
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

47 | P a g e

www.ijacsa.thesai.org

Apply Metaheuristic ANGEL to Schedule Multiple

Projects with Resource-Constrained and Total Tardy

Cost

Shih-Chieh Chen*

Department of Information Management

Overseas Chinese University

Taichung, Taiwan, R.O.C.

Ching-Chiuan Lin

Department of Information Management

Overseas Chinese University

Taichung, Taiwan, R.O.C.

Abstract—In this paper the multiple projects resource-

constrained project scheduling problem is considered. Several

projects are to be scheduled simultaneously with sharing several

kinds of limited resources in this problem. Each project contains

non-preemptive and deterministic duration activities which

compete limited resources under resources and precedence

constraints. Moreover, there are the due date for each project

and the tardy cost per day that cause the penalty when the

project cannot be accomplished before its due date. The objective

is to find the schedules of the considered projects to minimize the

total tardy cost subject to the resource and precedence

constraints. Since the resource-constrained project scheduling

problem has been proven to be NP-Hard, we cannot find a

deterministic algorithm to solve this problem efficiently and

metaheuristics or evolutionary algorithms are developed for this

problem instead. The problem considered in this paper is harder

than the original problem because the due date and tardy cost of

a project are considered in addition. The metaheuristic method

called ANGEL was applied to this problem. ANGEL combines

ant colony optimization (ACO), genetic algorithm (GA) and local

search strategy. In ANGEL, ACO and GA run alternately and

cooperatively. ANGEL performs very well in the multiple

projects resource-constrained project scheduling problem as

revealed by the experimental results.

Keywords—multiple project scheduling; resource-constrained

project scheduling; ANGEL; ant colony optimization; genetic

algorithms; local search; metaheuristics

I. INTRODUCTION

The resource-constrained project scheduling problem
(RCPSP) is an important problem both in practice and research.
Many researchers work on the single-project case for several
years and have very good results, but the research works for
the multiple-projects case are only a few. The multiple projects
RCPSP model is a more realistic model.

The work by Lova et. al. [1] indicated that 84% of the
companies, in the Valencian Region-Spain which responded to
their survey, work with multiple projects. This data is in line
with the work by Payne [6] that indicated that up to 90% of all
projects occurred in the multiple-project context. And the due
date and tardy cost are also important realistic situations to be
considered. These reasons motivate us to research and to find
some good algorithms on this topic.

We summarize some research works for the multiple
projects RCPSP. Fendley [8] used multiple projects with 3 and
5 projects and concluded that the priority rule MINSLK is the
best for the measurements project slippage, resource utilization
and in-process inventory. Kurtulus and Davis [2] showed six
new priority rules to the multiple projects instances they
designed. They showed that the priority rules MAXTWK and
SASP are the best when the objective is to minimize the mean
project delay. Kurtulus and Narula [3] showed that the priority
rule Maximum Penalty is the best to minimize the sum of the
project weight delay. Dumond and Marbert [5] designed five
resource allocation heuristics and four strategies to assign due
dates to the projects. They showed that the priority rule FCFS
with the Schedule Finish Time Due Date rule is the best to
minimize the mean completion time, the mean lateness, the
standard deviation of lateness and the total tardiness. Lova et al.
[1] developed a multi-criteria heuristic to schedule multiple
projects with the one-time criteria (mean project delay or
multiple project duration) and one-no-time criteria (project
splitting, in-process inventory, resource leveling or idle
resources).

RCPSP has been proven to be an NP-Hard problem. Many
evolutionary algorithms and metaheuristics were proposed to
solve RCPSP and the related extension problems. Tseng and
Chen [9] proposed an algorithm ANGEL which combines ant
colony optimization (ACO), genetic algorithm (GA) and local
search strategy (LS) to solve the single project RCPSP. Chen
and Lin [13] proposed a discrete particle swam optimization to
solve RCPSP. The experimental results of these works showed
that they are compatible to other state-of-the-art algorithms in
the literature for solving instance sets in PSPLIB [11]. Tseng
and Chen [10] also proposed a two-phase genetic local search
algorithm to solve the single project RCPSP with multiple
modes. Chen [12] proposed a two-phase genetic local search
algorithm to solve the single project RCPSP with generalized
precedence constraints. Rivera et al. [7] proposed an algorithm
which combined the GRASP, Scatter Search and justification
to solve RCPSP. These researches showed that combined
heuristics and evolutionary algorithms, like ANGEL, can solve
these RCPSP and related extension problems efficiently.

