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Abstract—In this paper the multiple projects resource-

constrained project scheduling problem is considered. Several 

projects are to be scheduled simultaneously with sharing several 

kinds of limited resources in this problem.  Each project contains 

non-preemptive and deterministic duration activities which 

compete limited resources under resources and precedence 

constraints. Moreover, there are the due date for each project 

and the tardy cost per day that cause the penalty when the 

project cannot be accomplished before its due date. The objective 

is to find the schedules of the considered projects to minimize the 

total tardy cost subject to the resource and precedence 

constraints. Since the resource-constrained project scheduling 

problem has been proven to be NP-Hard, we cannot find a 

deterministic algorithm to solve this problem efficiently and 

metaheuristics or evolutionary algorithms are developed for this 

problem instead. The problem considered in this paper is harder 

than the original problem because the due date and tardy cost of 

a project are considered in addition. The metaheuristic method 

called ANGEL was applied to this problem. ANGEL combines 

ant colony optimization (ACO), genetic algorithm (GA) and local 

search strategy. In ANGEL, ACO and GA run alternately and 

cooperatively. ANGEL performs very well in the multiple 

projects resource-constrained project scheduling problem as 

revealed by the experimental results. 

Keywords—multiple project scheduling; resource-constrained 
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I. INTRODUCTION 

The resource-constrained project scheduling problem 
(RCPSP) is an important problem both in practice and research. 
Many researchers work on the single-project case for several 
years and have very good results, but the research works for 
the multiple-projects case are only a few. The multiple projects 
RCPSP model is a more realistic model.  

The work by Lova et. al. [1] indicated that 84% of the 
companies, in the Valencian Region-Spain which responded to 
their survey, work with multiple projects. This data is in line 
with the work by Payne [6] that indicated that up to 90% of all 
projects occurred in the multiple-project context. And the due 
date and tardy cost are also important realistic situations to be 
considered. These reasons motivate us to research and to find 
some good algorithms on this topic. 

We summarize some research works for the multiple 
projects RCPSP. Fendley [8] used multiple projects with 3 and 
5 projects and concluded that the priority rule MINSLK is the 
best for the measurements project slippage, resource utilization 
and in-process inventory. Kurtulus and Davis [2] showed six 
new priority rules to the multiple projects instances they 
designed. They showed that the priority rules MAXTWK and 
SASP are the best when the objective is to minimize the mean 
project delay. Kurtulus and Narula [3] showed that the priority 
rule Maximum Penalty is the best to minimize the sum of the 
project weight delay. Dumond and Marbert [5] designed five 
resource allocation heuristics and four strategies to assign due 
dates to the projects. They showed that the priority rule FCFS 
with the Schedule Finish Time Due Date rule is the best to 
minimize the mean completion time, the mean lateness, the 
standard deviation of lateness and the total tardiness. Lova et al. 
[1] developed a multi-criteria heuristic to schedule multiple 
projects with the one-time criteria (mean project delay or 
multiple project duration) and one-no-time criteria (project 
splitting, in-process inventory, resource leveling or idle 
resources). 

RCPSP has been proven to be an NP-Hard problem. Many 
evolutionary algorithms and metaheuristics were proposed to 
solve RCPSP and the related extension problems. Tseng and 
Chen [9] proposed an algorithm ANGEL which combines ant 
colony optimization (ACO), genetic algorithm (GA) and local 
search strategy (LS) to solve the single project RCPSP. Chen 
and Lin [13] proposed a discrete particle swam optimization to 
solve RCPSP. The experimental results of these works showed 
that they are compatible to other state-of-the-art algorithms in 
the literature for solving instance sets in PSPLIB [11]. Tseng 
and Chen [10] also proposed a two-phase genetic local search 
algorithm to solve the single project RCPSP with multiple 
modes. Chen [12] proposed a two-phase genetic local search 
algorithm to solve the single project RCPSP with generalized 
precedence constraints. Rivera et al. [7] proposed an algorithm 
which combined the GRASP, Scatter Search and justification 
to solve RCPSP. These researches showed that combined 
heuristics and evolutionary algorithms, like ANGEL, can solve 
these RCPSP and related extension problems efficiently. 

