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Abstract—Over the years, several techniques for improving
throughput of wireless communication have been developed in
order to cater for the ever increasing demand of high speed
network service. However, these techniques can only give little
improvement in performance because packets have to be delivered
as is. As such researchers have begun thinking outside the box
by proposing ideas that require relay nodes to temper packets’
contents in order to improve the throughput of a network. One
of the state of the art techniques in this field is called Network
Coding (NC). NC is a state of the art technique that allows
relay nodes linearly combine two or more packets in a way
they can be recovered upon reaching their destination. However,
increasing packet size increases possibility of error affecting it.
In this paper, the authors decide to investigate whether adding
data recovery technique can improve the performance of a
network that uses network coding, if it can, by how much can
it? Is it worth the trouble? In order to answer these questions,
the authors carried out a quantitative analysis of throughput
in a Stop-and-Wait Automatic Repeat reQuest (SW-ARQ) data
transmission system with Network Coding (NC) and Forward
Error Correction (FEC). Vandermonde matrix is chosen as the
coding technique for this research because it has both NC and
data recovery characteristics. Python programming language is
used to develop three Discrete Event Simulations: SW-ARQ
without any NC, SW-ARQ with NC and SW-ARQ with NC and
FEC. The obtained results show that SW-ARQ with NC and
FEC is superior to traditional SW-ARQ in terms of throughput,
especially in channels with high error rates.

Keywords—Network Coding; Automatic repeat request (ARQ);
Stop-and-Wait (SW); Vandermonde Matrix

I. INTRODUCTION

Non-ideal behavior of communication channel causes re-
ceived data to sometimes change from its original form, thus
leading to misinterpretation. Automatic Repeat reQuest (ARQ)
is one of the basic error control protocols used to provide
reliable communication between two wireless devices. There
are three main ARQ systems namely; Go-back-N, Selective
Repeat and Stop-and-wait [1].

In stop-and-wait (SW) ARQ, transmitter sends a frame
and then waits until it receives a reply (i.e. Acknowledgment
(ACK) or Negative ACK (NACK)) for the transmitted packet
from the receiver. Although, SW-ARQ is simple to implement
and guarantees that packets are received in order, it is not
efficient because of the wasted time during waiting for replies.
Thus, it has low throughput [2]. Throughput can be defined as
the average rate of successful data transmission over a network,
and it is normally given in bits per second (bps). Go-back-N
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Fig. 1: Butterfly Network Coding in a multicast network

ARQ and selective repeat ARQ protocols manage to reduce
ACK overhead by transmitting multiple frames without waiting
for their ACK. For further information on ARQ protocol refer
to [1] [2].

Other data transmission techniques for improving overall
network’s throughput are Network Coding (NC) and Forward
Error Correction (FEC). NC was invented by Ahlswede et al
[3] in 2000. It is an in-network data processing technique that
allows intermediate nodes to aggregate two or more packets
into one before forwarding it [4]. Figure 1 shows a butterfly
wireless network with the vertices representing routing nodes
and the edges representing the path of the packets. NC has
several advantages; studies have shown that NC enhances the
overall network throughput [1][5], it increases performance in
multi-rate networks [4] and increases robustness of the network
[6].

Forward Error Correction (FEC) on the other hand, is an
error control technique where redundant data is systematically
generated and embedded in a packet such that it can be
regenerated in the event of error during transmission [7]. In
FEC, the transmitter takes N data symbols and encode them
with M parity symbols to form N +M new symbols before
transmitting them. At the receiver the original data symbols
can be reconstructed as long as N out of the N +M received
symbols are error free. For more information on FEC refer to
[7].
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This paper extends the work in [8], where the throughput
of a SW-ARQ with NC was investigated. Here we investigate
the effects of NC when combined with FEC on the throughput
of SW-ARQ using Python high level programming language.
The remaining part of this paper is as follows: Section II
reviews some of the related work in ARQ and NC. Section
III provides detailed information on the developed network
model and compares it with the work in [8] where necessary. In
Section V analysis of the results obtained and comparison with
results in [8] is carried out. Finally, in Section VI conclusion(s)
was/were drawn based on the results that were obtained.

