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Abstract—The present paper proposes a FPGA based 

hardware implementations for microarray image processing 

algorithms in order eliminate the shortcomings of the existing 

software platforms: user intervention, increased computation 

time and cost. The proposed image processing algorithms exclude 

user intervention from processing. An application-specific 

architecture is designed aiming microarray image processing 

algorithms parallelization in order to speed up computation. 

Hardware architectures for logarithm based image enhancement, 

profile computation and image segmentation are described.  The 

methodology to integrate the hardware architecture within a 

microprocessor system is detailed. The Fast Simplex Link (FSL) 

bus is used to connect the hardware architecture as speed up co-

processor of the microarray image processing system. Timing 

considerations were presented considering the levels of 

parallelism that can be achieved by using our proposed hardware 

architectures. The FPGA technology was chosen for 

implementation, due to its parallel computation capabilities and 

ease of reconfiguration. 

Keywords—microarray; FPGA; image processing; hardware 

algorithms 

I. CDNA MICROARRAY TECHNOLOGY 

Measurement of gene expression can provide clues about 
regulatory mechanism, biochemical pathways and broader 
cellular function. By gene expression we understand the 
transformation of gene‟s information into proteins. The 
informational pathway in gene expression is as follows: DNA 
→ mRNA → protein. The protein coding information is 
transmitted by an intermediate molecule called messenger 
ribonucleic acid mRNA. This molecule passes from nucleus to 
cytoplasm carrying the information to build up proteins [1]. 
This mRNA acid is a single stranded molecule from the 
original DNA and is subject to degradation, so it is transformed 
into stable complementary DNA for further examination. 
Microarray technology is based on creating DNA microarrays 
which represents gene specific probes arrayed on a matrix such 
as a glass slide or microchip. The most common use for DNA 

microarrays is to measure, simultaneously, the level of gene 
expression for every gene in a genome [2]. In this way the 
microarray compares genes from normal cells with abnormal 
or treated cells, determining and understanding the genes 
involved in different diseases. 

DNA microarrays represent gene specific probes arrayed 
on a matrix such as a glass slide or microchip. Usually samples 
from two sources are labeled with two different fluorescent 
markers and hybridized on the same array (glass slide). The 
hybridization process represents the tendency of 2 single 
stranded DNA molecules to bind together. After hybridization, 
the array is scanned using two light sources with different 
lengths (red and green) to determine the amount of labeled 
sample bound to each spot through hybridization process. The 
light sources induce fluorescence in the spots which is captured 
by a scanner and a composite image is produced [3]. 

Classical genomic microarray experiment involves 
complex steps including slide production and scanning. A brief 
description of a microarray experiment can be summarized as 
follows:  a) generation of array ready cDNA, b) cDNA 
selection and microarray slide printing, c) selection of specific 
cell material and fluorescent labeling, d) hybridization of the 
target material on the microarray slide, e) microarray image 
scanning, f) microarray image processing for gene expression 
evaluation, g) high order processing (clustering and 
interpretation, gene regulatory network estimation). 

The present paper provides a detailed description of 
microarray image processing algorithms. The classical flow of 
processing a microarray image is generally separated in the 
following tasks: addressing, segmentation, intensity extraction 
and pre-processing to improve image quality and enhance 
weakly expressed spots. The first step associates an address to 
each spot of the image. In the second one, pixels are classified 
either as fore-ground, representing the DNA spots, or as 
background. The last step calculates the intensities of each spot 
and also estimates background intensity values.  
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Fig. 1. Agilent pre-processed microarray image [4] 

The major tasks of microarray image processing are to 
identify the microarray image characteristics including the 
array layout, spot locations, size and shape, and to estimate 
spot and background intensity values. In order to estimate gene 
expression levels using microarray analysis, spatial and 
distributionl methods for spot segmentation are proposed, [4-8] 

Examples of microarray image processing software 
platforms are Agilent Feature Extraction Software (FE) [4], 
GenePix Pro [9], ScanAlyze [5]. In order to determine what 
kind of results these software platforms deliver and to validate 
the results, Feature Extraction software was used to process a 
microarray image obtained after scanning a microarray glass 
with DNA information from east european house mouse “mus-
musculus”. The image resolution is 6100x2160 pixels and 
covers approximately 20000 microarray spots. 

