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Abstract—The Cognitive Driving Framework is a novel
method for forecasting the future states of a multi-agent system
that takes into consideration both the intentions of the agents
as well as their beliefs about the environment. This is partic-
ularly useful for autonomous vehicles operating in an urban
environment. The algorithm maintains a posterior probability
distribution over agent intents and beliefs in order to more
accurately forecast their future behavior. This allows an agent
navigating the environment to recognize dangerous situations
earlier and more accurately than competing algorithms, therefore
allowing the agent take actions in order to prevent collisions.
This paper presents the Cognitive Driving Framework in detail
and describes its application to intersection navigation for au-
tonomous vehicles. The effects of different parameter choices on
the performance of the algorithm are analyzed and experiments
are conducted demonstrating the ability of the algorithm to
predict and prevent automobile collisions caused by human error
in multiple intersection navigation scenarios. The results are
compared to the performance of prevailing methods; namely
reactionary planning and constant velocity forecasting.

Keywords—Multi-agent systems; autonomous vehicles; intent
prediction; non-linear filtering; Bayesian filtering;

I. INTRODUCTION

The potential safety and convenience benefits that au-
tonomous vehicles can provide to our society are myriad. The
World Health Organization reported that in 2010, 1.24 million
people died due to road vehicle accidents.1 In addition to the
potential of reducing this massive loss of life, autonomous
vehicles have shown promise in increasing vehicle efficiency
and convenience for drivers [1]–[3].

The vast majority of current autonomous vehicle archi-
tectures employ a reactionary response to changes in the
environment. These systems require very frequent and rapid re-
planning in order to avoid dynamic obstacles. Another intuitive
approach is to have the autonomous vehicle predict where the
dynamic obstacles are going to be in order to plan a path.
One popular approach to making this prediction is to assume
the dynamic obstacle continues to move in a straight line
at its current velocity, as is done in the ’velocity obstacle’
literature [4], [5]. Cornell’s autonomous vehicle, Skynet, uses
this type of approach by using an extended Kalman filter
to track dynamic obstacles and then calculates the ’time to

1http://www.who.int/gho/road safety/mortality/traffic deaths number/en

collision’ assuming a constant speed and heading [6]. This
approach does not take into account the control decisions made
by the dynamic obstacle that affect its trajectory, as is the case
for pedestrians and other vehicles.

Some research has begun to incorporate the intentions of
the dynamic obstacle in order to more intelligently predict
its future position. Some methods used to predict intent are
hidden Markov models [7], [8], Markov decision processes [9],
and Gaussian processes or mixture models [10], [11]. These
methods attempt to model trajectories and classify the dynamic
obstacles’ motion according to the corresponding intent. While
this body of research is a step toward realizing more intelligent
vehicles that truly understand their environment, it fails to
consider how the obstacles’ understanding of the environment
will affect its future state.

The aforementioned types of planners work sufficiently
well for navigating in urban environments where other vehicles
are driving safely, but widespread adoption of autonomous
vehicles will take time and human driven vehicles will remain
on the roads for many years. With the presence of non-
autonomous vehicles, the potential for accidents caused by
human error will persist. According to a research study by
the National Highway Traffic Safety Administration, 93% of
traffic accidents were caused by human error.2 Autonomous
vehicles need to be able to operate alongside human drivers
and prevent these potential collisions caused by human error.
Reactive planners will often fail to recognize these dangerous
situations in time to prevent a collision. Using constant ve-
locity forecasting can result in overly cautious driving, due to
frequent false predictions of dangerous situations.

In this research, both the intent and the belief of a dynamic
obstacle are considered when modeling the future states of
the obstacle. This is beneficial for situations in which a
dynamic obstacle, e.g. a pedestrian or another vehicle, may
have an incorrect belief about the environment. For example,
an obstacle vehicle trying to merge into traffic may believe
it has more space than it actually does or it may not see an
oncoming vehicle due to occlusions or driver error. In these
situations, just knowing the driver’s intent does not suffice
since for the same intent she may yield or begin to merge
depending on her belief.