II. RELATED WORK

De Vuyst al. in [9] present an analysis of the SW-ARQ
protocol, in which it was pointed out that errors occur in bursts
as packets are transmitted from the transmitter to the receiver
and that the probability of receiving an erroneous packet de-
pends on state of the channel when the packet was transmitted.
Gilbert et al [10] divide these states into two; GOOD state
and BAD state — using two-state Markov Chain to model the
channel. Their result shows that the delay (which is inversely
proportional to throughput) increases sharply with increase in
the capacity of the channel. In order to compensate for the
drop in throughput due to increase in capacity, techniques like
Forward Error Correction(FEC) and Network Coding (NC) are
often used.

In [11], the authors investigate the effect of network coding
(NC) on throughput of the three basic ARQ systems. Their
findings show that NC significantly improves the throughput
of all the three ARQ protocols. Furthermore, studies show that
wireless networks using NC give better throughput even though
the complexity of the system increases. A novel Automatic
Repeat reQuest (ARQ) system for cooperative wireless net-
works is introduced by Antonopoulos et al [12] in 2011, where
cooperative and network coding techniques are combined in
order to enhance the system’s performance. They are able to
obtain 85% bandwidth improvement due to the reduction of the
total number of transmissions. Li et al [13] propose system for
wireless broadcast system based on the random network coding
using two-State Markov Chain to model the channel. The
authors analyze the throughput of a typical SR-ARQ using;
Linear Network Coding (LNC) and Random Network Coding
(RNC) and it is found that random network coding gives better
throughput, especially in the case of a system with a large

Algorithm 1: Pseudo-code for SW ARQ-NC used in
protect [8]

1: pktCount← 0
2: clear buffer
3: while (pktCount < n) do
4: wait for packet
5: buffer ← packet
6: pktCount← pktCount+ 1
7: end while
8: Matrix ← generated Vodermonde Matrix(buffer)
9: i← 0

10: while (i ≤ pktCount) do
11: reply ← transmit(Matrix[i])
12: end while

number of receivers. Liu et al [14], introduce NC-ARQ system
based on Two-State Markov channel for Cognitive Radio (CR)
broadcast, where lost packets are XORed by CR base-station
forming a new packet. The new packet is then broadcasted
by CR base-station to all of CR users. The results show
noticeable improvement in throughput, especially when there
are large numbers of CR users. On the contrary, authors in
[15] study and analyze the steady-state throughput of SW-ARQ
with NC using finite state machine, results obtained show that
as the number of incoming links to the base-station increase a
bottleneck in information delivery is formed.

Alsebae et al [8], study the effect of network coding (NC)
system on the throughput of SW-ARQ. The system is sim-
ulated using MATLAB SimEvents Discrete Event simulation
toolbox. The system is described in Algorithm 1. It measures
the throughput of two nodes with similar function to node 3
and 4 in Figure 1. In their work, the transmitter waits for n
packets, which are then converted into an n×n Vandermonde
matrix (see Equation (1)). Each row (or block) of the matrix
is considered as a new packet. These new packets are then
transmitted to the receiver where the original n packets are
regenerated. The researchers conclude that SW-ARQ with NC
has better throughput, particularly in cases where the channel
has high error rate. Finally, they postulated that it could give
higher throughput than that which they have accomplished.
This led to the research reported in this paper, where FEC
abilities of Vandermonde matrix have been exploited. This
approach is inspired by the fact that probability of error
increases exponentially with increase in packet size. Therefore,
there is need to add FEC to the protocol in order to increase
its throughput as we shall see in Section III.

III. SW-NC WITH FORWARD ERROR CORRECTION

V(nxn) =


1 1 . . . 1
α1 α2 . . . αn
α2
1 α2

2 . . . α2
n

...
...

. . .
...

αn−1
1 αn−1

2 . . . αn−1
n

 (1)

The proposed system is simulated using two nodes, node 3
and 4 of Figure 1. The system has a transmitter which collects
n packets. It converts the n packets into a n×n Vandermonde
Matrix. The matrix takes the general form shown in Equation
1, where each row is a block of data that can be transmitted
as a packet. At the receiver, the blocks are broken down into
their original components (i.e. the earlier n packets).