The remaining parts of the paper are organized as follows. 
In Section II, we provide a description of the problem. In 
Section III, we describe ouer ANGEL algorithm. In Section IV, 
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the computational results are shown and in Section V the 
concluding remarks are given. 

II. PROBLEM DESCRIPTION 

We consider a multiple project scheduling problem with n 

independent projects 
1
, , 

n
P P  where 

1
, ,  

n
d d  and 

1
, ,  

n
c c  

are the due dates and tardy costs per day for the projects 
respectively. There are K  kinds of common resources which 

are renewable that all projects share on them. For project 
i

P , 

1,  2, ,  i n , the set 
i

J  consists of 
i

num  non-dummy 

activities and each activity has deterministic duration and 
resource demand for execution. By the single-project approach, 
we add two dummy activities as the source and the sink to bind 
the projects together. Hence this multiple-project problem can 
be considered as a single project problem in which the activity 

set J  has 
1

n

i

i

num num


  non-dummy activities. All non-

dummy activities in J  are renumbered from 1 to num  

sequentially. Activity 1 to 
1

num  are the activities of project 
1

P , 

activity 
1

1num   to 
1 2

num num  are the activities of project 

2
P  and so on. Activity 0 and activity 1num   are the source 

and the sink, the dummy activities. So 

 
1

 0,  1 

n

i

i

J J num


  
 
 
 

is the set of activities. Fig. 1 

shows a multiple projects instance with 2 independent projects 
and the corresponding combined single project is shown in Fig. 

2, where 
j

d  is the duration and 
jk

r  is the resource demand for 

resource k of activity j . 

Let 
i

PSet  be the set of all immediate predecessors 

(activities) of activity i . The precedence constraints are given 

that activity i  cannot be executed before all activities belong 

to 
i

PSet  have finished. For resource k , the per-period-

availability is given by a constant 
k

R . Each dummy activity 

has zero duration and does not require any resource. 

In multiple projects RCPSP, let 
1

m , …, 
n

m  be the 

makespans we scheduled for each project respectively, then the 
total tardy cost TC  is defined in equation (1) as the sum of 

tardy costs of the projects which cannot be accomplished in 
their due dates. The objective of the problem considered in this 
paper is to minimize the total tardy cost ( TC ) subject to all the 

precedence and resource constraints. 



 

 

Fig. 1. A multiple projects instance 

 

Fig. 2. The corresponding combined single project instance 

In this paper, we use a precedence-feasible activity list to 
represent a solution. When a precedence-feasible activity list is 
given, we use the list scheduling method to create a schedule. 
To make a schedule, we apply either the forward scheduling or 
the backward scheduling on the activity list to set the execution 
starting time for each activity. The forward scheduling sets the 
execution starting time of an activity, from the front to the end 
of the list, as early as possible but satisfies the resource 
constraints. That is, if an activity lacks for some resources to 
start its execution, then its execution starting time will be 
delayed until some activity is finished and the resources are 
released to satisfy its resource demand. The backward 
scheduling sets the execution starting time of an activity, from 
the end to the front of the list, as late as its finish time is just 
right before the earliest execution starting time of all its 
successors. If an activity lacks for some resource for its 
execution, then the execution starting time will be set earlier 
just right before the starting time of some activity in order to 
satisfy its resource demand. 

III. THE ANGEL METAHEURISTIC FOR THE MULTIPLE 

PROJECTS RCPSP 

In this section, we present the strategies in ANGEL 
metaheuristic for the multiple projects RCPSP. We modify the 
algorithm of Tseng and Chen [12] because we solve this 
problem by single-project approach but coincide the  
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characteristic of this problem. ANGEL consists of the ACO, 
the GA and the local search strategy. All parts of the 
metaheuristic ANGEL are described in detail in the following. 

