
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

88 | P a g e

www.ijacsa.thesai.org

Performance Enhancement of Scheduling Algorithm

in Heterogeneous Distributed Computing Systems

Aida A. NASR

Computer Science & Eng. Dept.,

Faculty of Electronic Engineering,

Menoufia Uni., Menouf 32952,

Egypt

Nirmeen A. EL-BAHNASAWY

Computer Science & Eng. Dept.,

Faculty of Electronic Engineering,

Menoufia Uni., Menouf 32952,

Egypt

Ayman EL-SAYED

Computer Science & Eng. Dept.,

Faculty of Electronic Engineering,

Menoufia Uni., Menouf 32952,

Egypt

Abstract—Efficient task scheduling is essential for obtaining

high performance in heterogeneous distributed computing

systems. Some algorithms have been proposed for both

homogeneous and heterogeneous distributed computing systems.

In this paper, a new static scheduling algorithm is proposed

called Node Duplication in Critical Path (NDCP) algorithm to

schedule the tasks efficiently on the heterogeneous distributed

computing systems. The NDCP algorithm focuses on reducing

the makespan and provides better performance than the other

algorithms in metrics of speedup and efficiency. It consists of two

phases, priority phase and processor selection phase. From the

theoretical analysis of the NDCP algorithm with other algorithms

for a Directed Acyclic Graph (DAG), the better performance is

observed.

Keywords—static task scheduling; heterogeneous distributed

computing systems; Meta-heuristic algorithms

I. INTRODUCTION

The availability of high-speed networks and diverse sets of
resources lead to a platform, called as heterogeneous platform.
Such a platform contains interconnected resources with
different computing capabilities and different computing
speeds. To run an application in this heterogeneous
environment, several issues need to be considered such as
partitioning the application, scheduling the tasks; etc. It is
referred to such a system as Heterogeneous Distributed
Computing System (HDCS). In recent years, HDCS has
emerged as a popular platform to execute computationally
intensive applications with diverse computing needs [1].

Task scheduling is of vital importance in HDCS since a
poor task-scheduling algorithm can undo any potential gains
from the parallelism presented in the application. In general,
the objective of task scheduling is to minimize the completion
time of a parallel application by properly mapping the tasks to
the processors. There are typically two categories of scheduling
models: static and dynamic scheduling. In the static scheduling
case, all information regarding the application and computing
resources such as execution time, communication cost, data
dependency, and synchronization requirement is assumed
available a priori. Scheduling is performed before the actual
execution of the application [2, 3]. On the other hand, in the
dynamic mapping a more realistic assumption is used. Very
little a priori knowledge is available about the application and
computing resources. Scheduling is done at run-time [4]. In
this paper, it is focused on static scheduling. Static scheduling

has three categories: list-based, clustering and duplication
based.

List-scheduling algorithms contain two phases: a task
prioritization phase, and a machine assignment phase. In
prioritization phase, the algorithms assign a certain priority
that is computed, to node in the DAG. In machine assignment
phase, each task depending on its priority is assigned to
machine that minimizes the cost function [5-9]. Examples of
list-based algorithms are Heterogeneous Earliest Finish Time
(HEFT) and Critical Path on Processor (CPOP) [10]. Another
static scheduling category is task duplication based algorithms,
in which tasks are duplicated on more than one processor to
reduce the waiting time of the dependent tasks. The main idea
behind duplication based scheduling is to utilize processor
idling time to duplicate predecessor tasks. This may avoid
transfer of results from a predecessor, through a
communication channel, and may eliminate waiting slots on
other processors and reduce the communication overheads
[11,12]. An example for duplication algorithms is
Heterogeneous Critical Node First (HCNF) and Scalable Task
Duplication Based Scheduling (STDS) [13,14].