TABLE I.  RAW-DATA PARAMETERS FOR “MUS-MUSCULUS” 

EXPERIMENT DELIVERED BY AGILENT FEATURE EXTRACTION SOFTWARE  

Row 

 

Col 

 

GeneName 

 

PositionX 

 

PositionY 

 

PValLog 

Ratio 

1 1 BrightCorner 395,618 100.5 7.68E+08 

1 2 NegativeCtrl 415,962 995,462 9.03E+08 

1 3 Psma5 437,833 100,891 8.90E+08 

1 4 Mmp14 459,123 998,774 9.25E+08 

1 5 Cdh11 479,825 100,143 6.86E+08 

1 6 C0152H05-3 501,548 99,529 7.61E+08 

1 7 Pro25G 522,726 99,879 8.11E+08 

1 8 L0951F09-3 543,748 996,792 8.28E+08 

… … … … … … 

The specified software platform provides raw-data with 
microarray image characteristics organized in an .xls form 
(Table I), which are further on used in high order analyses like 
clustering and gene regulatory network estimation. As the 
Table 1 shows, each microarray spot represents a specific gene, 
and it has a precise location. 

A regular microarray image has up to hundreds of MB, and 

it can be divided in independent sub-images, which consists in 
a compact group of spots. Sophisticated computational tools 
mentioned in the previous paragraph are available for 
microarray image processing. Their main disadvantages are the 
long runtime and the user intervention needed in processing. 
Considering the regular distribution of microarray spots and 
also their regular shape, unsupervised segmentation approach 
can lead to application specific hardware architecture for 
automatic microarray image processing. Consequently, we 
implemented an edge detection based segmentation approach 
for microarray spots. Further on, the paper includes the 
description of image processing techniques for automatic edge-
based segmentation in Section II. Section III describes the 
hardware implementation of the proposed segmentation 
methods using a parallel computing approach. A comparison 
between the processing time needed by a personal computer for 
microarray image processing and the processing time obtained 
using the proposed hardware architecture is performed in 
section IV, taking into account the levels of parallelization of 
the proposed algorithms.  The paper ends with section V, 
conclusions, underlining the future directions to be considered. 

II. ALGORITHMS FOR AUTOMATED MICROARRAY IMAGE 

PROCESSING 

The variety of medical analysis to be performed and the 
large number of patients, lead to a novel approach in medical 
applications. Application specific devices are used for 
unsupervised analysis of medical data and medical diagnosis 
[12, 13].  The devices to be used in such purposes, efficiently 
and with a short time to market are FPGAs [14] and graphis 
processing unis (GPUs) [15]. 

Regarding microarray analysis, user intervention in 
microarray image processing brings up the need of a work 
station with a costly processing platform which will slow down 
the process of microarray analyses in case of large number of 
subjects is involved. In order to overcome the previous 
mentioned disadvantages, the following approaches are taken 
into account: image processing algorithms will be robust and 
independent of operator last time adjustments; microarray 
images are processed using FPGA technology in order to speed 
up computation. 

A. Microarray image enhancement 

Image pre-processing techniques are used in order to 
improve image quality and to enhance weakly expressed spots. 
The most common techniques used for microarray image 
enhancement is the spatial logarithm transformation or an 
arctangent hyperbolic transformation. 

 n
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n

yxI
yxI 2

2ln
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
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In (1) a spatial logarithm transformation noted IL is 
described for a microarray image I(x,y) with (x,y) the current 
pixel and n the number of bits for pixel representation. In (2) 
an arctangent hyperbolic transformation noted IA is described 
for the same microarray image. In the second transformation 

12..1  nk  determines the threshold from which the pixel 

intensity will be enhanced. 
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c)       d)           e) 

Fig. 2. a) Logarithmic transformed image, b) arctangent hyperbolic 

transformation, c) Original image, d) log transformation and, e) Arctangent 

hyperbolic transformed image 
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In figure 2, an original image and results for both image 
transformations are presented. Indeed, unlike arctangent 
hyperbolic, the logarithm transformation does not involve 
another extra parameter. As a consequence, for the hardware 
implementation described in section 3, the logarithm 
transformation was chosen. 

