Chapter five consists of the

ShortName .NET Class Type

char Char A single Unicode character

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

93 | P a g e

www.ijacsa.thesai.org

enrichment schema, the enrichment algorithm, interfaces for
how our proposed tool runs, and also a table for 33 data types
with examples for each type and the method to implement
inside WSDL documents and how these data types are
classified by our proposed tool.

5) Datatypes Classifications
In this section we show how the proposed tool can be

distinguished between the datatypes and how it deals with
these differences. In Figure 4 we show three groups for
parameters datatypes; these types are included in three
possible cases.

A. Clear Datatypes :

In this case, the datatypes are implemented in a formal
way and the datatypes are implemented as it is without any
changes, so there is no need for any enrichment. The new
WSDL document generated by our proposed tool (Extended
XML-Schema) will have the same XSD datatypes without any
modification to the original WSDL document. The enrichment
part will have the same implementation for the datatypes with
no changes, as the datatypes are clear and need no annotations.
We will show the enrichment schema in chapter five with
more details. The next example shows how the .NET tool
implements double datatypes as case study and also shows
how the proposed tool deals with this case.

double datatype

1- double in C#

TABLE V. DOUBLE DATA TYPE

XSD Equivalence of C# double

double or its alias Double are equivalent to double in
XSD.

Example 6

For the following method

public double doubleExample(Double doublePar)

This example for double datatype implementation shows
how C# tool implements the double datatype inside WSDL
document:

a. <xs:element minOccurs="0" name="doublePar" ty

pe="xs:double"/>.

b. <xs:element minOccurs="0" name="doubleExampl

eResult" type="xs:double"/>
The proposed tool will firstly extract the WSDL document

and then extract the XSD part, and finally check if the
datatype is clear or not. In this example the tool will skip the
third and forth steps of our proposed model because there is
no need for any annotations or constraints. The parameter
(doublePar) is given its type double without any ambiguity.
The following steps summarize how the tool functions:

Step 1: Extract the WSDL document for the (public double
doubleExample(Double doublePar)) method ,

Step 2: Extract the parameter datatypes XSD as:

a. <xs:element .. type="xs:double"/>(Input

parameter).

b. <xs:element ... type="xs:double"/>(Output

parameter).
In this phase the tool can be distinguished that these

parameters is not needs for more description it is clear and the
requester can know that it is double datatype as it is.

Step 3: No annotation to be added. The enrichment part
will have the same implementation for datatype as it is in
original WSDL document with no annotations.

Step 4: Add constraints that the elements "doublePar" and
"doubleExampleResult" will appear one time or more for both
as :

<enr_min_appear> "1" </enr_min_appear>

<enr_max_appear> "unbounded" </enr_max_appear>

Step 5: The class diagram will not be changed after we run our

proposed tool because the WSDL document has not changed.

We will show how the proposed tool introduced the

enrichment schema and also the enrichment algorithm for the

three classification datatypes in chapter five.

1) Indistinguishable datatypes
 Here other cases of datatypes are discussed. In example 5,

we shows one of the datatypes which is clearly implemented
inside WSDL document, but here we will show other cases of
the datatype (class datatype as a case study).

The proposed tool can distinguish the mismatch defined,
the WSDL document extracting then XSD extracting and then
apply the third and fourth steps by adding more descriptions
(annotations, constraints).

Classes datatype

Classes In C#

This sample of method code shows the implementation for
player member which defined as class with two parameters,
his name and his nickname both of parameters defined as
string datatype.

[DataContract]

 public class Player

 {

 [DataMember] public String Name1 { get; set; }

 [DataMember] public String NickName {get; set;}

 }
The string datatypes are specified by XSD inside WSDL

as:

a. <xs:element minOccurs="0" name="Name1" nillable

="true" type="xs:string"/>

b. <xs:element minOccurs="0" name="NickName" nilla

ble="true" type="xs:string"/>
This example for classes applied to one of the datatypes

that can be distinguished by the proposed tool. The class here

 Short Name .NET Class Type

Double Double Double-precision floating point type

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

94 | P a g e

www.ijacsa.thesai.org

(<xs:element name="Player" nillable="true" type="tns:Player"
/> has two parameters and in other case may have more. Each
of these parameters is defined in a separate line so that the
proposed tool can determine that these parameters belong to
the class datatype. The annotations and constraints will be
added to the new enrichment XML-Schema to give more
description than the original WSDL document.