2http://www.nhtsa.gov/people/injury/research/udashortrpt/background.html
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In this paper, the dynamics of a multiple-vehicle system
are modeled as a dynamic Bayesian network (DBN). Obstacle
vehicles’ actions are dependent on both their intent and their
belief of the surrounding environment. This idea is similar
to that proposed in [12], but in this paper the problem is not
formulated as a Markov decision process as to avoid discretiza-
tion of the state space. This is required in order to achieve
the resolution necessary for the autonomous vehicle domain.
Inference is performed over the network using a particle filter
to jointly estimate the vehicle’s intent and belief. Future vehicle
states are then forecast using Monte Carlo simulation and
the probability of a future collision is calculated. Simulation
results show that this method of joint inference allows an
autonomous vehicle to predict a collision with enough time
to take evasive action.

The remainder of this paper is structured as follows. In
section 2, an overview of the cognitive driving framework
is given. The manner of representing the system state and
dynamics is described. In section 3, the process for formulating
the problem as inference over a dynamic Bayesian network is
explained. The structure of the DBN is detailed and the method
of performing joint inference over the network using particle
filtering is discussed. At the end of section 3, forecasting the
future state of the system using Monte Carlo simulation is
explained. Next, in section 4, a detailed analysis is given on
how different parameter choices affect the performance of the
algorithm. Then simulation results demonstrating the accuracy
of the proposed method are presented. Finally, concluding
remarks are given and future research directions are discussed
in section 5.

II. THE COGNITIVE DRIVING FRAMEWORK

This section provides an overview of the cognitive driving
framework by describing how the state of an intersection
environment with multiple vehicles is represented and by
defining the form of the system dynamics.

In the cognitive driving framework, or CDF, the system
consists of two vehicles, the obstacle vehicle and the ego
vehicle, in a known environment. The joint state of the two
vehicles is called the system pose and is represented as

St =

[
1xt
2xt

]
, (1)

where a superscript 1 denotes the obstacle vehicle and a
superscript 2 denotes the ego vehicle. In this paper, the term
’ego vehicle’ refers to the vehicle that is trying to predict the
intent of the obstacle vehicle.

In order to provide a general algorithm, the system dynam-
ics are assumed to be nonlinear and of the form

St+1 =

[
1xt+1
2xt+1

]
=

[
f(1xt,

1 ut,
1 νt)

f(2xt,
2 ut,

2 νt)

]
, (2)

where iut is the control input and iνt is the process noise for
vehicle i at time t. The controller for the autonomous vehicle
running the CDF (the ego vehicle) is assumed to be of the
form

2ut = h(2xt,
1 xt,

2 I), (3)

where the arguments to the nonlinear function h() are the
vehicle’s own state, the state of the obstacle vehicle, and the

intent of the ego vehicle, respectively, at time t. The intent
variable, iI , represents the current behavior the vehicle is
trying to execute (e.g. turn left or go straight through the
intersection). Here the controller, h(), is both highly non-
linear and discontinuous as it is a function of both continuous
and discrete variables. The nonlinearities arise not only from
the piecewise nature due the discrete intent variable, but also
from the nonlinear kinematics of the system and the nonlinear
dependence on the obstacle vehicle state.

The controller for the obstacle vehicle is modeled similarly
as

1ut = h(1xt,Bt,
1 I). (4)

The difference here is that the obstacle vehicle is not assumed
to have exact knowledge of the ego vehicle’s state. Instead,
the obstacle vehicle’s controller operates on the assumed state
of the ego vehicle, the belief, Bt. It should be noted that in
this context the belief is simply a point, not a distribution or
density as sometimes used in the literature. If the ego vehicle
has not been observed by the obstacle vehicle, then Bt = ∅.
The obstacle updates its belief according to the equations

Bt+1 = g(Bt,Ot+1) (5)

Ot = k(St, β, et), (6)

where Ot is the obstacle vehicle’s observation at time t,
and β is a parameter that represents the probability of the
obstacle vehicle observing the ego vehicle at any given discrete
time step. The observation noise, et, is normally distributed
with a mean of zero. Given Bt and Ot+1, Bt+1 updates
deterministically. The observation model, k(), determines from
the system pose if the ego vehicle is in the obstacle vehicle’s
isovist: the volume of space with line of sight visibility from
the obstacle vehicle’s pose. If the ego vehicle is occluded
by other vehicles or buildings, it will not be in the obstacle
vehicle’s isovist, and thus Ot = ∅. If the ego vehicle is in the
obstacle vehicle’s isovist, then the obstacle vehicle will make
a noisy observation of the ego vehicle’s pose with probability
β.