Algorithm 2 provides a general overview of the proposed
SW-ARQ with NC and FEC. The system consists of three main
simulation components namely;

A. Transmitter Model

This part is modeled to contain two sub-modules namely
packet generation and encoding. Packet generator, generates
packets at a fixed rate λkbps. Once the time (i.e. packet size

λ )
has pass, the packet generation sub-module will add a new data
packet to the transmitter’s buffer. Every data packet is saved in
the format: [seqnum, payload], where seqnum is the packets
sequence number and payload is the size of the packet in

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 6, 2015 

292 | P a g e
www.ijacsa.thesai.org 



Algorithm 2: Pseudo-code for proposed system
1: pktCount← 0
2: clear buffer
3: while (pktCount < n) do
4: wait for packet
5: buffer ← packet
6: pktCount← pktCount+ 1
7: end while
8: Matrix ← generated Vodermonde Matrix(buffer)
9: i← 1

10: while (i ≤ pktCount) do
11: reply ← transmit(Matrix[i])
12: if (reply = NACK and i 6= pktCount) then
13: i← i+ 1
14: else
15: if (reply = ACK) then
16: exitWhile
17: end if
18: end if
19: end while

bits. This process is repeated until the total number of packets
generated equals to a certain number of the pre-programmed
packets (n).

After the required numbers of packets were generated,
the transmitter forwards them to the Vandermonde Matrix
Encoder. There, the packets are stripped off of their headers
and trailers before they are converted into blocks representing
the rows of the Vandermonde matrix as shown in Equation 3.
The Vandermonde Matrix is formed purely from the packets
payload. The advantage of Vandermonde Matrix is that the
encoded data packets are linearly independent. Hence the
receiver is able to recover the packets. The mathematical equa-
tion representing how packets are converted to Vandermonde
Matrix is as follows:

let P1, P2, . . . Pn be packets generated and b1, b2, . . . bn be
the blocks generated then,

b1 = P1 + P2 + · · ·+ Pn
b2 = P 2

1 + P 2
2 + · · ·+ P 2

n

...
bn−1 = Pn−1

1 + Pn−1
2 + · · ·+ Pn−1

n (2)


b0
b1
b2
...

bn−1

 =


1 1 . . . 1
P1 P2 . . . Pn
P 2
1 P 2

2 . . . P 2
n

...
...

. . .
...

Pn−1
1 Pn−1

2 . . . Pn−1
n



1
1
1
...
1

 (3)

Note that the first row of the Vandermode Matrix is always
filled with ones as such this row is never transmitted. On
the contrary, it is transmitted in [8]. This can be seen as an
overhead since this information is redundant.

After each transmission, the transmitter pauses until it
receives the ACK or NACK from the receiver. On one hand,
if the transmitter receives NACK, it transmits the next block
in the hope that a different column might be in error, thereby
allowing the receiver to apply forward error correction. On
the other hand, if the block in question is the last block,
then the transmitter keeps sending it (since there are no more
blocks to send) until it receives an ACK. As a rule of thumb,
transmission is over whenever ACK is received, because it
signifies that all packets can be recovered from the blocks
received. However, the authors in [8] fail to take the advantage
of this unique characteristic of the Vandermonde matrix. Thus,
all columns are transmitted.

B. Channel Model

In order to simulate corrupt frames accurately, the channel
is modeled using Binary Symmetric Channel (BSC) [16][17].
BSC is an independent and identically distributed (i.i.d.) chan-
nel with the probability of a given bit ”flipping” as ε also
known as Bit Error Rate (BER). Therefore, the probability
of finding an error in a given frame can be represented by
Equation 4.

The channel module keeps checking for the presence of
data. Once data is placed on the channel, the channel checks
it first; if data is an ACK from the receiver it is passed to the
transmitter directly without going through the error simulation
module, because ACK/NACK packets are so small in size that
error has negligible effect on them as shown by Equation 4.
However, if the packet is not an ACK/NACK, the channel
passes it to the error sub-module, where Monte Carlo method
is applied to it in order to randomly choose the blocks to be
in error based on the frame error rate equation (i.e. Equation
(4)). Frame Error Rate (FER) is the probability that one or
more bits in a frame are in error.