Now we can show how our proposed tool deals with uint
datatype .

Example

Public uint uintExample(UInt32 uintpar)

The unit datatype is implemented inside WSDL as:

a. <xs:element minOccurs="0" name="uintPar" type="x

s:unsignedInt"/>

b. <xs:element minOccurs="0" name="uintExampleRes

ult" type="xs:unsignedInt"/>

The uint datatypes is implemented inside WSDL as
unsignedint which is a custom declaration for .NET, and it
may be represented using other tool by other way. So this
datatype process by our proposed tool as following.

Step 1: Extract the WSDL document for Web Service.

Step 2:Extract the parameter datatypes XSD as:

a. <xs:element ... type="xs:unsignedInt"/> (Input

parameter).

b. <xs:element .. . type="xs:unsignedInt"/> (Output

parameter).
Step 3: Add annotation for the proposed schema that

provides the correct type for the input parameter " uintPar "
and output parameter "uintExampleResult" is uint type for
both as :

 <enr_type > "uint" </enr_type>
Step 4: Add constraints that the input parameter " uintPar

" and output parameter " uintExampleResult " will appear
zero times or more for both as :

<enr_min_appear> "0" </enr_min_appear>

<enr_max_appear> "unbounded" </enr_max_appear>.
Step 5: Class diagram will be generated during any

published tool depending on the new enrichment WSDL
document.

2) Unclear Datatypes:
 Here is the third classified datatype which cannot be

addressed until back to the Web Service provider itself. The
tool can execute step 1 and step 2 and then checking about the
datatype classification. In the previous two classifications the
tool can address the problem automatically; in unclear
datatypes it stops and asks the Web Service provider about
which datatypes the provider specified for Web Service
operation parameter datatypes.

We discussed this case using Array and List as case study

Array and List Datatype:

Suppose the provider defined the following sample code of
the Web Service

int[] ArrayExample(int[] arrayPar.

The two operations request and response for previous
array of integer declaration are defined inside WSDL as :

a. 0/Serialization/Arrays" minOccurs="0" name="arrayPa

r" nillable="true" type="q3:ArrayOfint"/>

b. 0/Serialization/Arrays" minOccurs="0" name="ArrayE

xampleResult" nillable="true" type="q4:ArrayOfint"/>

On the other hand (list datatype) is defined as:

List<int> ListExample(List<String> listPaList<int>

 The WSDL document declaration for the (list of int) and (list

of string) is shown as:

a. 0/Serialization/Arrays" minOccurs="0" name="listPa

r" nillable="true" type="q5:ArrayOfstring"/>

b. /Serialization/Arrays" minOccurs="0" name="ListEx

ampleResult" nillable="true" type="q6:ArrayOfint"/
Both of list and array are defined as the same way

(ArrayOfint, ArrayOfstring), both of them are defined as array
datatype. The question here is how may the user understand
which type of data the operation needs, and how can the user
distinguish between the array datatype and list datatype? So
that the proposed model can answer these questions by
referring to the service provider itself to determine the specific
datatype, and then presenting it for a requester in a simple and
clear way, the proposed tool functions for this case as follows:

Step 1: Extract the WSDL document for Web Service.

Step 2: Extract the parameters datatypes XSD as:

a. <Serialization/Arrays... "q5:ArrayOfstring"/>

b. <Serialization/Arrays... q6:ArrayOfint "/>
Step 3: Here the tool will back to Web Service provider by

sending to him an message as interface, asking him to select
from a datatypes list which datatype he given for the operation
which written its name in the interface. After the provider
select the parameter datatype then the tool can add the selected
parameter datatype to the enrichment schema.