The remaining parts of the paper are organized as follows.
In Section II, we provide a description of the problem. In
Section III, we describe ouer ANGEL algorithm. In Section IV,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

48 | P a g e

www.ijacsa.thesai.org

the computational results are shown and in Section V the
concluding remarks are given.

II. PROBLEM DESCRIPTION

We consider a multiple project scheduling problem with n

independent projects
1
, ,

n
P P where

1
, ,

n
d d and

1
, ,

n
c c

are the due dates and tardy costs per day for the projects
respectively. There are K kinds of common resources which

are renewable that all projects share on them. For project
i

P ,

1, 2, , i n , the set
i

J consists of
i

num non-dummy

activities and each activity has deterministic duration and
resource demand for execution. By the single-project approach,
we add two dummy activities as the source and the sink to bind
the projects together. Hence this multiple-project problem can
be considered as a single project problem in which the activity

set J has
1

n

i

i

num num

 non-dummy activities. All non-

dummy activities in J are renumbered from 1 to num

sequentially. Activity 1 to
1

num are the activities of project
1

P ,

activity
1

1num to
1 2

num num are the activities of project

2
P and so on. Activity 0 and activity 1num are the source

and the sink, the dummy activities. So

1

 0, 1

n

i

i

J J num

is the set of activities. Fig. 1

shows a multiple projects instance with 2 independent projects
and the corresponding combined single project is shown in Fig.

2, where
j

d is the duration and
jk

r is the resource demand for

resource k of activity j .

Let
i

PSet be the set of all immediate predecessors

(activities) of activity i . The precedence constraints are given

that activity i cannot be executed before all activities belong

to
i

PSet have finished. For resource k , the per-period-

availability is given by a constant
k

R . Each dummy activity

has zero duration and does not require any resource.

In multiple projects RCPSP, let
1

m , …,
n

m be the

makespans we scheduled for each project respectively, then the
total tardy cost TC is defined in equation (1) as the sum of

tardy costs of the projects which cannot be accomplished in
their due dates. The objective of the problem considered in this
paper is to minimize the total tardy cost (TC) subject to all the

precedence and resource constraints.

Fig. 1. A multiple projects instance

Fig. 2. The corresponding combined single project instance

In this paper, we use a precedence-feasible activity list to
represent a solution. When a precedence-feasible activity list is
given, we use the list scheduling method to create a schedule.
To make a schedule, we apply either the forward scheduling or
the backward scheduling on the activity list to set the execution
starting time for each activity. The forward scheduling sets the
execution starting time of an activity, from the front to the end
of the list, as early as possible but satisfies the resource
constraints. That is, if an activity lacks for some resources to
start its execution, then its execution starting time will be
delayed until some activity is finished and the resources are
released to satisfy its resource demand. The backward
scheduling sets the execution starting time of an activity, from
the end to the front of the list, as late as its finish time is just
right before the earliest execution starting time of all its
successors. If an activity lacks for some resource for its
execution, then the execution starting time will be set earlier
just right before the starting time of some activity in order to
satisfy its resource demand.

III. THE ANGEL METAHEURISTIC FOR THE MULTIPLE

PROJECTS RCPSP

In this section, we present the strategies in ANGEL
metaheuristic for the multiple projects RCPSP. We modify the
algorithm of Tseng and Chen [12] because we solve this
problem by single-project approach but coincide the

()

i i

i i i

m d

TC m d c

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

49 | P a g e

www.ijacsa.thesai.org

characteristic of this problem. ANGEL consists of the ACO,
the GA and the local search strategy. All parts of the
metaheuristic ANGEL are described in detail in the following.

A. The Ant Colony Optimization (ACO)

In original ACO several ants share the common memory
set called pheromone and each ant find its own path of solution
independently. The schemes local updating, global updating,
and evaporation change the common memory by the
experience of each ant, experience from global best solution
and decreasing during time past respectively. We apply ACO
to generate a population of precedence-feasible activity lists.
To construct an activity list by a specific ant x, we first put the
dummy activity 0 into the first position of the list. Then, if
activity v is put in position j , ant x has to choose another

activity from the candidate set
j

N and put the chosen activity

to position 1j of the list. The candidate set
j

N consists of

the activities whose predecessors have been put in the list.
When activity in position , the probability that ant x chooses
activity to be in position is defined in equation (2),
where is an user-defined parameter, q is a random number
drawn between 0 and 1, and is the amount of pheromone
been deposited on the ordered pair . S is a random
variable selected according to the probability distribution given
in equation (3), where