B. Microarray image addressing 

For microarray image addressing an automatic estimation 
of spot distance is presented. After the pre-processing of the 
microarray images, the first step for spot localization is the 
computation of image projections as described in (3). It can be 
assumed that the profiles resulting from these projections 
contain a periodic signal which has been affected by noise. 
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To be able to find the periodicity, the signal is cross-
correlated with itself, procedure called autocorrelation (4). 
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with I(x, y) being the microarray image, X and Y image 
dimensions, i = 0, 1,...,X-1. The first derivative of the resulted 
array pv(i) crosses the X axis in points corresponding to the 
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Fig. 3. a) horizontal image profile , b) vertical image profile; xi and yi 

toghether with xi+1 and yi+1 mark the borderlines which confine the microarray 
spot i 

peaks and values of the spots. Taking the distance between 
zeros the average dimension of the spots is estimated. 
Microarray spot localization using image profiles can be seen 
in figure 3, where (xi,yi) represents the location of spot i from 
the microarray image. 

C. Microarray image segmentation 

In microarray image processing, edge detection is a 
fundamental tool used for intensity extraction and spot 
segmentation. Edges occur at images location with strong 
intensity contrast. For edge detection a high-pass filter in 
Fourier domain can be applied, or convolution with an 
appropriate kernel (Sobel, Prewitt etc.) in the spatial domain is 
useful [16]. Convolution in the spatial domain has been chosen 
for implementation because it is computationally less 
expansive and offers better results. 

The algorithm used for the hardware implementation is 
Canny filter [17], which is considered to be optimal, based on 
the following: it finds the most edges, marks the edge as close 
as possible to the actual edges, and provides sharp and thin 
edges. The filter that meets all the criteria mentioned above can 
be efficiently approximated using the first derivative of a 
Gaussian function. So the first two steps in applying Canny 
filter would be smoothing the image and differentiating the 
image in two orthogonal directions. Smoothing operation is 
done using convolution mask. After smoothing the image, 
gradient calculation (magnitude and phase) is performed in 
order to find the edge strength of the spot. To do so, the image 
is differentiated on two orthogonal directions as in (6) an (7), 
using image convolution. 
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The sign and value of the orthogonal components of the 
gradient determined before are used in estimating the 
magnitude and the direction of the gradient.  
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Once the direction of the gradient is known, pixels values 
around the pixel being analysed are interpolated. The pixel that 
does not represent a local maximum is eliminated, by 
comparing it with its neighbours along the direction of the 
gradient (non-maximum suppression). 

Up to this point, image processing algorithms were 
presented in order to realize a robust detection of microarray 
image features. A solution for implementing the previous 
processing chain is presented next. 

III. HARDWARE IMPLEMENTATIONS FOR MICROARRAY 

IMAGE PROCESSING ALGORITHMS 

FPGA technology uses pre-built logic blocks and 
programmable routing resources for configuration and for 
implementing custom hardware functionality. Their main 
benefits are the low cost, the short time to market and the ease 
of reconfiguration. Microarray images are analysed and 
processed using FPGA technology in order to speed up 
computation. The hardware implementations of microarray 
image processing techniques make use of the FPGA features, 
which allow accessing at the same time hundreds of memory 
addresses. Indeed, FPGA technology offers the possibility to 
exploit spatial and temporal parallelism for microarray image 
processing in order to create a fast automated process which 
delivers raw-data information about microarray image 
characteristics. As a consequence, FPGA are well-adapted for 
processing microarray images as show in [18]. 

Further on an FPGA based application specific architecture 
for microarray image processing is described. Xilinx board 
Virtex5 ML505 was used for the application development. The 
architecture includes 3 processing units PUi: PU1 realizes the 
microarray image enhancement, PU2 computes image vertical 
and horizontal profiles and the last processing unit PU3 uses 
spatial parallelism for image segmentation. The processing 
units together with a DMA controller for RAM memory access 
are connected to the processor trough the plb_v46 data bus. 
Autocorrelation and shock filters for microarray image 
addressing are implemented using C code. Future work aims 
creating processing units in order to speed up their 
computation. A detailed description of our application-specific 
architecture is presented in the figure 4. The same approach 
which uses hardware coprocessors for high-throughput 
processing was proposed in [19]. 

The image processing PUi units are connected as co-
processor to the Microblaze system through FSL bus in order 
to speed up computation. The FSL interfaces are used to 
transfer data to and from the register file on the processor to the 
hardware running on the FPGA. 