Step4: Add constraints that provide how many times the
input and output parameters will appear as we presented
before:

a. <enr_min_appear> " " </enr_min_appear>

b. <enr_max_appear> " " </enr_max_appear>.

Step 5: The new class diagram for enrichment schema will

created the simplest and clearest way.

IV. TOOL ENVIRONMENT

1) Enrichment Algorithm
The tool runs automatically when a requester wants to bind

with a Web Service doing its process. Finally a new
enrichment WSDL document attached, and the requester can
examine it.

This tool executes its functionality during the proposed
enrichment algorithm, shown in Figure 4.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

95 | P a g e

www.ijacsa.thesai.org

enr_type_algo

{

 Input_xsd

If type = (int, short, long, float, double, Boolean, decimal,

string, timezone) then enr_schema(name, type, type)

elseif type = (ns*:type, datetime, anytype) then enr_schema

OperationName(Prname, type, provided_type)

elseif enr_schema OperationName(ParName, type,

enr_type_func)

}

* ns : Custom Datatype

Fig. 4. The proposed enrichment algorithm

This algorithm has three if statements. The first one which
is the best case of the proposed algorithm gives its output
enrichment WSDL document without any function call or
communications needs ,while the second if statement needs to
call a function (provided_type_func).

This function returns back to the Web service provider to
get the parameter datatype needed for the specific operation
and this could be a small drawback of the proposed algorithm
since it needs some communications with the providers and it
may cause to increase the runtime of the proposed algorithm.
This function structure is shown in Figure 5.

function provided_type_func(string)

 {

 if type = undefined* then

 messagbox contains

 { ―Please select datatype the parameter datatype‖

{

 Listofdatatypes

 {RadioButton}

 {SubmitButton}

* unclear datatype}

Fig. 5. Provided Datatype Function

The last function which appears in Figure 6 is
(enr_type_func). By this function the proposed tool can
determine which datatype the provider selected for the specific
parameter, as shown in Figure 6.

function enr_type_func(string)

 {

 enr_type, type string;

 If type = "unsignedbyte" then enr_type = "byte";

 If type = "byte" then enr_type = "sbyte";

 If type = "unsignedint" then enr_type = "uint";

 If type = "unsignedshort" then enr_type = "ushort";

 If type = "unsignedlong" then enr_type = "ulong";

}

Fig. 6. Enrichment Datatype Function

As result for the propped algorithm we get a new WSDL
schema called (Enrichment Schema), shown in Figure 7.

enr_schema OperationName(ParName, type, enr_type){

<operation OperationName = "n1">

 <input ParName= "n2">

 <type> type </type>

 <enr_type> enr_type </enr_type>

 <min_enr_appearance> min </min_enr_appearance>

 <max_enr_appearance> max </max_enr_appearance>

 </input>

 <output OperationNameResponse = "n3">

 <type> type </type>

 <enr_type> enr_type </enr_type>

 </output>

</operation> }

Fig. 7. Enrichment Schema

2) Visual Implementation for The Proposed Tool (

WSDL_ET)
In this section we present our proposed tool as visual

interfaces screens. We operated the tool as a case
implementation for the three datatypes classifications; the
output for our tool is a new enrichment XML_Schema with
more simplification.The parameters datatypes is classified in
three groups:

a) Clear Datatypes : The parameters datatypes are clear

and need no modifications. The datatypes appear in the

proposed enrichment schema as in the original WSDL

document but with more simplification. The parameters

datatypes are implemented inside WSDL as:

a. <s:element minOccurs="0" maxOccurs="1" name="

stringParam" type="s:string"/>

b. <s:element minOccurs="0" maxOccurs="1" name="

ClearWebServiceResult" type="s:string"/>
the element StringParam has a clear string type

represented in a formal way, so, no modifications are needed.
The enrichment schema for this StringParam is show in
Figure 8 but with more simplifications.

enr_schema_ClearWebService (―stringParam‖, string, string)