A. The Ant Colony Optimization (ACO) 

In original ACO several ants share the common memory 
set called pheromone and each ant find its own path of solution 
independently. The schemes local updating, global updating, 
and evaporation change the common memory by the 
experience of each ant, experience from global best solution 
and decreasing during time past respectively. We apply ACO 
to generate a population of precedence-feasible activity lists. 
To construct an activity list by a specific ant x, we first put the 
dummy activity 0 into the first position of the list. Then, if 
activity v  is put in position j , ant x has to choose another 

activity from the candidate set 
j

N  and put the chosen activity  

to position 1j  of the list. The candidate set 
j

N  consists of 

the activities whose predecessors have been put in the list. 
When activity  in position  , the probability that ant x chooses 
activity   to be in position     is defined in equation (2), 
where    is an user-defined parameter, q is a random number 
drawn between 0 and 1, and      is the amount of pheromone 
been deposited on the ordered pair      . S is a random 
variable selected according to the probability distribution given 
in equation (3), where              
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The formulae of the local updating, the evaporation, and the 
global updating are described in equations (4)-(6) respectively.  

vw vw
    

  

 1    
  

 1
vw vw vw
         

  

In (4),    is a small increment when the local updating is 
performed on the ordered pair       . In (5), the evaporation 
means the amount of pheromone of all ordered pairs are 
decremented by a ratio  , where      . The increment  
     of the global updating in (6) is defined in (7), where  
      and      is the minimal total tardy cost of 

schedules ever found. Note that the global updating is only 
conducted on the list with the minimum total tardy cost in each 
ACO iteration. 

if activity  is next to activity  

1/ in the list with the minimum total 

tardy cost found by ants in an iteration

0 otherwise

gb

vw

w v

TC






  



 

By the effort of the ACO, the ants find for us a population 
of activity lists, then evaluate the associated schedules by 
forward and backward scheduling method, and evaluate the 
makespans and the corresponding total tardy costs. From the 
schedules conducted by forward and backward scheduling, 
only the one with smaller total tardy cost will be reserved. Tie 
will be broken by random selection. 

B. The Genetic Algorithm (GA) 

The GA we proposed is a permutation-based GA. The 
chromosomes in the population are the activity lists which 
consist of 90% constructed by the ACO and 10% randomly 
generated. The fitness of an activity list is the inverse value of 
the total tardy cost of the corresponding schedule. The 
crossover, mutation and selection operators are as follows. 

We implement two-point forward crossover and two-point 
backward crossover, which are modified versions of the two-
point forward-backward crossover proposed by Alcaraz and 
Maroto [4], in GA. The two-point forward crossover constructs 
the offspring from front to rear, and the two-point backward 
crossover constructs the offspring from rear to front. The 
crossover operators are defined as follows. 

Two parent lists, called father and mother, produce two 
offspring, called son and daughter. We first randomly draw two 

crossover-points denoted by 
1

L  and 
2

L . To produce the son, 

when the two-point forward crossover is applied, the first   

positions of the son are directly taken from the first 
1

L  

activities of the father. Then, in the father and the mother, the 

activities that have been taken are marked. The next 
12L L   

positions of the son are taken from the first 
12L L  unmarked 

activities of the mother. In the father, these taken activities are 
marked. The rest positions of the son are taken from the rest 
unmarked activities of the father. All the activities taken from 
the mother or the father are in their relative order. The daughter 
is produced by interchanging the roles of the father and the 
mother. The two-point backward crossover works as a “reverse 
version” of the forward crossover that takes the activities and 
constructs the offspring from rear to front.  To apply the 
crossover operators, the lists in the population are randomly 
divided into pop/2 pairs and a probability threshold, pcro, is 
specified. For each pair of lists, the two-point forward 
crossover is applied if the random number drawn is greater 
than the threshold. Otherwise, the two-point backward 
crossover is applied. 