The goal of the cognitive driving framework is to allow the
ego vehicle to predict the future states of the obstacle vehicle
using this model in order to prevent collisions. This is done by
performing online inference of the obstacle vehicle’s belief and
intent, Bt and It. The following section details the procedure
for performing this joint inference and prediction.

III. FILTERING AND FORECASTING

In this section, the model outlined in the previous section
is formulated as a dynamic Bayesian network. How online
inference is performed using a particle filter is described and
a procedure for using Monte Carlo simulation for forecasting
future system states is presented.

A. Dynamic Bayesian Network

The cognitive driving framework uses a dynamic Bayesian
network to capture the dependencies between the random
variables in the CDF system dynamics. A Bayesian network is
a directed acyclic probabilistic graphical model that is used to
represent a set of random variables and their conditional depen-
dencies. A dynamic Bayesian network is a Bayesian network
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Fig. 1: The structure of the DBN used in the cognitive driving
framework.

which relates the variables to each other over sequential time
steps. In literature, dynamic Bayesian networks are sometimes
referred to as two-time-slice Bayesian networks because at
any point in time t, the value of a variable in the network
can be calculated from the prior value (at time t-1) and the
independent variables [13]. Kalman filter models and Hidden
Markov Models are special cases of DBN’s. In Kalman filter
models, both the system dynamics and the measurements are
assumed to be linear Gaussian. In hidden Markov models, the
dynamics and measurements both have discrete distributions.
DBN’s make no assumptions about the form of the dynamics
or measurements and allow the hidden state of the system
to be factored into separate variables so the structure of the
dependencies between the variables can be exploited.

The structure of the DBN used in the CDF is depicted in
figure 1. This graphical model reflects the dependencies given
by the equations in section II. The gray nodes in the graph
denote the variable known by the ego vehicle, the system pose,
St, as given in equation 1. In some contexts, because the value
of this variable is provided to the ego vehicle by its sensors,
it is called the observation. In this work, the observation, Ot,
refers to the obstacle vehicle’s noisy measurement of the ego
vehicle’s pose, 2xt.

Between time-slices, the variables in the DBN flow tem-
porally from left to right and within a time-slice they flow
(more-or-less) from top to bottom. The system pose affects the
obstacle vehicle’s observation which in turn determines the ob-
stacle vehicle’s belief. The obstacle vehicle’s intent and belief
of the system pose inform the obstacle vehicle’s controller.
The joint actions of the two vehicles result stochastically in
the next system pose. Without loss of generality, the intent of
the obstacle vehicle is assumed to be constant throughout an
episode.

B. Filtering

Now that the two-vehicle system dynamics are represented
as a DBN, a method of filtering needs to be implemented

Fig. 2: Simplified model of the CDF using the joint DBN state
variable Xt.

in order to perform online inference of the obstacle vehicle’s
belief and intent. By combining equations 2 through 6 we can
represent the DBN state and dynamics, respectively, as

Xt = [St,Bt, I]T (7)

Xt+T ∼ P (Xt+T |Xt+T−1) (8)

This condenses the DBN in figure 1 to that shown in figure 2,
which is the typical representation for filtering problems. The
variable Yt represents the measurement, which in this study is
the system pose, St.

The system dynamics are highly non-linear, as shown
in section II . Instead of linearizing the dynamics at the
expense of accuracy of the estimation, a non-linear Monte
Carlo based filtering method was employed. Monte Carlo (MC)
methods are ideally suited for the current application due to
their ability to model highly non-linear systems with multi-
modal, non-Gaussian distributions [14]. In this study, the DBN
state is composed of both continuous and discrete variables,
representing discrete intention hypotheses making traditional
linearization methods such as the Extended or Unscented
Kalman Filter unsuitable for this application.