{

 <operation OperationName="ClearWebService">

 <input ParName = "stringParam">

 <type>string</type>

 <enr_type>string</enr_type>

 <min_enr_appearance> 0

</min_enr_appearance>

 <max_enr_appearance>

1</max_enr_appearance>

 </input>

 <output OperationNameResponse=

"ClearWebServiceResponse">

 <type>string</type>

 <enr_type>string</enr_type>

 </output>

 </operation>

 }

Fig. 8. Enrichment schema for (ClearWebService)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

96 | P a g e

www.ijacsa.thesai.org

The enrichment schema in Figure 8 consists of three parts,
the operation name and its parameters names and also each
parameters datatypes with its constraints. These parts help the
requester to know what does the Web Service serve, and also
what are the parameters datatypes needed.

b) Indistinguishable Datatypes:

In this case of datatypes, the parameters datatypes is
implemented using a custom datatypes (ns : where ns is .NET
namespace) which is not a formal representation for the
datatypes. WSDL document for (IndistinguishableWebService) is
implemented inside WSDL as

a. <s:element minOccurs="0" maxOccurs="1" name="b

yteParam" type="s:unsignedByte"/>

b. <s:element minOccurs="0" maxOccurs="1" name="I

ndistinguishableWebServiceResult" type="s:

unsignedByte "/>

the element ByteParam have a unsignedbyte type which is
represented using .NET namespace and that representation is
not a formal way. Additionally the Web Service provider has
not selected these types, so that these parameters datatypes are
needed to represent in a formal and simple representation. The
proposed tool is run and converts all these .NET namespace
datatypes and presents them in enrichment schema. The
enrichment schema for this ByteParam is shown in Figure 9
with more specification and more simplifications.

enr_schema_IndistinguishableWebService (―byteParam‖,

unsignedByte, Byte){

<operation>

OperationName="IndistinguishableWebService">

 <input> ParName = "byteParam">

 <type>unsignedByte</type>

 <enr_type>Byte</enr_type>

 <min_enr_appearance>1</min_enr_appearance>

 <max_enr_appearance> 1

</max_enr_appearance> </input>

 <output OperationNameResponse=

"IndistinguishableWebServiceResponse">

 <type>unsignedByte</type>

 <enr_type>Byte</enr_type> </output>

 </operation> }

Fig. 9. Enrichment schema for (IndistinguishableWebService)

c) Unclear Datatypes:

This is the last classification of parameters datatypes. In
this case the tool sends an interface application to Web
Service provider to determine the selected datatypes, because
the tool cannot guess which datatypes the provider selected for
the specific parameters. WSDL document for
(IndistinguishableWebService) is implemented inside WSDL
as:

a. <s:sequence><s:element minOccurs="0" maxOccurs="

1" name="IntList" type="tns:ArrayOfInt"/>

b. <s:element minOccurs="0" maxOccurs="unbounded" n

ame="int" type="s:int"/>

c. <s:element name=" UnclearWebServiceResponse">

<s:element minOccurs="0" maxOccurs="1" name="Un

clearWebServiceResult" type=" tns:ArrayOfInt "/>
The element IntList has a ArrayOfInt type which is

represented using .NET namespace and that representation is
not a formal way and is ambiguous, These parameters
datatypes need to be presented in a formal and clear
representation. The proposed tool is run and converts all these
.NET namespace datatypes by returning back to the Web
Service provider and asking to select from a list the datatypes
for specific parameters. Figure 10 shows the interface which
the tool uses to ask the Web Service provider to select the
specific datatype.