In this paper, a new algorithm called Node Duplication in
Critical Path (NDCP) is developed for static task scheduling
for the HDCS with limited number of processors. The
motivation behind this algorithm is to generate the high quality
task schedule that is necessary to achieve high performance in
HDCS. The developed algorithm is based on critical path
method to give each node a priority, and the duplication
algorithm to minimize communication overheads. Finally, idle
time is decreased in proposed algorithm.

The remainder of this paper is organized as follows.
Section II discusses problem definition. Section III gives an
overview of the related work. Section IV presents our
developed NDCP algorithm with examples. Section V
discusses the results and in section VI, conclusions are given.

II. PROBLEM DEFINITION

Task scheduling for HDCS is the problem of assigning the
tasks of a parallel application to the processors of a HDCS,
which have diverse capabilities, and specifying the start
execution time of each task. This must be done in a way that
respects the precedence constraints among tasks. An efficient
schedule is one that minimizes the total execution time, or the
schedule length, of the parallel application [15-23].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

89 | P a g e

www.ijacsa.thesai.org

The models of HDCS [24] and the model of application to
be considered in this work can be described as follows. By
using DAG, the parallel application is represented. DAG is
defined by the tuple (T,E), where T is a set of n tasks and E is a
set of e edges. Each ti ϵ T represents a task in the parallel
application, which in turn is a set of instructions that must be
executed sequentially in the same processor without
interruption. Each edge (ti, tj)ϵE represents a precedence
constraint, such that the execution of tj ϵT cannot be started
before ti ϵT finishes its execution. If (ti, tj) ϵ E, then ti is a parent
of ti and tj is a child of ti. A task with no parents is called an
entry task tentry, and a task with no children is called an exit task
texit. Each edge (ti, tj) ϵE has a value that represents the
estimated inter-task communication cost required to pass data
from the parent task ti to the child task tj. Because tasks might
need data from their parent tasks, a task can start execution on
a processor only when all data required from its parents
become available to that processor; at that time the task is
marked as ready. The speed of the inter-processor
communication network is assumed to be much lower than the
speed of the intra-processor bus. Therefore, when two tasks are
scheduled on the same processor the communication cost
between these tasks can be ignored. The HDCS is represented
by a set P of m processors that have diverse capabilities. The
n×m computation cost matrix C stores the execution costs of
tasks. Each element ci,j ϵ C represents the estimated execution
time of task ti on processor pj. Precise calculation of the
running times of the tasks on the processors is unfeasible
before running the application. All processors in the HDCS are
assumed to be fully connected. Communications between
processors occur via independent communication units; this
allows for concurrent execution of computation of tasks and
communications between processors. After scheduling all the
tasks of a parallel application on the processors of a HDCS, the
schedule length is defined as the longest finish time of the
HDCS processors. Fig. 1 presents an example of a parallel
application consisting of five tasks and a HDCS with two
processors, where the application is represented as a DAG and
the execution costs estimated for the five tasks on the HDCS
are shown as a computation cost matrix.

Task

t0

t1

t2

t3

t4

P0

7

6

5

2

2

P1

8

9

8

3

4

(a) DAG (b) Computation Cost Matrix

Fig. 1. Example of a DAG and Computation Cost Matrix

Definition (1) Critical Path (CP): CP of a DAG is the
longest path from the entry task to the exit task in the graph.

Definition (2) EST [10]: Denotes the Earliest Start

Time of a task on a processor and is defined as shown in

Equation 1.

EST =max{ TAvailable() ,max{AFT()+ } }--(1)

Where TAvailable () is the earliest time at which processor

 is ready. AFT () is the Actual Finish Time of a task

(where tk is the parent of task ti and k=1, 2,…, n) on the
processor . is the communication cost from task to

task , equal zero if the predecessor task is assigned to

processor . For the entry task, EST(,)= 0.

Definition (3) EFT [10]: Denotes the Earliest Finish

Time of a task on a processor and is defined as shown in

Equation 2.

EFT = EST + --------------------------- (2)

Which is the Earliest Start Time of a task on a processor
 plus the computational cost of on a processor .