{ }.

j
0u N

arg max{ } , if

, otherwise

vu q q
w

S

2 2

min min
(/) / (/) ,if w

,otherwise
0

j

vw vu
jx

u N

vw

N
p

The formulae of the local updating, the evaporation, and the
global updating are described in equations (4)-(6) respectively.

vw vw

 1

 1
vw vw vw

In (4), is a small increment when the local updating is
performed on the ordered pair . In (5), the evaporation
means the amount of pheromone of all ordered pairs are
decremented by a ratio , where . The increment
 of the global updating in (6) is defined in (7), where
 and is the minimal total tardy cost of

schedules ever found. Note that the global updating is only
conducted on the list with the minimum total tardy cost in each
ACO iteration.

if activity is next to activity

1/ in the list with the minimum total

tardy cost found by ants in an iteration

0 otherwise

gb

vw

w v

TC

By the effort of the ACO, the ants find for us a population
of activity lists, then evaluate the associated schedules by
forward and backward scheduling method, and evaluate the
makespans and the corresponding total tardy costs. From the
schedules conducted by forward and backward scheduling,
only the one with smaller total tardy cost will be reserved. Tie
will be broken by random selection.

B. The Genetic Algorithm (GA)

The GA we proposed is a permutation-based GA. The
chromosomes in the population are the activity lists which
consist of 90% constructed by the ACO and 10% randomly
generated. The fitness of an activity list is the inverse value of
the total tardy cost of the corresponding schedule. The
crossover, mutation and selection operators are as follows.

We implement two-point forward crossover and two-point
backward crossover, which are modified versions of the two-
point forward-backward crossover proposed by Alcaraz and
Maroto [4], in GA. The two-point forward crossover constructs
the offspring from front to rear, and the two-point backward
crossover constructs the offspring from rear to front. The
crossover operators are defined as follows.

Two parent lists, called father and mother, produce two
offspring, called son and daughter. We first randomly draw two

crossover-points denoted by
1

L and
2

L . To produce the son,

when the two-point forward crossover is applied, the first

positions of the son are directly taken from the first
1

L

activities of the father. Then, in the father and the mother, the

activities that have been taken are marked. The next
12L L

positions of the son are taken from the first
12L L unmarked

activities of the mother. In the father, these taken activities are
marked. The rest positions of the son are taken from the rest
unmarked activities of the father. All the activities taken from
the mother or the father are in their relative order. The daughter
is produced by interchanging the roles of the father and the
mother. The two-point backward crossover works as a “reverse
version” of the forward crossover that takes the activities and
constructs the offspring from rear to front. To apply the
crossover operators, the lists in the population are randomly
divided into pop/2 pairs and a probability threshold, pcro, is
specified. For each pair of lists, the two-point forward
crossover is applied if the random number drawn is greater
than the threshold. Otherwise, the two-point backward
crossover is applied.

We design two mutation operators which try to pick out
some activities and then randomly put them back as long as the
precedence relations are satisfied. First, the activities in a list
are classified to two classes A and B. Those activities in class
A are picked out by a larger probability pmut2 while those in
class B by a smaller probability pmut3. When mapping a list to
the corresponding schedule by the list scheduling method, an
activity may not be started right after all its predecessors
finished because lacking the resources it needs. We call this
activity a delayed activity. If an activity in a list is a delayed
activity while this activity is not a delayed activity in most of
lists in the population, this activity belongs to class A in this
list. Otherwise, activities not belonging to class A in a list

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

50 | P a g e

www.ijacsa.thesai.org

belong to class B. When applying the mutation to a list, for
each activity in the list, if the activity belongs to class A, it is
picked out by probability pmut2, otherwise, it is picked out by
probability pmut3. In a random order, those pick-out activities
are then randomly put back to the list as long as the precedence
relations are preserved.

We implement the ranking selection and the 2-tournament
selection in our GA. After the crossover and the mutation,
there are 2*pop lists in the population, pop parent lists and pop
offspring lists. In the ranking selection, we select the first pop
lists from the population that is ranking by the makespan to
construct the new population. In the 2-tourament selection, two
lists are selected randomly from the population and the one
with smaller makespan will be put in the new population. This
procedure will be repeated pop times to construct the new
population.