The FSL represents a uni-directional point to point FIFO 
based communication. The methodology to interconnect the 
image processing hardware units to the FSL bus is detailed in 
section III.D. 

A. Microarray image enhancement implementation 

Spatial  logarithm  transformation  is  used  for  microarray  

μp

PU1: Log 

Enhance

PU3: 

Segmentation

PU2: Profile 

Computation

Memory 

Controller

FSL bus

FPGA 

Virtex 5
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256MB
 

Fig. 4. Application specific architecture for microarray image processing 

image enhancement. The logic bloc LOG from figure 5 
calculates the logarithm of image intensity for each pixel. The 
logarithm transformation is implemented on the luminance 
information Y of the image, obtained using R, G, B channels 
like in (8). 

BGRY  114.0587.0299.0  (8) 

The hardware implementation of the logarithm trans-
formation is based on linear approximation of the logarithm 
function. The logarithm function is calculated in a number of 
An(x,y) points stored in a memory named ROM_LOG. 

Also the slope m for each line described by two adjacent 
points is calculated and stored in a memory called 
ROM_SLOPE. In order to calculate the logarithm of the 
luminance, we are using (9) which represent the equation of a 
line which has the slope m and passes through the point Ai(xi, 
yi) from the initial An points. 

 ii yxymy  )(log  (9) 

For the implementation described in Fig. 6 there is a 
number of 3 clock cycles necessary for processing. In order to 
evaluate the log function estimation, mean square error was 
calculated for y values between 1 and YMAX = 256 and the 
result is shown in (10). A pipelined architecture will reduce the 
computational time for the logarithm unit to 1 pixel/clock 
cycle. 

52 10807.1)](ln_)[ln(
1  

yMAX

yesty
Y

MSE  (10) 

The same type of implementation was successfully used in 
[20] for high-throughput decoding of LDPC codes. 

B. Microarray image profile computation 

Computing the horizontal and vertical image profiles for 
spot localization involves logarithm computation of pixel 
intensity. Figure 5 describes the hardware architecture for 
evaluating image profiles. The luminous component (Y 
component) of the microarray image I(x,y), is extracted from 
the RGB colour space. The spatial logarithm transformation is  
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Fig. 5. Hardware implementation for logarithm function applied on the luminous image component for enhancement 

 
Fig. 6. Hardware architecture for image profile n 

The ΣX and ΣY RAM memories and the two adders are used 
as accumulators for horizontal and vertical profiles while the 
whole image is scanned. In table IV the hardware resource 
usage for the implementation is described. The maximum 
frequency to be used with the implementation is 286.2 MHz. 

Once the profiles are calculated, spot location are 
determined as shown in Fig. 3 using discrete autocorrelation. 
The spot locations are delivered as partial results for further 
processing.  The next processing step is microarray image 
segmentation based on spatial convolution, which aims to 
extract specific microarray parameters, delivered as raw data 
for further processing. 

TABLE II.  HARDWARE RESOURCE USAGE FOR MICROARRAY PROFILES 

COMPUTATION ON XILINX ML505 BOARD 

 Used  Available Utilization 

Number of Slice Registers 108 69,120 1% 

Number of Slice LUTs 6,864 69,120 9% 

Number of occupied Slices 1,995 17,280 11% 

Number of BlockRAM/FIFO 2 148 1% 

No. of BUFG/BUFGCTRLs 1 32 3% 

Number of DSP48Es 5 64 7% 

C. Microarray image segmentation 

This section presents a hardware implementation of an 
adaptive edge detection filter using FPGA, which provides the 
necessary performance for fast microarray image processing. 
For edge detection, Canny filter was used. The first two steps 
in applying Canny filter are smoothing the image and 
differentiating the image in two orthogonal directions. The next 
step, non-maximum suppression, computes the gradient 
direction and magnitude in order to eliminate the pixels that 
represent false edges. The previously described algorithm is 
applied on a microarray spot. The description of the edge 
detection algorithm implementation using convolution is 

described in detail in [21]. Other approaches for image 
buffering for neighborhood operation and parallel image 
processing are proposed in [22] and [23] respectively. 

Summing up the computational time needed for each step 
of the border detection implementation we obtained a total 
processing time of 60 ns for a microarray spot. Future work 
aims developing a customizable processing unit for a 
microarray spot in order to deliver fast segmentation results. 
Due to the independent processing for each spot, the 
processing unit can be cloned for computing more than one 
spot at a time. 