We design two mutation operators which try to pick out 
some activities and then randomly put them back as long as the 
precedence relations are satisfied. First, the activities in a list 
are classified to two classes A and B. Those activities in class 
A are picked out by a larger probability pmut2 while those in 
class B by a smaller probability pmut3. When mapping a list to 
the corresponding schedule by the list scheduling method, an 
activity may not be started right after all its predecessors 
finished because lacking the resources it needs. We call this 
activity a delayed activity. If an activity in a list is a delayed 
activity while this activity is not a delayed activity in most of 
lists in the population, this activity belongs to class A in this 
list. Otherwise, activities not belonging to class A in a list 
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belong to class B. When applying the mutation to a list, for 
each activity in the list, if the activity belongs to class A, it is 
picked out by probability pmut2, otherwise, it is picked out by 
probability pmut3. In a random order, those pick-out activities 
are then randomly put back to the list as long as the precedence 
relations are preserved. 

We implement the ranking selection and the 2-tournament 
selection in our GA. After the crossover and the mutation, 
there are 2*pop lists in the population, pop parent lists and pop 
offspring lists. In the ranking selection, we select the first pop 
lists from the population that is ranking by the makespan to 
construct the new population. In the 2-tourament selection, two 
lists are selected randomly from the population and the one 
with smaller makespan will be put in the new population. This 
procedure will be repeated pop times to construct the new 
population. 

C. The Local Search Strategy 

The local search strategy in this study is the forward-
backward local search (FBLS) proposed by Tseng and Chen 
[9]. This local search utilizes the standard representation of 
permutation to reduce the search space and both forward 
scheduling and backward methods to improve the solution 
quality that very few computational effort is needed. The FBLS 
tries to search better solutions for a given permutation by 
following steps: (i) evaluate the forward schedule of the list, 
sort the operation starting times of activities and make the 
standard representation permutation the list by the order of 
operation starting times; (ii) evaluate the backward schedule of 
the list, sort the operation starting times of activities and then 
make a new permutation the list by the order of operation 
starting times; (iii) evaluate the forward schedule of the list, 
sort the operation starting times of activities and then make a 
new permutation the list by the order of operation starting 
times; compare the makespans of the schedules evaluated from 
the previous three steps and replace the list by the permutation 
which has the smallest makespan at last. From the 
experimental results conducted by Tseng and Chen [9], this 
local search is a very fast and effective local search to improve 
the solution quality in RCPSP. 

D. The ANGEL 

In the process of ANGEL, we apply the ACO first to 
generate activity lists, followed by applying the forward and 
the backward scheduling to each of them and reserve the better 
one. These lists along with several randomly generated lists are 
used as the initial population of GA. The local search is applied 
to the new lists to search better solutions. In GA, if the best 
schedule ever found is not improved for GenStuck generations, 
we apply the mutation operator and the 2-tournament selection 
to the population. And then start GA again. After applying the 
mutation operator LoopStuck times, it seems that the 
population is highly homogeneous, and then the ACO is 
applied again, construct new population, and begins another 
run of ANGEL. The procedure of ANGEL is shown in Fig. 3. 

IV. COMPUTATIONAL RESULTS 

We create eight sets of multiple projects instances, as 
shown in Table I, by combining single project instances from 

the PSPLIB. Each of the instance set J30 and J60 contains 480 
single project instances and each instance contains 30 and 60 
non-dummy activities. We combine the instances of J30 and 
J60 randomly to be the multiple projects problem instances. 

 

Fig. 3. Procedure of ANGEL 

TABLE I.  MULTIPLE PROJECTS INSTANCE SETS 

Instance set Instances Projects in each instance 

30_2 240 2 projects with 30 activities each 

30_4 120 4 projects with 30 activities each 

30_8 60 8 projects with 30 activities each 

60_2 240 2 projects with 60 activities each 

60_4 120 4 projects with 60 activities each 

60_8 60 8 projects with 60 activities each 

30_60_2_2 240 4 projects, 2 with 30 and 2 with 60 activities 

30_60_4_4 120 8 projects, 4 with 30 and 4 with 60 activities 

To show the effect of our method, we first define the upper 
bound for the instances. Suppose a multiple projects which 

consists of projects 
1
, , 

n
P P  where

1
, ,  

n
d d  and 

1
, ,  

n
c c

are the due dates and tardy costs per day for the projects 

respectively. Let 
i

u  be the best makespan when project 
i

P  is 

scheduled as a single project RCPSP, then the upper bound   
for this instance is evaluated by equation (8). 