Definition (4) Data Ready Time (DRT): is the idle time
waited by a ti on processor pj.

Definition (5) Maximum Parent (MP): maximum parent of
task ti is a parent task tk such that the value of EFT(tk ,pm) +
c(tk,ti) is the largest among all ti's parent tasks.

Definition (6) Very Important Task (VIT): is the task that
belongs to the critical path of DAG.

III. RELATED WORK

In this section, it is given an overview of some algorithms,
specifically list-based scheduling algorithms.

A. Heterogeneous Earliest Finish Time

The HEFT algorithm executes in two phases: a task-
prioritizing phase and processor selection phase [10]. In task
prioritizing phase, the algorithm selects the task with the
highest upward rank at each step. Upward rank is given by
Equation 3.

Ranku= ̅̅ ̅ + ̅̅ ̅̅ --------(3)

Where succ(ni) is the set of immediate successors of task ni,
 ̅̅ ̅̅ is the average communication cost of edge(i,j), and ̅̅ ̅ is

the average computation cost of task ni .In processor selection
phase, the selected task is assigned to the processor which
minimizes its earliest finish time with an insertion-based
approach. The algorithm has an O(n

2
p) time complexity for n

nodes and p processors.

B. Critical Path On Processor Algorithm

The CPOP algorithm consists of two phases: prioritizing
phase and processor selection phase [10]. In task prioritizing
phase, the algorithm selects the task with the highest of upward
rank + downward rank value at each step. Downward rank can
be calculated by Equation 4.

Rankd(ni) = ̅̅ ̅̅ ̅̅̅̅ --(4)

Where pred(ni) is the set of immediate predecessors of task
ni. The algorithm targets scheduling of all critical tasks (i.e.,
tasks on the critical path of the DAG) onto a single processor,
in which the critical tasks are executed in minimum time as
possible. If the selected task is noncritical, the processor
selection phase is based on earliest execution time with
insertion-based scheduling. Like HEFT algorithm, the CPOP

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

90 | P a g e

www.ijacsa.thesai.org

algorithm has an O(n
2
p) time complexity for n nodes and p

processors.

C. Path-based Heuristic Task Scheduling Algorithm

The PHTS algorithm is proposed for a bounded number of
heterogeneous processors consisting of three phases namely, a
path-prioritizing phase, task selection phase, and processor
selection phase [25]. Path prioritizing phase for computing the
priorities for all possible paths. Each path is assigned by a
value called rank(pj), is given by Equation 5.

Rank(pj)=∑ ̅
+
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅------------------------------(5)

Where ̅ is the average computation cost of a task ti. It is

computed by ̅ = ∑

 , and

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the

communication cost of edge from task ti to its successor, if
exists.

In task selection phase, the algorithm selects the
unscheduled tasks from the paths in the sorted path list. During
the task selection, the algorithm applies the following
conditions on each task:

 The task should not be scheduled earlier.

 The task has no parents or its parents are scheduled.

Finally, the algorithm apply the processor selection phase
like HEFT algorithm. The algorithm has an O(n

2
p) time

complexity for n nodes and p processors.

D. Highest Communicated Path of Task Algorithm

HCPT algorithm consists of three phases called, level
sorting phase, task prioritizing phase and processor selection
phase. In level sorting phase, the given DAG is traversed in a
top-down fashion to sort tasks in each level. In task prioritizing
phase, the HCPT algorithm computes the task priority by using
the rank value as shown in Equation 6.

Rank(ti)= MCP(ti)+ (̅̅ ̅̅ ())------(6)

Where MCP(ti) refers to Mean Communication of Parent
tasks. It is computed by Equation 7.

MCP(ti)=(∑

)/y --(7)

Where y is the number of parent tasks. Finally, the
algorithm apply the processor selection phase like HEFT and
PHTS algorithms [8].

IV. OUR SCHEDULING ALGORITHM

The Node Duplication in Critical Path (NDCP) algorithm is
developed for static task scheduling algorithm for HDCS with
limited number of processors. This algorithm based on Critical
Path Merge [26] (CPM) technique and task duplication
technique.