Fig. 10. Provided Datatype Interface

When the provider selects the specific datatype, the tool
starts to create a new enrichment WSDL document with
clearer parameters datatypes. The enrichment schema for the
WSDL document which appeared in Figure 8 is shown in
Figure 11 after the tool completed its functionality

enr_schema_UnclearWebService (―IntList‖, ArrayOfInt, List)

{

 <operation

OperationName="IndistinguishableWebService">

 <input ParName = "IntList―>

 <type>ArrayOfInt</type>

 <enr_type>List</enr_type>

 <min_enr_appearance>0</min_enr_appearance>

 <max_enr_appearance>

1</max_enr_appearance>

 </input>

 <output OperationNameResponse=

"UnclearWebServiceResponse">

 <type> ArrayOfInt </type>

 <enr_type> List </enr_type>

 </output>

 </operation>

}

Fig. 11. Enrichment schema for (UnclearWebService)

V. CONCLUSION AND FUTURE WORK

The output of our paper is a tool and its algorithm for
extending the XML-Schema to represent the operations
parameters to reach better comprehension for the Web Service

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

97 | P a g e

www.ijacsa.thesai.org

functionality. Unlike previous approaches, which give a
semantic for the Web Services during its WSDL documents,
ignoring necessary of the operations parameters datatypes
declarations, our approach can analyze all the operations of
the Web Service and then classify all input output parameters
which operations need. The tool deals with 33 datatypes and
breaks them into three categories of datatypes discussed in
chapter 4.

A. Conclusions

One of the problem that still facing Web Service is that the
datatypes specification is difficult to understood and reuse by
service requester. This paper had proposed an approach to
solve this problem, the approach is based on the following:

1) Analyzing the XSD based datatypes inside WSDL

produced by the .NET platform for different prototype Web

Service .

2) Classify the datatypes specification into the following

Categories:

a) Clear Datatypes : This Category includes the

datatypes can easily be understood by service requester.

Table 6 shows these datatypes and how they implemented
inside WSDL.

TABLE VI. CLEAR DATATYPES

Datatype Implemented inside WSDL

Int <xs:element minOccurs="0" name="intpar" type="xs:int" />

Short
<xs:element minOccurs="0" name="shortpar" type="xs:

short"/>

Long
<xs:element minOccurs="0" name="longPar" type="xs:

long"/>

Double
<xs:element minOccurs="0" name="doublePar" type="xs:doub
le"/>

Boolean
<xs:element minOccurs="0" name="boolPar" type="xs:

boolean"/>

Decimal
<xs:element minOccurs="0" name="decimalPar" type="xs:dec
imal"/>

String
<xs:element minOccurs="0" name="stringPar" nillable="true"t
ype="xs:string"/>

timeZone
<xs:element minOccurs="0" name="arg0" type="tns:

timeZone"/>

Float
<xs:element minOccurs="0" name="floatPar" type="xs:

float"/>

a) Indistinguishable Datatypes : This category include

the datatypes that can be distinguished by the proposed tool,

Table 7 shows these datatypes and how they implemented

inside WSDL.

TABLE VII. INDISTINGUISHABLE DATATYPES

Datatype Implemented inside WSDL

Byte
<xs:element minOccurs="0" " name="bytepar"

type="xs:unsignedByte" />

Sbyte
<xs:element minOccurs="0" name="sbytepar"

type="xs:byte"/>

Uint
<xs:element minOccurs="0" name="uintPar" type="xs:un

signedInt"/>

Ushort
<xs:element minOccurs="0" name="ushortPar" type="xs:

unsignedShort"/>

Ulong
<xs:element minOccurs="0" name="ulongPar" type="xs:

unsignedLong"/>

b) Unclear Datatypes : This category include the

datatypes that is difficult to be understood by the requester

and also cannot be distinguished by the proposed approach .

Table 8 shows these datatypes and how they implemented

inside WSDL.

TABLE VIII. UNCLEAR DATATYPES

Datatype Implemented inside WSDL

Char

<xs:element xmlns:q1="http://schemas.microsoft.com/2003/

10/Serialization/" minOccurs="0" name="charInput" type="