C. The Local Search Strategy

The local search strategy in this study is the forward-
backward local search (FBLS) proposed by Tseng and Chen
[9]. This local search utilizes the standard representation of
permutation to reduce the search space and both forward
scheduling and backward methods to improve the solution
quality that very few computational effort is needed. The FBLS
tries to search better solutions for a given permutation by
following steps: (i) evaluate the forward schedule of the list,
sort the operation starting times of activities and make the
standard representation permutation the list by the order of
operation starting times; (ii) evaluate the backward schedule of
the list, sort the operation starting times of activities and then
make a new permutation the list by the order of operation
starting times; (iii) evaluate the forward schedule of the list,
sort the operation starting times of activities and then make a
new permutation the list by the order of operation starting
times; compare the makespans of the schedules evaluated from
the previous three steps and replace the list by the permutation
which has the smallest makespan at last. From the
experimental results conducted by Tseng and Chen [9], this
local search is a very fast and effective local search to improve
the solution quality in RCPSP.

D. The ANGEL

In the process of ANGEL, we apply the ACO first to
generate activity lists, followed by applying the forward and
the backward scheduling to each of them and reserve the better
one. These lists along with several randomly generated lists are
used as the initial population of GA. The local search is applied
to the new lists to search better solutions. In GA, if the best
schedule ever found is not improved for GenStuck generations,
we apply the mutation operator and the 2-tournament selection
to the population. And then start GA again. After applying the
mutation operator LoopStuck times, it seems that the
population is highly homogeneous, and then the ACO is
applied again, construct new population, and begins another
run of ANGEL. The procedure of ANGEL is shown in Fig. 3.

IV. COMPUTATIONAL RESULTS

We create eight sets of multiple projects instances, as
shown in Table I, by combining single project instances from

the PSPLIB. Each of the instance set J30 and J60 contains 480
single project instances and each instance contains 30 and 60
non-dummy activities. We combine the instances of J30 and
J60 randomly to be the multiple projects problem instances.

Fig. 3. Procedure of ANGEL

TABLE I. MULTIPLE PROJECTS INSTANCE SETS

Instance set Instances Projects in each instance

30_2 240 2 projects with 30 activities each

30_4 120 4 projects with 30 activities each

30_8 60 8 projects with 30 activities each

60_2 240 2 projects with 60 activities each

60_4 120 4 projects with 60 activities each

60_8 60 8 projects with 60 activities each

30_60_2_2 240 4 projects, 2 with 30 and 2 with 60 activities

30_60_4_4 120 8 projects, 4 with 30 and 4 with 60 activities

To show the effect of our method, we first define the upper
bound for the instances. Suppose a multiple projects which

consists of projects
1
, ,

n
P P where

1
, ,

n
d d and

1
, ,

n
c c

are the due dates and tardy costs per day for the projects

respectively. Let
i

u be the best makespan when project
i

P is

scheduled as a single project RCPSP, then the upper bound
for this instance is evaluated by equation (8).

1

()
n

i i i

i

UB u d c

The statistical property of UB of each multiple project
instance set is shown in Table II. As for the lower bound, it is
obvious that zero is a trivial lower bound for each instance. We
also define the improvement ratio IR in equation (9).

Procedure ANGEL

While (!termination_angel)

ACO, local search to the list, and generate the population

While (!termination_ga)

Crossover

Evaluate schedule, local search and local update pheromone

Ranking selection

If (the best solution is improved) global update pheromone

If (the best solution is not improved for a long time)

Crossover

Mutation

Evaluate schedule and local search

2-tournament selection

End

Global update pheromone

End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

51 | P a g e

www.ijacsa.thesai.org

 (UB-TC)/UB 100% if UB 0

100% if UB 0 & TC 0

-100% if UB 0 & TC 0

IR

TABLE II. STATISTICAL PROPERTY OF UB IN EACH INSTANCE SET

Instance set Max Min Ave. S. Dev.