Any algorithm applying the list scheduling technique has
the freedom to define the two criteria: the priority scheme for
the nodes and the choice criterion for the processor. Fig. 2 and
Fig. 3 show steps of NDCP algorithm. It consists of two phases
namely, priority phase and processor selection phase.

A. Priority phase

In this paper, NDCP algorithm modified into priority
scheme, where gives the priority to the path instead of the
node.

 Schedule_Task(ti)

Begin

For each processor in the processor set (є Q) do

 Compute EFT(,) value

 End for
Assign to the pj that minimizes EFT

If ti is VIT

{

 If DRT (ti , pj)>w (MP,pj)

 If EST(ti ,pj)>EFT(MP, pj)

 {

 Duplicate MP on without violate the dependency constraints

 Update EFT of ti on pj

 }

}

End

Fig. 2. Schedule Task Function

Set the computation cost of tasks & communication cost of edges

While there are tasks in given DAG do

 Compute the Critical Path

 using CPx=Max{∑

 + ∑

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅}

 Put critical path in Critical Path List (CPL)

 Remove critical path from the DAG

 Update the DAG

End While

For each path CPx in CPL

For each task ti in CPx

 If ti has no parents or all parents are scheduled then

 {

 Call Schedule_Task(ti)

 For each Waited Task tw in WL

 If all parents of tw are scheduled then

 {

 Call Schedule_Task(tw)

 Remove tw from WL

 }

 End for

 }

 Else

 Put task ti in Waited List (WL)

 End for

End for

Fig. 3. Node Duplication in Critical Path Algorithm (NDCP)

The NDCP algorithm computes the critical path of the
DAG using Equation 8.

CP=Max{∑

 + ∑ } -------------------(8)

Where is the maximum computation of task ti. b

is the number of CP tasks. is the communication

between ti and its successor, where ti and its successor belong
to the same critical path. Then the algorithm removes this
critical path.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

91 | P a g e

www.ijacsa.thesai.org

After updating the DAG, the algorithm computes next
critical path and so on. The NDCP computes a critical path
using the largest weight for each task ti at slowest processor pj,.
It sorts all critical paths into critical path list CPL in
descending order.

B. Processor selection phase

This phase consists of two stages: processor stage and
duplication test stage. In processor stage, NDCP algorithm
selects a CPx from CPL, and then it selects task ti from CPx. If
ti has no parents or all parents are scheduled, the algorithm
calls Scheduled_Task function (as shown in Fig. 2). In
Schedule_Task function, the NDCP algorithm calculates EFT
of task ti by Equation 2 for each processor, and selects the
processor that has a minimum EFT to assign the task. With
high performance algorithms, some processors are idle during
the execution of the application because of DRT. If DRT is
enough to duplicate MP, the execution time of the parallel
application could be reduced [11]. So, the algorithm applies
task duplication to reduce the makespan. Schedule_Task
function executes also stage of duplication test. The algorithm
test, if DRT of task ti is more than the weight of MP on the
same processor pj ,the algorithm duplicates the MP on pj and
updates EFT of task ti. The duplication stage is applied on VIT
only. This must be done without violating the precedence
constrains among tasks. If the task has parents without
scheduled, the algorithm puts this task in waiting list WL to be
ready. Once all parents are scheduled, the algorithm selects the
task from WL to schedule. It also removes that task from WL
and continues. Using WL guarantees scheduling all of
important tasks early. A case study is taken into account as
following.