Particle filters are sequential Monte Carlo methods that
maintain an estimate of the posterior distribution of the system
state as a set of particles. This non-parametric representation
is capable of representing arbitrarily complex distributions as
long as a large enough particle set is used. Each particle is ini-
tialized according to the a priori distribution and is propagated
through the noisy system dynamics. The particles are then re-
sampled according to the particles’ importance weights. The
importance weight of a particle is proportional to the likelihood
of the particle generating the measurement, Yt = St. In this
study, the likelihood is represented as a Gaussian distribution
centered around the measured system pose. The weight of each
particle is proportional to the probability of the system pose
of the particle given the measured system pose, as shown in
the equation below.

w
[m]
t ∝ P (X

[m]
t |St) ∼ N (St,Σ). (9)

X
[m]
t ∼ P (X

[m]
t |X

[m]
t−1) (10)

Σ is the variance of the Gaussian likelihood function. A
superscript [m] denotes that the variable corresponds to the
mth particle. The weights are normalized such that they sum
to one.
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Fig. 3: The distribution of particles using Monte Carlo simu-
lation for a look-ahead time of 2.5 seconds.

Once the importance weights are calculated, the particles
are re-sampled in order to move the posterior distribution
toward the region of the state space that matches the measure-
ment. The technique of stratified or low-variance sampling
is employed to reduce computational complexity [15]. The
resulting set of particles is an approximation to the actual
state of the system. As the number of particles, M, approaches
infinity, the particle set converges to the true distribution of
the state.

It is worthy of note that the version of the Cognitive
Driving Framework presented here does not require that the
obstacle vehicle controller (equation 4) be know; in fact, nor is
it required that the system dynamics (equation 2) are known.
All that is required for the CDF is that a simulation of the
DBN system dynamics is available, i.e. that samples can be
generated from the distribution P (Xt+1|Xt).

C. Forecasting

Using the particle filtering method described in the previ-
ous subsection, an online estimate of the system state can be
maintained. To predict and anticipate collisions in the future,
though, the future state of the system must be estimated. To
accomplish this, the CDF uses Monte Carlo simulation to
propagate the particle set representing the current system state,
Xt, forward in time, creating a new particle set, Xt+T , that
approximates the state of the system at some time t+T in the
future. This is done by recursively sampling the DBN system
dynamics given in equation 8. The probability of a collision
can then be calculated from this new particle set by simply
determining the percentage of particles in the set that represent
a collision state.

An example future state distribution is shown in figure 3.
Here, a vehicle is at a stop sign at a T-intersection and has
the option to turn left or right. If it is turning left, it may
also choose to yield if there is oncoming traffic. In the figure,
the set of particles for a look-ahead time of 2.5 seconds is
plotted. Three distinct modes can be seen in the distribution
corresponding to the three potential behaviors of the vehicle:
turning left, turning right, and yielding. This situation will

1: Algorithm Cognitive Driving Framework(χt−1,St)
2: χt = χt = ∅
3: for m = 1 to M do
4: X

[m]

t ∼ P (X
[m]
t |X

[m]
t−1)

5: w
[m]
t = P (X

[m]

t |St)
6: χt = χt + 〈X [m]

t , w
[m]
t 〉

7: χt = Resample(χt, wt)
8: χt+T = χt
9: collisions = 0

10: for m = 1 to M do
11: for τ = 1 to T do
12: χ

[m]
t+τ ∼ P (χ

[m]
t+τ |χ

[m]
t+τ−1)

13: collisions = collisions+ CheckCollision(χ
[m]
t+T )

14: P (collision) = collisions/M
15: if P (collision) ≥ Threshold then
16: EmergencyStop

17: return χt

Fig. 4: Pseudo-code overview of an update for the Cognitive
Driving Framework algorithm.

be discussed and analyzed in more detail in the experimental
results, section IV.