D. FSL Integration of the proposed hardware architecture 

The aforementioned architectures for logarithm 
transformation, profile computation and spot segmentation are 
interconnected so, each clk cycle, a pixel intensity from the 
image is delivered to the processing unit, which, after a delay 
delivers sequentially the pixels intensities from the resulted 
image. The resulted image represents the microarray spots with 
detected edge. The “Canny” logic bloc process sequentially 
pixels intensities from the input image (denoted by Y) and 
delivers sequentially pixels intensities from the output image, 
which represents the detected edge. The “Canny” logic block 
has also a clk and reset pins and also a start pin which specifies 
a pixel intensity is available for processing. The canny output 
delivers sequentially the edge processed pixel intensities, 
validated through a “1” logic value on the canny_valid output. 
Send_ready output ports signals a valid output of the pixel 
intensity. Thus, the description of the Canny logic bloc from 
Fig. 7.a is presented, whereas its simulation is detailed in figure 
7.c. The simulation includes the reset of all logic blocks at the 
beginning. Further on, pixel intensity values are sent as inputs 
to our Canny filter block. The first computed edge is available 
after an initial delay, due to the procedure which stores the 
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pixel intensity values within the buffers of the canny logic 
blocks. 

The proposed logic block has to be connected to the FSL 
data bus. The FSL protocol is used to delivered pixel intensities 
values to the processing unit. Thus, the processing unit 
represents the slave device. The master device is the processor 
which reads data from RAM and delivers data to the slave 
device and also receives the results of the canny edge detector 
filter, which, as previously mentioned, acts as a slave device. 
The write and read operation on the FSL bus are performed 
using the getfsl and putfsl c functions. A finite state machine is 
also designed to control the Canny logic unit through the FSL 
bus. The FSL bus is described as follows: two clk inputs for 
master and slave, FSL_S_Data input port for writing the pixel 
intensities to be processed into the FSL FIFO, FSL_M_Data 
output port to read the resulted pixel 

intensity delivered by the Canny logic unit to the FSL FIFO, 
FSL_M_Write and FSL_S_Read represent the control signal for 
read and write operation in and out of the FSL FIFO. 
FSL_S_Exists is a control signal which specifies if the FSL 
FIFO is empty or not. Taking into account the FSL protocol, 

finite state machine (FSM) is designed for the control of the 
proposed processing unit for Canny edge detector (see Fig. 5b). 
The FSM has 4 states, st_reset, st_wait, st_work and 
End_work, and drives the canny edge detector hardware 
implementation using the FSL data bus (see Fig. 5.c for the 
FSM). The following example is considered for testing the 
architecture for edge detection: a 20x20 pixels size microarray 
spot is written in the FSL FIFO buffer. The initial state st_reset 
initializes a counter of the number of pixels to be written in the 
FIFO to „0‟. While FIFO is not empty (FIFO_empty = ‘0’) the 
pixel intensities are delivered to the Y port of the processing 
block through the FSL_S_Data, and the counter is incremented 
to count the processed pixel intensities. The maximum value 
for the counter is 400. In St_work state, the processing block 
starts the processing, and through the output port 
“canny_valid” delivers the control signal FSL_S_read to read 
the next pixel intensity from the FIFO to be processed. The 
read pixel intensities are processed, and when a result is 
available (canny_valid = ‘1’) the end_treatment signalize the 
end of processing and the next state becomes st_wait, 
wherefrom the processing continues if FIFO_empty = ‘0’ or 
the FSM waits for new values to be written in the FSL FIFO. 
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Fig. 7. Canny filter integration to a microprocessor system through FSL bus 
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IV. PARALLEL COMPUTATION FOR MICROARRAY IMAGE 

PROCESSING ALGORITHMS 

Further on, the flow of microarray image processing 
techniques is presented, together with the parallel computation 
strategies which can be applied on. After image enhancement 
using logarithm transformation, vertical and horizontal 
projections are computed in order to estimate spot location and 
dimension. Once the spot location is established, segmentation 
is applied and, using border detection spot intensity extraction 
is performed and the level of expression for each gene is 
estimated. Thus, the differentially expressed genes are found 
by comparing the log odd ratios of the intensities from the two 
channel of the microarray image. If the log odd ratios are 
higher than 2 the corresponding genes are consider over 
expressed [24]. This being the interpretation of spot intensities, 
we proceed to the parallelization of the algorithms, considering 
the increased number of spots available on one microarray 
chip, up to 4x44k. 