Case Study: Considering the application DAG shown in
Fig. 4, Table 1 shows the computation matrix. The generated
schedule along with stepwise trace of the HCPT algorithm and
NDCP algorithm are shown in Fig. 5. With applying task
duplication, DRT of tasks decreases. So the schedule length
with task duplication decreases. PHTS, HEFT and CPOP
algorithms were also applied on sample DAG 1, and the results
respectively were 47,47, 57. From Fig. 5 it is clear that our
algorithm is outperforms the others because it marks 43 units.
So the scheduling performance is enhanced. It is noted that, the
NDCP algorithm applies task duplication to decrease the
communication overhead by using idle time in scheduling. The
NDCP algorithm applies the task duplication on VIT only,
because the task that belongs to the critical path is critical task.
So, if EFT of VIT decreases the schedule length of application
will decrease. When the algorithm duplicates a task, it
decreases DRT of its childs and decreases also EFT. This leads
to good utilization of processors in the system.

TABLE I. COMPUTATION MATRIX

Task P0 P1

T1 10 7

T2 8 5

T3 5 2

T4 15 10

T5 12 14

T6 3 7

T7 8 4

T8 4 3

T9 9 7

Fig. 4. Sample DAG 1

V. RESULTS AND DISCUSSIONS

A. Simulation Environment

To evaluate the performance of our developed NDCP
algorithm, a simulator had been built using visual C# .NET 4.0
on machine with:

 Processor: Intel(R) Core(TM) i3 CPU M 350
@2.27GHz.

 Installed memory RAM: 4.00 GB.

 System type: window 7, 64-bit.

To test the performance of NDCP algorithm with the other
algorithms a set of randomly generated graphs is created by
varying a set of parameters that determines the characteristics
of the generated DAGs.

These parameters are described as follows:

 DAG size: n: The number of tasks in the DAG.

 Density:

It is used "sameprob" method to generate the DAG [27].
Let A denote a task connection matrix with elements a(i,j),
where 0≤ i ≤ n, and 0≤ j ≤ n, represent the task number (t0 is
the entry dummy node and tn is the exit dummy node). When
a(i,j)=1, ti precedes task tj, when a(i,j)=0, ti and tj are
independent of each other. In the "sameprob" edge connection
method, a(i,j) is determined by independent random values
defined as follows:

P[a(i,j)=1]<=prob for 1≤i<j≤n and P[a(i,j)=0]> prob for
1≤i<j≤n, P[a(i,j)=0]=1 if i≥j, where prob indicates the
probability that there exists an edge (precedence constraint)
between ti and tj .

With six different numbers of processors varying from 8,
16, 32, 64 and 80 processors. For each number of processors,
six different DAG sizes have been generated varying from 40,
60, 80,100,120 and 150 tasks. In each experiment, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

92 | P a g e

www.ijacsa.thesai.org

probability p is assigned from the corresponding set given
below:

 SETprob={0.3, 0.5, 0.6, 0.7, 0.8}

 (a)HCPT (b) NDCP

Fig. 5. The Schedules Generated by Different Algorithms

HCPT is applied (which is the pest performance algorithm
compared with HEFT, PHTS, CPOP), PHTS (which is the pest
performance algorithm compared with HEFT) and NDCP
algorithms on Standard Task Graph Set (STG) (a kind of
benchmark for evaluation of multiprocessor scheduling
algorithms) [28]. The results of PHTS, HCPT and NDCP
respectively were 254, 230 and 205 units on random task graph
50//tmp/50/rand0005.stg. In addition, the algorithms are
applied on random task graph 50//tmp/50/rand0000.stg, and the
results of PHTS, HCPT and NDCP were 88, 80 and 76 units
respectively, from the results, it is noted that our algorithm
outperforms other algorithms compared in performance.

B. Comparison Metrics and Results

The comparison metrics are schedule length, speedup,
efficiency, and time complexity.