30_2 1334 0 175.59 263.38

30_4 1913 0 482.69 442.56

30_8 2047 52 801.32 485.14

60_2 3040 0 446.60 707.19

60_4 4076 0 906.26 1069.02

60_8 6204 0 1790.90 1478.86

30_60_2_2 3346 0 622.20 741.90

30_60_4_4 4308 4 1388.95 1102.76

For example, the 17th instance of the multiple projects
instance set 30_2 consists of the 4th and 81st instances from
the single project instance set J30. The best makespans of each
project in single project RCPSP are 62 and 83. The due dates
are 55 and 55, and the tardy costs are 28 and 19 per day for
each single project respectively. Then

(62 55) 28 (83 55) 19 728UB

for the multiple project instance. The makespans for this
multiple project instance when they are scheduled
simultaneously are 55 and 62, then the total tardy cost

(55 55) 28 (62 55) 19 133TC

and the improvement ratio

728 133
100% 81.73%

728
IR

In our computational experiments, each instance set is
tested 3 times and based on the average IR, the best case, the
worst case and the average case are presented. Each instance is
searched with 1000 or 5000 schedules evaluated. Table 4-10
show the computational results of IR and the percentage of the
instances with zero total tardy cost (0TC) for all instance

sets except the instance set 30_8. In instance set 30_8, the total
tardy costs are zero for all instances within 1000 schedules.

TABLE III. COMPUTATION RESULTS OF INSTANCE SET 30_2

Schedules Case
 (%)

(%)
Max Min Ave. S. Dev.

1000

Best 100 0 95.40 11.78 76.25

Worst 100 0 95.36 11.96 76.25

Average 100 0 95.38 11.90 76.67

5000

Best 100 0 96.61 10.29 80.42

Worst 100 0 96.43 10.54 79.17

Average 100 0 96.49 10.46 80.00

TABLE IV. COMPUTATION RESULTS OF INSTANCE SET 30_4

Schedules Case
 (%)

 (%)
Max Min Ave. S. Dev.

1000

Best 100 79.93 99.25 2.98 89.17

Worst 100 79.17 99.20 2.94 90.00

Average 100 79.13 99.23 2.99 89.44

5000

Best 100 86.13 99.68 1.70 92.50

Worst 100 85.36 99.64 1.75 90.83

Average 100 86.68 99.67 1.65 91.67

TABLE V. COMPUTATION RESULTS OF INSTANCE SET 60_2

Schedules Case
 (%)

 (%)
Max Min Ave. S. Dev.

1000

Best 100 -100 88.80 28.25 74.58

Worst 100 -100 88.04 30.98 73.33

Average 100 -100 88.29 30.07 73.89

5000

Best 100 2.84 93.71 15.52 78.33

Worst 100 0 93.43 16.43 78.33

Average 100 0.95 93.52 16.12 78.33

TABLE VI. COMPUTATION RESULTS OF INSTANCE SET 60_4

Schedules Case
 (%)

 (%)
Max Min Ave. S. Dev.

1000

Best 100 65.68 98.07 6.05 83.33

Worst 100 57.73 97.73 7.51 85.00

Average 100 59.92 97.91 6.70 84.44

5000

Best 100 81.04 99.13 2.95 86.67

Worst 100 76.32 98.97 3.83 87.50

Average 100 78.57 99.03 3.46 87.23

TABLE VII. COMPUTATION RESULTS OF INSTANCE SET 60_8

Schedules Case
 (%)

 (%)
Max Min Ave. S. Dev.

1000

Best 100 86.17 99.51 1.96 88.33

Worst 100 80.81 99.42 2.59 88.33

Average 100 84.27 99.46 2.24 88.33

5000

Best 100 98.66 99.97 0.19 95.00

Worst 100 97.51 99.95 0.33 95.00

Average 100 98.10 99.96 0.25 95.55

TABLE VIII. COMPUTATION RESULTS OF INSTANCE SET 30_60_2_2

Schedules Case
 (%)

 (%)
Max Min Ave. S. Dev.

1000

Best 100 59.99 98.93 4.32 87.92

Worst 100 66.43 98.82 4.46 87.08

Average 100 63.72 98.87 4.36 87.36

5000

Best 100 82.75 99.61 1.98 93.33

Worst 100 79.13 99.53 2.19 92.92

Average 100 80.79 99.58 2.09 93.05

IR
0TC

IR
0TC

IR
0TC

IR
0TC

IR
0TC

IR
0TC

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 3, 2015

52 | P a g e

www.ijacsa.thesai.org

TABLE IX. COMPUTATION RESULTS OF INSTANCE SET 30_60_4_4

Schedules Case
 (%)

 (%)
Max Min Ave. S. Dev.