1

( )
n

i i i

i

UB u d c


     

The statistical property of UB of each multiple project 
instance set is shown in Table II. As for the lower bound, it is 
obvious that zero is a trivial lower bound for each instance. We 
also define the improvement ratio IR  in equation (9). 

Procedure ANGEL 

While ( !termination_angel ) 

ACO, local search to the list, and generate the population 

While ( !termination_ga) 

Crossover 

Evaluate schedule, local search and local update pheromone 

Ranking selection 

If ( the best solution is improved ) global update pheromone 

If ( the best solution is not improved for a long time) 

Crossover 

Mutation 

Evaluate schedule and local search 

2-tournament selection 

End 

Global update pheromone 

End 
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  (UB-TC)/UB 100% if UB 0

100% if UB 0 & TC 0

-100% if UB 0 & TC 0

IR

 

  

 







 

TABLE II.  STATISTICAL PROPERTY OF UB IN EACH INSTANCE SET 

Instance set Max Min Ave. S. Dev. 

30_2 1334 0 175.59 263.38 

30_4 1913 0 482.69 442.56 

30_8 2047 52 801.32 485.14 

60_2 3040 0 446.60 707.19 

60_4 4076 0 906.26 1069.02 

60_8 6204 0 1790.90 1478.86 

30_60_2_2 3346 0 622.20 741.90 

30_60_4_4 4308 4 1388.95 1102.76 

For example, the 17th instance of the multiple projects 
instance set 30_2 consists of the 4th and 81st instances from 
the single project instance set J30. The best makespans of each 
project in single project RCPSP are 62 and 83. The due dates 
are 55 and 55, and the tardy costs are 28 and 19 per day for 
each single project respectively. Then 

(62 55) 28 (83 55) 19 728UB        

for the multiple project instance. The makespans for this 
multiple project instance when they are scheduled 
simultaneously are 55 and 62, then the total tardy cost  

(55 55) 28 (62 55) 19 133TC        

and the improvement ratio 

728 133
100% 81.73%

728
IR


   

In our computational experiments, each instance set is 
tested 3 times and based on the average IR, the best case, the 
worst case and the average case are presented. Each instance is 
searched with 1000 or 5000 schedules evaluated. Table 4-10 
show the computational results of IR  and the percentage of the 
instances with zero total tardy cost ( 0TC  ) for all instance 

sets except the instance set 30_8. In instance set 30_8, the total 
tardy costs are zero for all instances within 1000 schedules. 

TABLE III.  COMPUTATION RESULTS OF INSTANCE SET 30_2 

Schedules Case 
 (%) 

 

(%) 
Max Min Ave. S. Dev. 

1000 

Best 100 0 95.40 11.78 76.25 

Worst 100 0 95.36 11.96 76.25 

Average 100 0 95.38 11.90 76.67 

5000 

Best 100 0 96.61 10.29 80.42 

Worst 100 0 96.43 10.54 79.17 

Average 100 0 96.49 10.46 80.00 

TABLE IV.  COMPUTATION RESULTS OF INSTANCE SET 30_4 

Schedules Case 
 (%) 

 (%) 
Max Min Ave. S. Dev. 

1000 

Best 100 79.93 99.25 2.98 89.17 

Worst 100 79.17 99.20 2.94 90.00 

Average 100 79.13 99.23 2.99 89.44 

5000 

Best 100 86.13 99.68 1.70 92.50 

Worst 100 85.36 99.64 1.75 90.83 

Average 100 86.68 99.67 1.65 91.67 

TABLE V.  COMPUTATION RESULTS OF INSTANCE SET 60_2 

Schedules Case 
 (%) 

 (%) 
Max Min Ave. S. Dev. 