1) Schedule Length
Schedule length is the maximum finish time of the exit task

in the scheduled DAG [26]. The main function of task
scheduling is minimizing an application time, so schedule
length is the important metric to measure performance of task
scheduling algorithm. The NDCP algorithm used critical path
to detect task priority, because the critical path contains a very
important tasks. The NDCP algorithm computes the first
critical path to get rid the critical tasks then it computes the
next critical path (after updating DAG) to get rid the next
critical tasks and so on. It deals with the DAG, after computing
a critical path, as a new DAG with new critical path. The
NDCP algorithm uses also task duplication to reduce DRT of
the successors, and it could reduce the overall time of
application. The algorithm duplicates MP of VIT only.
Therefore, the NDCP algorithm is more efficient than other
algorithms. This appeared from Fig. 6 to Fig. 10. Figures show
scheduling length versus number of tasks with varying number
of processors 8, 16, 32, 64 and 80. Performance ratio in
schedule length is 11%.

Fig. 6. Schedule Length at 8 Processors

Fig. 7. Schedule Length at 16 Processors

Fig. 8. Schedule Length at 32 Processors

Fig. 9. Schedule Length at 64 Processors

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

93 | P a g e

www.ijacsa.thesai.org

Fig. 10. Schedule Length at 80 Processors

2) Speedup
Speedup of a schedule is defined as the ratio of the

schedule length obtained by assigning all tasks to the fastest
processor, to the schedule length of application [24]. The
speedup is given by Equation 9.

Speedup=
 ∑

- ----------------------------- (9)

Where means the weight of task ti on processor pj
and SL means the schedule length. Speedup is a good measure
for the execution of an application program on a parallel
system. Due to minimize schedule length, all processors have
finished tasks execution earlier and speedup of NDCP
algorithm increases. The results of the comparative study
according to the speedup parameter have been presented from
Fig. 11 to Fig. 16. According to the results, performance ratio
of speedup is calculated as 10.5%.

Fig. 11. Speedup with 40 Tasks

Fig. 12. Speedup with 60 Tasks

Fig. 13. Speedup with 80 Tasks

Fig. 14. Speedup with 100 Tasks

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

94 | P a g e

www.ijacsa.thesai.org

Fig. 15. Speedup with 120 Tasks

Fig. 16. Speedup with 150 Tasks

3) Efficiency
Efficiency is the speedup divided by the number of

processors used [24]. The efficiency is described in Equation
10.

Efficiency=

 --------------------(10)

Using task duplication involves the largest number of
parallel computers and makes balance between them.
Efficiency is an indication to what percentage of a processors
time is being spent in useful computation. So efficiency of the
NDCP algorithm outperforms efficiency of the other
algorithms. From Fig. 17 to Fig. 22, figures show efficiency of
the NDCP algorithm compare with HEFT, CPOP, PHTS and
HCPT algorithms. The performance ratio in efficiency which
has been achieved by NDCP algorithm is 9.3%. According to
efficiency parameter, our proposed NDCP algorithm achieves
better performance than the other algorithms.

Fig. 17. Efficiency with 40 Tasks

Fig. 18. Efficiency with 60 Tasks

Fig. 19. Efficiency with 80 Tasks

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

95 | P a g e

www.ijacsa.thesai.org

Fig. 20. Efficiency with 100 Tasks

Fig. 21. Efficiency with 120 Tasks

Fig. 22. Efficiency with 150 Tasks

4) Time Complexity
Time complexity is the amount of time taken to assign

every task to specific processor according to specific priority.
The NDCP algorithm has an O(cp+w*p*n) time complexity
for cp number of critical paths, w number of waited tasks w<n,
n number of tasks and p number of processors.

Our algorithm may approximate time complexity into
O(wpn). From Table II; it is noted that, task duplication
algorithms have high time complexity. But NDCP algorithm
has the lowest time complexity because The NDCP algorithm
tests task duplication, if there is an idle time at specific
processor not at all processors. The algorithm assigns the task
firstly then examines, if there is enough idle time before the
task to duplicate its parent or not so, our algorithm has the
lowest time complexity for task duplication. This makes the
NDCP algorithm outperformance the other algorithms.