1000

Best 100 94.40 99.82 0.80 93.33

Worst 100 96.31 99.82 0.68 91.67

Average 100 95.46 99.82 0.75 92.50

5000

Best 100 99.18 99.99 0.11 98.33

Worst 100 99.59 99.99 0.05 97.50

Average 100 99.29 99.99 0.09 98.06

We can see from all the tables that the average IR ratio and
the percentage of instances with zero total tardy cost increase,
and the standard deviation of IR ratio decreases as the number
of schedules evaluated increases. These results means the total
tardy cost of multiple projects will be improved effectively by
ANGEL if more searching is conducted. We can also observe
that if more projects are to be scheduled simultaneously, there
are greater chances that projects be accomplished in their due
dates. This result also fits the realistic situation and suggests
that in a company, all projects that share the common resources
should be scheduled simultaneously.

V. CONCLUDING REMARKS

ANGEL had been applied to solve the single project
RCPSP [9] and the single project RCPSP with multiple modes
[10] and obtained good results. In this paper we consider the
problem that multiple projects sharing common resources are
to be scheduled simultaneously subject to the precedence and
resource constraints. The objective is to minimize the total
tardy cost of the projects. The computational results show that
ANGEL is effective on this problem. It also reveals that
projects sharing common resources should be scheduled
simultaneously rather than scheduled one by one.

From the computational results and other researchers’
works we can find that the combined algorithms or
metaheuristics performed well in solving discrete
combinatorial optimization problems. The further researches of

us are to test the combination of different evolutionary
algorithms, like GRASP or Particle Swarm Optimization, to
find better algorithms to different optimization problems

REFERENCES

[1] A. Lova, C. Maroto and P. Tormos, “A multicritertia heuristic method to
improve resource allocation in multiproject scheduling,” Euro. J. Oper.
Res., vol. 127, pp.408-427, 2000

[2] I. S. Kurtulus and E. W. Daivs, “Multi-project scheduling:
categorization of heuristic rules performance,” Mana. Sci., vol. 28,
pp161-172, 1982.

[3] I. S. Kurtulus and S.C. Narula, “Multi-project scheduling: analysis of
project performance,: IIE Trans., vol. 17, pp.58-66, 1985.

[4] J. Alcaraz and C. Maroto, “A robust genetic algorithm for the resource
allocation in project scheduling,” Ann. Oper. Res. Vol. 102, pp.83-109,
2001.

[5] J. Dumond and V. A. Marbert, “Evaluating project scheduling and due
date assignment procedures: An experimental analysis,” Mana. Sci., vol.
34, pp.101-118, 1998.

[6] J. H. Payne, “Management of multiple simultaneous projects: A state-of-
the-art review,” Inter. J. Proj. Mana., vol. 13, pp-163-168, 1995.

[7] J. Rivera, L. Velásquez, F. Serna and G. Zapata, “A Hybrid Heuristic
Algorithm for Solving the Resource Constrained Project Scheduling
Problem,” Revi. EIA, vol. 10, pp.87-100, 2013.

[8] L. G. Fendley, “Towards the development of a complet multiproject
scheduling system,” J. of Indu. Engi. Pp.505-515, 1968.

[9] L. Y. Tseng and S. C. Chen, “A hybrid metaheuristic for the resource-
constrained project scheduling problem,” Euro. J. Oper. Res., vol. 175,
pp.707-721, 2006.

[10] L. Y. Tseng and S. C. Chen, “Two-Phase Genetic Local Search
Algorithm for the Multimode Resource-Constrained Project
SchedulingG. Eason, B. Noble, and I. N. Sneddon, “On certain integrals
of Lipschitz-Hankel type involving products of Bessel functions,” Phil.
Trans. Roy. Soc. London, vol. A247, pp. 529–551, April 1955.

[11] R. Kolisch and A. Sprecher, “PSPLIB – a project scheduling problem
library,” Euro. J. Oper. Res., vol.96, pp205-216, 1996.

[12] S. C. Chen, “A Genetic Local Search Algorithm for the Resource-
Constrained Project Scheduling Problem with Generalized Precedence
Constraints,” The 6th IEEE Inter. Conf. Ubi-Media Comp., Aizu-
Wakamatsu, Japan, November, 2013.

[13] S. C. Chen, “A Discrete Particle Swam Optimization for Scheduling
Projects with Resource Constrained,” The 2nd Inter. Conf. Comp.,
Meas., Cont. and Sens. Net., Tunghai University, Taiwan, May, 2014.

IR
0TC