q1:char"/>

Object
<xs:element minOccurs="0" name="objectPar" nillable="tru

e" type="xs:anyType"/>

Enum

<xs:element xmlns:q5="http://schemas.datacontract.org/200

4/07/TeamProject1" minOccurs="0" name="enumPar"type=

"q5:DayofWeek"/>

DateTime
<xs:element minOccurs="0" name="datePar" type="xs:date

Time"/>

DayOfWeek

<xs:element xmlns:q7="http://schemas.datacontract.org/200

4/07/System" minOccurs="0" name="dayPar"type="q7:Day

OfWeek"/>

TimeSpan

<xs:element xmlns:q9="http://schemas.microsoft.com/2003/

10/Serialization/" minOccurs="0" name="timeSpanPar"type

="q9:duration"/>

Calendar
<xs:element name="arg0" type="xs:dateTime" minOccurs=

"0"/>

TimeZone

<xs:element xmlns:q11="http://schemas.datacontract.org/20

04/07/System" minOccurs="0" name="timeZonePar"nillable

="true" type="q11:TimeZone"/>

GregorianCal

endar

<xs:element name="arg0" type="xs:dateTime" minOccurs=

"0"/>

TimeZone

Info

<xs:element xmlns:q13="http://schemas.datacontract.org/20

04/07/System" minOccurs="0" name="timeZoneInforPar"nil

lable="true" type="q13:TimeZoneInfo"/>

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

98 | P a g e

www.ijacsa.thesai.org

Struct

<xs:element xmlns:q16="http://schemas.datacontract.org/20

04/07/TeamProject1" minOccurs="0" name="structPar"type

="q16:ValType1"/>

Interface
<xs:element minOccurs="0" name="interfcaePar" nillable="t

rue"type="xs:anyType"/>

Sealed Class

<xs:element xmlns:q1="http://schemas.datacontract.org/200

4/07/TeamProject1" minOccurs="0" name="sealedPar"nillab

le="true" type="q1:SealedClass"/>

Abstract

Class

<xs:element xmlns:q2="http://schemas.datacontract.org/200

4/07/TeamProject1" minOccurs="0" name="abstractPar"nill

able="true" type="q2:AbstractClass"/>

Arrays

<xs:element xmlns:q3="http://schemas.microsoft.com/2003/

10/Serialization/Arrays" minOccurs="0" name="arrayPar" ni

llable="true" type="q3:ArrayOfint"/>

List

<xs:element xmlns:q5="http://schemas.microsoft.com/2003/

10/Serialization/Arrays" minOccurs="0" name="listPar" nill

able="true" type="q5:ArrayOfstring"/>

Hash Table

<xs:element xmlns:q1="http://schemas.microsoft.com/2003/

10/Serialization/Arrays"minOccurs="0" name="hashPar" nill

able="true"type="q1:ArrayOfKeyValueOfanyTypeanyTy

pe"/>

List of

Object

<xs:element xmlns:q23="http://schemas.datacontract.org/20

04/07/TeamProject1"minOccurs="0" name="getTeamsResul

t" nillable="true" type="q23:ArrayOfTeam"/>

3) Enriching the datatypes specification by producing an

XML document of the enrichment specification depending on

the following :

a) For the clear datatypes it will be remain the same in

the result XML document.

b) In the case be indistinguishable datatypes the

approach will use rules or conditions to decide the enrichment

datatype as explained in the examples of chapter 5 .

c) For the unclear datatypes, in this case the provider is

asked to select the prepare the enrichment to be put in the

resulted XML. So the provider in intervention is limited to this

category of unclear specification.

Based on this paper approach, a proof of concept tool had
been built that can use any WSDL document as input and
then produced the enriched datatype specification based on it.

B. Future work

Future work will concentrate on the following:

1) This research had depended merely on C# datatypes,

however the future work will consider other languages

datatypes such as Java or VB., etc.

2) Comparing the datatypes specification inside WSDL

documents when using different programming languages to

produce Web Services.

3) Enhancing the tool to enable it to work with datatypes

specification produced by different programming languages.

ACKNOWLEDGMENT

The authors thank all the professors in faculty of
information technology in Philadelphia University, especially
prof. Said Ghoul and Dr. Nameer Emam for their scientific
and accurate help.

REFERENCES

[1] Houda EL Bouhissi, Mimoun Malki. Reverse Engineering Existing web
Services Applications, 16 th Working conference on Reverse
Engineering, 2009.