The cognitive driving framework algorithm is given in
figure 4. In lines 2 through 5 the particle filter update is
performed on the particle set, χ. Line 2 samples the next
state from the DBN dynamics and line 3 sets the weight for
the new sample based on the measured system pose. After
this is done for all the particles, this weighted particle set,
χt, is resampled according to the weights in order to move
the distribution of the particles toward the measurement, as
shown in line 5. In line 6, the particle set representing the
future state of the system, χt+T is initialized to be equal to the
set representing the current state, χt. Line 7 initially sets the
number of particles in a collision state to zero. Lines 8 through
11 recursively propagate each particle one at a time through the
system dynamics to obtain samples of the system state T time
steps in the future. After each sample is propagated through
the dynamics T times, it is checked to see if it is in a collision
state in line 11, and the number of particles in a collision
state is counted. Line 12 then calculates the probability of a
collision as the number of particles in a collision state divided
by the total number of particles. If the probability of a collision
is higher than the set threshold, then an emergency braking
maneuver is triggered in line 14. Otherwise, the algorithm just
returns the particle set representing the current system state,
χt.

There are multiple parameters used in this algorithm,
namely, the look-ahead, T , the threshold, Threshold, and the
number of particles, M . The selection of values for these
parameters and their influence on the performance of the
algorithm is discussed in section IV-B.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the ability of the CDF to perform
joint inference on the intent and belief of an obstacle vehicle as
well as forecast the future state of the multi-agent system, two
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Fig. 5: A close up image of the simulated intersection envi-
ronment for scenario one. The ego vehicle (red) attempts to
predict the intent of the obstacle vehicle (blue).

simulated experiments were conducted. For comparison, the
same experiments were also conducted using both a reactive
planner and a constant velocity planner. This section first
describes the simulation set up for the two tested scenarios.
Next, a detailed analysis is performed to determine the optimal
choice of parameters as well as examine the effects of param-
eter choice on the performance of the CDF algorithm. Lastly,
the simulation results using all three methods are presented
and discussed.

A. Simulation Setup

The CDF was tested using two simulated T-intersection
scenarios. Scenario one is depicted in figure 5. The au-
tonomous vehicle (the ego vehicle, in red) has the right of
way. An obstacle vehicle (blue) is stopped at a stop sign at
the intersection and can either turn left into the ego vehicle’s
lane or turn right. It is desirable for the ego vehicle to predict
not just the intention of the obstacle vehicle to turn left, but
whether the obstacle vehicle is going to turn left in front of
the ego vehicle or if it is going to yield.

Scenario two takes place in the same intersection environ-
ment, but the ego vehicle is now traveling south (toward the
bottom of the figure) through the intersection. The obstacle
vehicle is driving north toward the intersection and has the
option to proceed straight through the intersection or to turn
left. Again, it is desirable to predict not just whether the
obstacle vehicle is going to turn left or go straight, but whether
the obstacle vehicle is going to turn left in front of the ego
vehicle, yield to the ego vehicle, or go straight.

The simulation uses a bicycle kinematic model for the
vehicles as described in [10]. The pose for a vehicle from
equation 1 is given by the four dimensional vector

xt =

xtytθt
vt

 , (11)

Fig. 6: A close up image of the simulated intersection envi-
ronment for scenario two. The ego vehicle (red) attempts to
predict the intent of the obstacle vehicle (blue).

where xt and yt are the position of the center of the rear axle
in the ground plane, θt is the vehicle’s orientation, and vt is the
speed of the vehicle, all at time t. The superscript indicating
which vehicle the pose corresponds to has been left off here
for clarity. The dynamics from equation 2 are then given by

xt+1 = f(xt,ut,νt) =

 xt + vt ·∆t · cos θt
yt + vt ·∆t · sin θt

θt + vt·∆t
l · tan (2ut +2 νt)

vt + (1ut +1 νt) ·∆t

 (12)

where the elements of the two dimensional control input are
acceleration, 1ut, and steering angle, 2ut. The two components
of the process noise, 1νt and 2νt, are both zero mean Gaussian
noise affecting the realization of the controller’s commanded
acceleration and steering angle, respectively. The parameter l
is the wheelbase of the vehicle. In these simulations, a time
step, ∆t, of 0.1 seconds is used.

The controller used in this simulation is a piecewise func-
tion that is composed of a different path following controller
for each intent, I. A hand tuned finite state machine determines
whether the vehicle should yield to the other vehicle or if it
is clear to proceed. As shown in equations 3 and 4, the ego
vehicle determines its control input based on the known poses
of both vehicles, while the obstacle vehicle only has access to
its own pose and a noisy estimate of the ego vehicle’s pose.