TABLE II. TIME COMPLEXITY OF SOME ALGORITHMS

Algorithm Complexity Use Duplication

HEFT O(n2p) No

CPOP O(n2p) No

PHTS O(n2p) No

HCPT O(n2p) No

HCNF O(n2 log n) Yes

NDCP O(wnp) Yes

VI. CONCLUSIONS

In this paper, a new scheduling algorithm has been
presented for heterogeneous distributed computing systems
(HDCS) to enhancement scheduling performance. This
algorithm based on Critical Path Merge (CPM) technique and
task duplication technique. The NDCP algorithm duplicate MP
for VIT only. The performance analysis showed that the
proposed NDCP algorithm has better performance than HCPT,
PHTS, HEFT and CPOP algorithms. According to the
simulation results, it is found that the NDCP algorithm is better
than the other algorithms in terms of schedule length, speedup
and efficiency. The NDCP algorithm also has the lowest time
complexity O(wnp). Performance improvement ratio in
schedule length is 11%, performance improvement ratio in
speedup is 10.5% and performance improvement ratio in
efficiency is 9.3%. In addition, the algorithms are applied on
Standard Task Graph STG as a benchmark, and it is observed
that NDCP algorithm is more efficient than the other
algorithms.

REFERENCES

[1] N. Wahid and N. Wafa, ―A New DAG Scheduling Algorithm for
Heterogeneous Platforms,‖ in 2nd IEEE International Conference on
Parallel Distributed and Grid Computing (PDGC). IEEE, pp.114–119,
2012.

[2] H. Yang, P. Lee and C. Chung , "Improving static task scheduling in
heterogeneous and homogeneous computing systems," IEEE
International Conference on Parallel Processing, ICPP, pp. 45-45, 2007.

[3] H. Izakian, A. Abraham and V. Snasel, "Comparison of heuristics for
scheduling independent tasks on heterogeneous distributed
environments," in Proc. of the International Joint Conference on
Computational Sciences and Optimization, IEEE, vol. 1, pp. 8-12, 2009.

[4] Sheikh, H.F., Ahmad, I. , "Dynamic task graph scheduling on multicore
processor for performance, energy, and temperature optimization,"
IEEE, Published in: Green Computing Conference (IGCC), Page: 1-6,
June 2013.

[5] E. Ilavarasan and P. Thambidurai, "Low Complexity Performance
Effective Task Scheduling Algorithm for Heterogeneous Computing
Environments," Journal of Computer Sciences, 3(2):94-103, 2007.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 5, 2015

96 | P a g e

www.ijacsa.thesai.org

[6] H. Arabnejad and J. Barbosa, "List scheduling algorithm for
heterogeneous systems by an optimistic cost table," IEEE Transactions
on Parallel and Distributed Systems, , no. 99, pp. 1–1, 2013.

[7] R. Eswari and S. Nickolas, "Expected completion time-based scheduling
algorithm for heterogeneous processors", in Proc. International Conf.
Information Communication and Management, IPCSIT vol.16 2011,
pp.72-77.

[8] A. A. Nasr, N. A. El-bahnasawy and A. El-sayed, "Task scheduling
optimization in heterogeneous distributed systems", International
Journal of Computer Applications (0975 – 8887),Volume 107, No 4,
December 2014.

[9] A. A. Nasr, N. A. El-bahnasawy and A. El-sayed, "Task scheduling
algorithm for high performance heterogeneous distributed systems",
International Journal of Computer Applications (0975 – 8887) , Volume
110 – No. 16, January 2015.

[10] H.Topcuoglu, S. Hariri, and M.Y.Wu, "Performance-effective and low-
complexity task scheduling for heterogeneous computing",IEEE Trans.
Parallel and Distributed Systems, Vol. 13, No.3, pp. 260- 274, March
2002.

[11] I. Ahmad, and Y. Kwok, "A New approach to scheduling parallel
programs using task duplication," Proc. International Conf. Parallel
Processing, Vol.2, pp. 47-51, 1994

[12] J. Mei and K Li, "Energy-Aware scheduling algorithm with duplication
on heterogeneous computing systems," Publish in: Grid Computing
(GRID), ACM/IEEE 13th International Conference, Page: 122 -129,
Sept. 2012.