FER = (1− (1−BER)k) (4)

Where, FER = Frame Error Rate
BER = Bit Error Rate
k = Number of bits in a frame

C. Receiver Model

Finally, the packet reaches the receiver which hands it to
a sub-module called the Error Checker, where the received
packet is checked for errors; if error(s) is/are found, then
the columns of the Vandermonde Matrix collected so far are
checked. If all elements of a column are in error (as in Equation
6) then the original packets cannot be recovered. The receiver
is notified and it sends a NACK packet to the transmitter,
but saves the corrupt packet in the hope that it can help in
future error corrections. Corrupt packets are discarded and new
packets are requested in the system proposed by [8].

V(3x3) =

(
1 1 1

Error1 6 3
4 36 Error2

)
(5)

V(3x3) =

(
1 1 1

Error1 6 3
Error2 4 36

)
(6)
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In a nutshell, receiver attempts forward error correction
on the Vandermonde Matrix, if that fails the transmitter then
sends the next block of data. However, if it is the last block the
transmitter keeps sending it until an ACK is received. Equation
5 and 6 have illustrate scenarios where original packets can and
cannot be recovered respectively.

D. FEC technique

Vandermode matrix can be used in conjunction with other
error detection techniques to develop a packet recovery system
[18]. As shown in Equation 2 and 3, packets (P ) from other
nodes are encoded into Vandermonde matrix. Each row (also
known as Block (b)) is transmitted across the network as a
packet. At the receiver these blocks are checked for errors
before the original packets are finally recovered.

Suppose an element in the x row and y column of the
Vandermonde matrix is represented by αx,y, then the nth
packet encoded can be retried using Equation 9.

Pn = α2,n (7)
α2,n = x−1

√
αx,n where x > 1 (8)

⇒ Pn = x−1
√
αx,n where x > 1 (9)

IV. SIMULATION

Although Matlab Simevents was used in [8], Python
programming language was used in this research. It allows
the programmer limitless flexibility and levels of conception.
However, in order to ensure accuracy the system proposed by
[8] was first reproduced and its codes was later tweaked to
develop our proposed system.

Discrete Event Simulation (DES) approach was used
[19][20]. The events used are described in Section III. Three
separate codes were written base on the network setup shown
earlier in Figure 1. The first code simulates the network
without any network coding technique added. The second
simulates the network with Vandermonde matrix used as
means of coding the network. While the third code uses the
Vandermonde matrix as both network-coding and data recovery
technique. Each of the three codes were then simulated to thirty
seconds of simulation time. The results where then printed in
the form of graphs that are presented in Section V, this was
done with the help of the ”matplotlib” python library [21].
The variables were also exported using the programs IDE and
further analysis was carried out on the data. This is possible
because Python(x,y) IDE was used for the simulation [22].

Table I enlists parameters used in the simulation of the
SW-ARQ communication system with and without NC. These
parameters are exact replica of those used in [8], which
allow us to compare the performance of the two simulations.
However, it is worth noting that packet generation rate (λ) is
changed from 50 to 100packets/s in order to ensure maximum
performance for all three networks as indicated by Figure 7.

V. DISCUSSION

In this section the throughput performance of the proposed
system is presented and analyzed. The section also draws out
some possible applications of the proposed system.

TABLE I: Parameters used in simulation

Parameter Value
pkt size 1000 bits
lamda (λ) 100 Packets/s (packet generation rate)
Rate 10 Mbps (The system bit rate)
Tprop 15 ms
Tsim 40000 ms (Simulation time)
FER Forward error rate (values used: 0, 0.1, 0.6, 0.9)
ack waiting time default setting, 0
n 5 blocks per code

Fig. 2: Throughput of SW, SW-NC and SW-NC-FEC in Error
free channel

A. Performance Analysis

For the sake of clarity: SW represents Stop-and-Wait
Automatic Repeat reQuest; SW-NC represents Stop-and-Wait
Automatic Repeat reQuest with Network Coding which is used
in [8]; while SW-NC-FEC represents Stop-and-Wait Automatic
Repeat reQuest with Network Coding and Forward Error
Correction, which is the proposed system in this paper.

Over an error free channel, the maximum achievable
throughput for SW, SW-NC and SW-NC-FEC are shown in
Figure 2. It is clear that network coding with forward error
correction is superior. This can be attributed to the fact that
in an error free channel only one transmission is required in
order to transmit all the n packets. In the system developed
in [8] however, all packets have to be transmitted mindless of
whether earlier sent packets have been received successfully.
For SW-ARQ, the throughput of the system is around 33 kbps.
This is expected because the time required to transmit a block
containing n packets in SW-NC-FEC is the same time used
by SW-ARQ in transmitting a single packet.