B. Parameter Analysis

In this section, the affect of varying the parameter values
in the CDF algorithm are analyzed. In particular, the look-
ahead (how far into the future to forecast the system state)
and the threshold (the collision probability at which evasive
action should be triggered) are examined.

When analyzing the performance of the CDF algorithm,
two key metrics were considered: the percentage of imminent
collisions avoided and the number of false positive predictions
of an imminent collision. Both of these metrics need to be
considered when selecting values for the look-ahead and the

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 5, 2015 

121 | P a g e
www.ijacsa.thesai.org 



Fig. 7: How CDF performance varies with different values for
the look-ahead and the threshold.

threshold because the parameters that result in good perfor-
mance on one metric cause poor performance according to the
other. The optimal selection of parameters will simultaneously
minimize both the number of collisions and the number of
false positive collision predictions.

In order to characterize the effects of different parameter
values on the performance of the CDF algorithm, a series of
simulations were run on a range of values for both the look-
ahead and the threshold. For each (T, Threshold) pair, 100
simulations were run on scenario one of the T-intersection
navigation problem.

Figure 7 shows how the percentage of imminent collisions
avoided varied with the parameter settings. Figure 8 shows how
the number of false positive imminent collision predictions
varied with different parameter values. As one would expect,
lower values for the threshold correspond to a greater number
of collisions avoided but also correspond to a greater number
of false positive predictions. The influence of the look-ahead is
less obvious, as poor performance occurs at look-ahead values
that are both too small or too large. For small values of the
look-ahead, there is not enough time to take evasive action to
prevent the collision by the time it is recognized. On the other
hand, for larger values of the look-ahead, the covariance of
the future state distribution grows very large making it more
difficult to recognize situations where collisions are imminent.

The selection of the parameter values can be seen as a
’cautiousness/aggressiveness’ setting for the autonomous ve-
hicle. For some parameter settings (i.e. low threshold values),
the vehicle will behave very cautiously, avoiding 100% of
imminent collisions but also frequently braking unnecessarily
when collisions are falsely predicted. Alternatively, the settings
can be tuned so that the vehicle will not brake until it is
nearly certain the obstacle vehicle is going to cause a collision.
In this study, the collision avoidance metric was weighted
more heavily and parameter values were chosen that had a
reasonably low number of false positive predictions. Ultimately
the look-ahead was chosen to be 1.6 seconds (16 time steps)
and the threshold was set to a collision probability of 0.35.

Fig. 8: Number of false positive collision predictions with
different values for the look-ahead and the threshold.

The number of particles, M , used to approximate the
current and future state distributions was chosen heuristically.
As the number of particles increases, so does the accuracy
of the approximation, but this improved accuracy comes at
the cost of increased computational expense. Therefore, it
is desirable to use as few particles as possible while still
maintaining a sufficiently accurate posterior distribution. It was
observed in this study that as few particles as 100 could be
used to approximate the posterior distribution with acceptable
convergence results.

C. Results and Analysis

Experiments were performed to compare the CDF to both
a purely reactionary planner and a constant velocity planner.
These two methods are commonly used in moving object
tracking and collision avoidance. Reactive planners continually
check to see if the planned path is still clear, if it is not,
the robot will either stop or plan a new path avoiding the
obstacle that is blocking the current path. Reactive planners
are extremely simple but are only effective for slow moving
robots using very frequent update rates. Constant velocity
planners are the most common type of planner where the robot
tracks moving objects’ positions and velocities. Collisions
are predicted by assuming the robot and the obstacle will
maintain a constant velocity. The constant velocity trajectories
are checked to see if a collision state will occur in the future.
This technique often results in more intelligent trajectories
than reactive planning, but also often results in frequent false
positive collision predictions and performs poorly when the
constant velocity assumption is violated.