[13] Baskiyar, S.; SaiRanga, P.C., "Scheduling directed a-cyclic task graphs
on heterogeneous network of workstations to minimize schedule length,"
2003 International Conference on Parallel Processing Workshops,
pp.97,103, 6-9 Oct. 2003.

[14] S. Darbha and D. P. Agrawal, "A task duplication based scalable
scheduling algorithm for distributed memory systems". J. Parallel
Distrib. Comput, Vol. 46, PP. 15-27, 1997.

[15] Y. Xu, K. Li, T. T. Khac and M. Qiu, "A multiple priority queuing
genetic algorithm for task scheduling on heterogeneous computing
systems," IEEE 14th International Conference on High Performance
Computing and Communications, pp. 639-646, 2012.

[16] M. Gallet, L. Marchal and F. Vivien, "Efficient scheduling of task graph
collections on heterogeneous resources," IPDPS 2009-Proceeding of the
IEEE International Parallel and Distributed Processing Symposium,
pp.1-11, 2009.

[17] C. Hui, " A high efficient task scheduling algorithm based on
heterogeneous multi-core processor", IEEE, Database Technology and
Application (DBTA) Pages 1-4, Nov. 2010.

[18] Y. Kang and Y. Lin, "a recursive algorithm for scheduling of tasks in a
heterogeneous distributed environment," IEEE, Biomedical Engineering
and information (BMEI), Pages 2099-2103, Vol:4, Oct. 2011.

[19] Rahman M., Venugopal S. and Buyya R., "A dynamic critical path
algorithm for scheduling scientific workflow applications on global
grids," 3rd IEEE International Conference on e-Science and Grid
Computing, pp. 35-42, 2007.

[20] Al Na'mneh, R.A., Darabkh, K.A., "A new genetic-based algorithm for
scheduling static tasks in homogeneous parallel system," Published in:
Robotics, Biomimetics, and Intelligent Computational Systems
(ROBIONETICS), 2013 IEEE International Conference, Page: 46-50,
Nov. 2013.

[21] Thambidurai P. and Mahilmannan R., "Performance effective task
scheduling algorithm for heterogeneous computing system," IEEE
Proceedings of the 4th International Symposium on Parallel and
Distributed Computing, pp. 28-39, 2005.

[22] R. Bajaj and D. P. Agrawal, "Improving scheduling of tasks in a
heterogeneous environment," IEEE Transactions Parallel Distributed
System, vol. 15, pp. 107–118, February 2004.

[23] M. Ehsan, M. Sajjad, H. Altaf, N. Muhammad and A. Shoukat,
"SDBATS: A novel algorithm for task scheduling in heterogeneous
computing systems," IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, pp.43-53, 2013.

[24] N. A. Bahnasawy, M. A. Koutb, M. Mosa and F. Omara, "A new
algorithm for static task scheduling for heterogeneous distributed
computing systems," African Journal of Mathematics and Computer
Science Research Vol. 4(6), pp. 221-234, June 2011.

[25] R. Eswari and S. Nickolas, "Path-based heuristic task scheduling
algorithm for heterogeneous distributed computing systems",
International Conference on Advances in Recent Technologies in
Communication and Computing, 2010.

[26] K. S. Manoj and T. Rajesh, "A survey on scheduling of parallel
programs in heterogeneous systems," International Journal of Advanced
Research in Computer Engineering & Technology (IJARCET) Volume
1, Issue 8, October 2012.

[27] V. A. F. Almeida, I. M. M Vasconcelos, J. N. C. Árabe and D. A.
Menascé. " Using Random Task Graphs to Investigate the Potential
Benefits of Heterogeneity in Parallel Systems", Proc. Supercomputing
'92, pp. 683-691 (1992).

[28] http://www.kasahara.elec.waseda.ac.jp/schedule/index.html.