As the frame error rate (FER) increases the delay in
transmission of packet increases, hence the difference in per-
formance (i.e. throughput) as shown in Figure 3, 4 and 5. To
investigate the severity in drop of performance with increase
in FER, a graph of throughput for the three simulations against
their channel’s FER (See: Figure 6) is plotted. From the graph,
it can be seen that fall in throughput is more obvious in the case
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Fig. 3: Throughput of SW, SW-NC and SW-NC when FER=0.1

Fig. 4: Throughput of SW, SW-NC and SW-NC-FEC when
FER=0.6

of our proposed system. This is due to the fact that number
of re-transmissions in SW-NC-FEC approaches the number of
re-transmissions of the SW-NC as FER approaches 1. As such,
the larger the error rate the more packets SW-NC-FEC needs
to transfer and the closer its behavior is to SW-NC in terms of
number of packets sent. Thus the cost of packet loss is higher
when FEC is added.

In addition, SW-NC-FEC is greatly affected by packet
generation rate. This can be seen in Figure 7, where SW-
NC-FEC steeply climbs as packet generation rate increases.
Conversely, SW-NC-FEC does not perform well with small
generation rate. In fact, it performs worse than SW-NC when
generation rate is below 0.03 packets/s.

Finally, scalability in terms of increase in number of
packets encoded is investigated (see: Figure 8). It is found that
SW-NC-FEC’s performance increases linearly with increase

Fig. 5: Throughput of SW, SW-NC and SW-NC-FEC when
FER=0.9
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Fig. 6: Throughput of SW, SW-NC and SW-NC-FEC over a
wide range of FER

in number of packets while SW-NC’s performance decreases
linearly (although slightly) with increase in number of packets.

B. Application

Table II summarizes the characteristics of SW, SW-NC and
SW-NC-FEC. Base on this comparison, it can be seen that SW-
NC shows more stable performance in a noisy environment and
preforms better in a very low traffic network. Furthermore, the
system is less complex than SW-NC-FEC, as such it shorter
code and less processing overhead. Therefore, SW-NC is better
for low traffic network systems where low processing power
devices are used like wireless sensor networks, while SW-NC-
FEC is best for networks that require large amount of data to
be transmitted over a low noise channel.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 6, 2015 

295 | P a g e
www.ijacsa.thesai.org 



TABLE II: Comparison between SW, SW-NC and SW-NC-FEC

SW SW-NC SW-NC-FEC
Complexity Simple More complex Most complex
Memory overhead Less More Most
Throughput @ FER=0 33.0kbps 48.4kbps (147.0% of SW) 180.0kbps(545.5% of SW)
Throughput @ FER=0.9 6.0kbps 18.0kbps (300% of SW) 36.0kbps(600% of SW)
Decay in throughput with increase in FER Faster Fast Fastest
Throughput as No. of packets encoded increase - Falls linearly Increases linearly
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Fig. 7: Throughput of SW, SW-NC and SW-NC-FEC against
packet generation rate
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Fig. 8: Throughput of SW-NC and SW-NC-FEC against num-
ber of packets encoded

VI. CONCLUSIONS AND FUTURE WORK

In this paper, the throughput of a SW-ARQ using Van-
dermonde matrix for network coding is analyzed. The study
shows that NC with FEC is highly profitable and that adding
FEC to the system in [8] improves its throughput. Furthermore,
the study show that SW-NC-FEC has higher throughput than

SW-NC, but its throughput falls more sharply with increase
in frame error rate. Conversely, it is also found that SW-NC-
FEC rises more sharply when packet generation rate increase.
Finally we found that Forward Error Correction helps SW-NC-
FEC to produce more throughput as Vandermonde matrix is
enlarged, while SW-NC degrades.

Due to the fact that the connection between the transmitters
and the receivers is many-to-one, there is a possibility of
performance degradation when the number of transmitters is
increased. As their number increases, a bottle neck is may
formed at the encoder and this may cause delay in the network.
However, the degree of decay in performance of a network-
coded network has not been investigated. It is important to
ascertain when the throughput starts to degrade and how bad
is the degradation, and this forms the basis of our future work.
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