[2] Hongbing Wang, Joshua Zhexue Huang, Yuzhong Qu, Junyuan Xie.
Web services: Problems and Future Directions, Elsevier, 2004.

[3] Jinghai Rao, Su Xiaomeng. A Survey of Automated Web Service
Composition Methods, In Proceedings of the First International
Workshop on Semantic Web Services and Web Process Composition,
SWSWPC 2004.

[4] Roberto De Virgilio. Meta-Modeling of Semantic Web Services, IEEE
International Conference on Services Computing, DOI
10.1109/SCC.2010.22, 2010.

[5] Samer Hanna. Web services robustness testing, Ph.D, Durham theses,
Durham University, (2008).

[6] Wei-Tek Tsai, Yinong Chen, Ray Paul. Specification-Based
Verification and Validation of Web Services and Service-Oriented
Operating Systems , 10th IEEE International Workshop on Object-
oriented Real-time Dependable Systems (WORDS 05), Sedona, pp. 139
– 147, February 2005.

[7] Jia Zhang, Liang-Jie Zhang. Editorial Preface: Web Services Quality
Testing, International Journal of Web Services Research, April-June
2005.

[8] Weider D. Yu, Aravind, D. & Supthaweesuk, P. Software Vulnarability
Analysis for Web Services Software Systems. Proceedings of the 11th
IEEE, 2006.

[9] Glenford Myers. The Art of Software Testing, ISBN 0-471-04328-1,
John Wiley. Neumann, P. (2004). Principled assuredly trustworthy
composable architecture.

[10] John Timm T. E., Gerald C. Gannod. Specifying Semantic Web Service
Compositions using UML and OCL, IEEE International Conference on
Web Services (ICWS), 2007.

[11] Eladio Domínguez, Jorge Lloret, Beatriz Pérez, Áurea Rodríguez, Ángel
L. Rubio and María A. Zapata. A Survey of UML Models to XML
Schemas Transformations, Lecture Notes in Computer Science Volume
4831, pp 184-195, 2007.

[12] Weijun Sun, Shixian Li Defen Zhang, YuQing Yan. A Model-driven
Reverse Engineering Approach for Semantic Web Services
Composition, World Congress on Software Engineering, DOI
10.1109/WCSE.2009.403, 2009.

[13] Alexandre Bellini, Antonio Francisco do Prado, Luciana Aparecida
Martinez Zaina. Top-Down Approach for Web Services Development,
Fifth International Conference on Internet and Web Applications and
Services, 2010.

[14] Evren Sirin, Bijan Parsia and James Hendler. Composition-driven
Filtering and Selection of Semantic Web Services, American
Association for Artificial Intelligence, 2004.

[15] Roy Grønmo, David Skogan, Ida Solheim, Jon Oldevik. Model-driven
Web Service Development, International Journal of Web Services
Research, 1(4), Oct-Dec 2004.

[16] Juan Vara, Valeria De Castro and Esperanza Marcos. WSDL Automatic
Generation from UML Models in a MDA Framework, International
Journal of Web Services Practices, Vol.1, No.1-2 (2005), pp. 1-12.

[17] Samer Hanna and Ali Alawneh. An Approach of Web Service Quality
Attributes Specification, Communications of the IBIMA Journal (ISSN:
1943-7765), 2010.

http://link.springer.com/search?facet-author=%22Eladio+Dom%C3%ADnguez%22
http://link.springer.com/search?facet-author=%22Jorge+Lloret%22
http://link.springer.com/search?facet-author=%22Beatriz+P%C3%A9rez%22
http://link.springer.com/search?facet-author=%22%C3%81urea+Rodr%C3%ADguez%22
http://link.springer.com/search?facet-author=%22%C3%81ngel+L.+Rubio%22
http://link.springer.com/search?facet-author=%22%C3%81ngel+L.+Rubio%22
http://link.springer.com/search?facet-author=%22Mar%C3%ADa+A.+Zapata%22