Two experiments were performed, corresponding to the two
scenarios presented in section IV-A. In both experiments, the
CDF algorithm calculates the probability of a collision at a
look-ahead of 1.6 seconds in the future, or 16 time steps ahead
at simulation rate of 10 Hz. If the probability of a collision
exceeds the threshold of 0.35, the ego vehicle then brakes at
the maximum rate in an attempt to avoid the collision. The
maximum rate of deceleration used in the experiments was 16
ft/s2, which is reasonable for a passenger vehicle traveling
on a road surface with a moderate coefficient of friction.
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TABLE I: Simulation results using the cognitive driving frame-
work in scenario one.

Prediction
Scenario Cutoff Yield Right Total
Cutoff 385 1 18 404
Yield 2 312 15 329
Right 0 0 267 267

1000

When testing the reactive planner, this braking maneuver was
initiated when any part of the obstacle vehicle entered the ego
vehicle’s lane. When testing the constant velocity forecaster,
the braking maneuver was initiated when the planner reported
a collision state at a look-ahead of 1.6 seconds, the same as
used with the CDF. The constant velocity trajectories were
assumed to be deterministic. Each planner was run at a rate of
10 Hz.

The first experiment performed was scenario one as de-
scribed in section IV-A. In this experiment, the ego vehicle is
driving north through the intersection at a speed of about 30
miles per hour (48 km/h). The obstacle vehicle is stopped
at the stop sign and randomly chooses to turn right, with
probability 0.25, or left, with probability 0.75. Based on the
obstacle vehicle’s stochastic observations, it sometimes falsely
believes the intersection is clear and turns in front of the ego
vehicle, causing a collision to be imminent. A collision is
considered ’imminent’ if the system state is such that if the
ego vehicle does not take preventative measures, a collision
will result. The parameter β in equation 6 was set to 0.05.
This selection of β corresponds to about a 40 percent chance
of the obstacle vehicle observing the ego vehicle within the
first second of simulation.

Table I details the simulation results for the first experiment
using the CDF. The simulation was run for a total of 1000
episodes and the obstacle vehicle cutoff the ego vehicle a total
of 404 times. In this context, ’cutoff’ means that if the ego ve-
hicle were to keep its speed constant and not take preventative
measures, a collision would result. The results show that the
CDF was able to recognize 385 out of 404 imminent collisions
and only 2 benign situations were mistaken as cutoff situations.

For comparison, the simulation was then run using the
reactive planner and the constant velocity planner, again for
1000 episodes each. Table II compares the performance of
all three methods. The CDF was able to avoid 95% of the
imminent collisions caused by the obstacle vehicle, while the
reactive planner was only able to avoid 47% of the imminent
collisions. The constant velocity planner was able to prevent
almost all of the imminent collisions at 98%, but at the cost
of a very high false positive rate of 43%. Here, false positive
means that at some point, the planner believed a collision to be
imminent and initiated the emergency braking maneuver when
in fact a collision was not imminent. The CDF only had a false
positive rate of 9.4% and since the CDF continuously updates
its online estimate of the obstacle vehicle’s intent, it quickly
recognizes when the obstacle vehicle is actually turning right
and aborts the braking maneuver.

TABLE II: Comparison of simulation results for scenario one.

Collisions Collisions False Collisions
Imminent Occurred Positives Avoided

CDF 404 22 9.4 % 94.6%
Reactive 404 213 0% 47.3%
Velocity 390 7 43.3% 98.2%

The second experiment performed was scenario two as
described in section IV-A. In this experiment, the ego vehicle is
driving south through the intersection, again at a speed of about
30 miles per hour, while the obstacle vehicle is heading north
toward the intersection. The obstacle vehicle randomly chooses
to go straight, with probability 0.25, or left, with probability
0.75. As with the first experiment, if the obstacle vehicle’s
intent is to turn left, it may cutoff the ego vehicle depending
on it’s belief. This scenario is more difficult to recognize than
scenario one since the obstacle vehicle is moving at a much
higher speed.