1000 

Best 100 -100 88.80 28.25 74.58 

Worst 100 -100 88.04 30.98 73.33 

Average 100 -100 88.29 30.07 73.89 

5000 

Best 100 2.84 93.71 15.52 78.33 

Worst 100 0 93.43 16.43 78.33 

Average 100 0.95 93.52 16.12 78.33 

TABLE VI.  COMPUTATION RESULTS OF INSTANCE SET 60_4 

Schedules Case 
 (%) 

 (%) 
Max Min Ave. S. Dev. 

1000 

Best 100 65.68 98.07 6.05 83.33 

Worst 100 57.73 97.73 7.51 85.00 

Average 100 59.92 97.91 6.70 84.44 

5000 

Best 100 81.04 99.13 2.95 86.67 

Worst 100 76.32 98.97 3.83 87.50 

Average 100 78.57 99.03 3.46 87.23 

TABLE VII.  COMPUTATION RESULTS OF INSTANCE SET 60_8 

Schedules Case 
 (%) 

 (%) 
Max Min Ave. S. Dev. 

1000 

Best 100 86.17 99.51 1.96 88.33 

Worst 100 80.81 99.42 2.59 88.33 

Average 100 84.27 99.46 2.24 88.33 

5000 

Best 100 98.66 99.97 0.19 95.00 

Worst 100 97.51 99.95 0.33 95.00 

Average 100 98.10 99.96 0.25 95.55 

TABLE VIII.  COMPUTATION RESULTS OF INSTANCE SET 30_60_2_2 

Schedules Case 
 (%) 

 (%) 
Max Min Ave. S. Dev. 

1000 

Best 100 59.99 98.93 4.32 87.92 

Worst 100 66.43 98.82 4.46 87.08 

Average 100 63.72 98.87 4.36 87.36 

5000 

Best 100 82.75 99.61 1.98 93.33 

Worst 100 79.13 99.53 2.19 92.92 

Average 100 80.79 99.58 2.09 93.05 

 

  

IR
0TC 

IR
0TC 

IR
0TC 

IR
0TC 

IR
0TC 

IR
0TC 
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TABLE IX.  COMPUTATION RESULTS OF INSTANCE SET 30_60_4_4 

Schedules Case 
 (%) 

 (%) 
Max Min Ave. S. Dev. 

1000 

Best 100 94.40 99.82 0.80 93.33 

Worst 100 96.31 99.82 0.68 91.67 

Average 100 95.46 99.82 0.75 92.50 

5000 

Best 100 99.18 99.99 0.11 98.33 

Worst 100 99.59 99.99 0.05 97.50 

Average 100 99.29 99.99 0.09 98.06 

We can see from all the tables that the average IR ratio and 
the percentage of instances with zero total tardy cost increase, 
and the standard deviation of IR ratio decreases as the number 
of schedules evaluated increases. These results means the total 
tardy cost of multiple projects will be improved effectively by 
ANGEL if more searching is conducted. We can also observe 
that if more projects are to be scheduled simultaneously, there 
are greater chances that projects be accomplished in their due 
dates. This result also fits the realistic situation and suggests 
that in a company, all projects that share the common resources 
should be scheduled simultaneously. 

V. CONCLUDING REMARKS 

ANGEL had been applied to solve the single project 
RCPSP [9] and the single project RCPSP with multiple modes 
[10] and obtained good results. In this paper we consider the 
problem that multiple projects sharing common resources are 
to be scheduled simultaneously subject to the precedence and 
resource constraints. The objective is to minimize the total 
tardy cost of the projects. The computational results show that 
ANGEL is effective on this problem. It also reveals that 
projects sharing common resources should be scheduled 
simultaneously rather than scheduled one by one. 

From the computational results and other researchers’ 
works we can find that the combined algorithms or 
metaheuristics performed well in solving discrete 
combinatorial optimization problems. The further researches of 

us are to test the combination of different evolutionary 
algorithms, like GRASP or Particle Swarm Optimization, to 
find  better algorithms to different optimization problems 
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