The results for the CDF algorithm on this experiment
are given in table III and the comparison between all three
methods is given in table IV. It can be seen that the CDF only
had one false negative classification, recognizing 196 out of
197 imminent collisions before they occurred, 94% of which
were able to be avoided. The reactive planner performed very
poorly, only avoiding 2.5% of imminent collisions. This low
collision prevention rate is due to the fact that the reactive
planner is unable to detect the dangerous situation with enough
time to take evasive action. The constant velocity planner
also performed poorly, only preventing 8.6% of collisions.
The CDF did have a significant number of false positive
classifications, though, due to recognizing that the obstacle
vehicle’s intent is to turn left but not recognizing that the
obstacle vehicle is going to yield. Similarly to scenario one,
this results in initiating the braking maneuver and then aborting
once the ego vehicle recognizes that the obstacle vehicle is
yielding.

After testing these three different planners on two different
intersection navigation scenarios, it is clear that the CDF is
better at optimizing the trade off between avoiding collisions
and minimizing false positive classifications (overly cautious
driving) for a variety of situations. The main advantage to the
reactive planner is that it has a very low false positive rate
(0% for the two scenarios tested here), but it performs very
poorly at preventing collisions. Both of these facts are a result
of the planner not recognizing a collision as imminent until
it is nearly about to occur, so the planner is very confident
that the collision is indeed imminent, but there is not enough
time to prevent the collision at typical driving speeds. The
constant velocity planner performed well on scenario one, with
a collision avoidance rate 3.6% higher than the CDF, but had
nearly 5 times as many false positive classifications. Further-
more, the constant velocity planner performed very poorly on
scenario two, only preventing 8.6% of imminent collisions.
This is caused by the planner’s failure to anticipate the driver’s
turning action due to the constant velocity assumption.

The cognitive driving framework, on the other hand, was
able to prevent about 94% of collisions in both scenarios.
At the same time, the CDF had a fairly low false positive
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TABLE III: Simulation results using the cognitive driving
framework in scenario two.

Prediction
Scenario Cutoff Yield Right Total
Cutoff 196 0 1 197
Yield 273 279 5 557
Right 1 0 245 246

1000

TABLE IV: Comparison of simulation results for scenario two.

Collisions Collisions False Collisions
Imminent Occurred Positives Avoided

CDF 197 12 34.1% 93.9%
Reactive 200 195 0% 2.5%
Velocity 234 214 8.0% 8.6%

prediction rate with only 9.4% false positive predictions in
scenario one and 34% in scenario two. As discussed in section
IV-B, by adjusting the parameters in the CDF algorithm, the
’cautiousness’ of the autonomous vehicle can be tuned to
users’ preferences. Additionally, in future work, a fuzzy logic
controller can be used to determine when and how much the
ego vehicle should brake in order to better optimize collision
avoidance and user comfort.

V. CONCLUSION AND FUTURE WORK

This paper presented the cognitive driving framework, a
method for joint inference of the intent and belief of an
obstacle vehicle in an intersection navigation scenario. The
goal of the CDF is to allow an autonomous vehicle to predict
when a potentially hazardous situation is about to occur early
enough to allow the autonomous vehicle to take evasive action
to prevent a collision. The formulation of the problem as
a dynamic Bayesian network was presented. A non-linear
filtering method was proposed using a particle filter to estimate
the posterior distribution of the state of the DBN. Monte Carlo
simulation is used to estimate the future sate distribution and
calculate the probability of a collision. Finally, the accuracy
of the estimation method was demonstrated by simulating two
intersection navigation scenarios where an obstacle vehicle
cuts off the autonomous vehicle. The simulation results show
that the CDF is able to predict and prevent 94% of imminent
collisions in two different intersection navigation scenarios.
For comparison, the same simulations were run using a purely
reactionary planner and a constant velocity planner. The results
show that the reactive planner prevented only 47% and 3% of
imminent collisions on the two scenarios. The constant velocity
planner performed well on the first scenario, preventing 98%
of collisions, but only prevented 9% of collisions in the second
scenario.

This work has some natural extensions that should be
explored. Adding additional vehicles to the intersection envi-
ronment would lead to some interesting challenges that the
CDF should be evaluated on, such as how the algorithm
handles occlusions and how computation time scales with the

number of vehicles. The framework could be strengthened by
relaxing the assumption that the vehicle poses are known. Ad-
ditionally, the authors are implementing the cognitive driving
framework on an autonomous vehicle platform in order to test
the algorithm in an actual intersection navigation scenario.
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