The levels of parallelization for the previously described 
image processing algorithms are discussed next. In case of 
image enhancement, we consider M, N the image dimensions 
and p the number of logarithm computation units. Due to the 
independent computation of logarithm for each pixel, the 
maximum level of parallelization for image enhancement is 
(MxN)/p. For spot position estimation, the level of 
parallelization is M+N. Autocorrelation and shock filters are 
applied on image profiles for estimating spot positions. Due to 
the recursive description of the algorithms they cannot be 
easily parallelized. Nevertheless, they are not applied over the 
full image. As a consequence, the parallelization is not 
mandatory. Thus they are not considered for describing the 
timing considerations presented further on. 

Once the spot locations are estimated, where k is the 
number of spots, filters like Sobel or Canny for image 
segmentation can be parallelized, and the maximum 
parallelization level is k. In other words, for each spot, 
hardware architecture of the canny edge detector can be 
inferred. Nevertheless, the FPGA (V5 ML505) resources are 
limited, and k cannot be as high as the total number of spots. 

In order to estimate the computational time, the highest 
level of parallelization according to the XC5VlX110T FPGA 
chip was taken into account. We consider the number of 
logarithm units p = 100 for an M x N = 6100x2160 pixels 
Agilent image. The number of hardware architectures for edge 
detection in case of microarray spots, denoted by k, is 10.  In 
Table III parallelization levels are listed together with the 
computation time for the microarray image processing 
algorithms. 

Total computational time for logarithm transformation, 
profile computation and microarray image segmentation is 
around 23,154 ms, encouraging for future implementations. 

In the next plot, on X axis, are represented different 
microarray images with different sizes (size defined by the 
number of microarray spots included) and on Y axis 
computational time using a personal computer and the 
proposed application specific architectures implemented on 
Virtex5 FPGA. 

TABLE III.  PARALLELIZATION LLELIZATION LEVELS AND TIMING  

Image processing 
algorithms 

Level of 
parallel. 

Input data 
Processing 
time 

1.  Log. transformation MxNxp-1 ≈100 MB 3480 us 

2.  Image profiles M + N ≈100 MB 82,6 us 

3.  Autocorrelation 2 M+N - 

4.  Shock filters 2 M+N - 

5.  Canny filter k ≈100 MB 16312 us 

It is to be mentioned that the results presented in figure 6 
correspond to the presented image processing techniques and 
hardware implementation with and without the levels of 
parallelization included. The red curves represent the 
processing time without the levels of parallelization applied 
and the green curve corresponds to the processing time with 
the levels of parallelization included. Compared with the work 
presented in [21], the levels of parallelization are included, 
which lead to an improvement regarding the computational 
efficiency, as described in figure 8. 
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Fig. 8. Computational time on PC (Dual Core, 1800 MHz, 2GB RAM) and 

Virtex5 (125Mhz, 256 MB RAM) 

Moreover, the hardware architectures for Gaussian 
filtering, gradient computation and non-maximum suppression 
within the image segmentation detailed in sections III.C 
function in a pipeline manner. Thus, the output of the Canny 
logic block from figure 7 is delivered each clock cycle. 

V. CONCLUSIONS 

The present paper proposes hardware implementations for 
microarray image processing algorithms, which take ad-
vantage of the FPGA technology features in order to 
implement an automated system for fast microarray image 
processing. Consequently, the proposed architectures are 
connected as co-processors to an FPGA based system, proving 
the efficiency of the proposed implementation, with respect to 
the computational time. The main benefit of the proposed work 
is the possibility to replace the workstation together with the 
software platform for microarray image processing with a 
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system on a chip. The proposed FPGA-based system can be 
easily integrated within the microarray canner level. Due to the 
reduced computational time and cost, a large number of 
microarray analyses can be performed, compared with the 
existing computational tools. 

The levels of parallelism for microarray image processing 
algorithms are described. Considering the computation 
efficiency of the proposed microarray image processing task, 
the experimental results based on algorithm parallelization 
show significant improvements compared both with a general 
purpose processor (PC) and with a FPGA based system 
without levels of parallelization included. Thus, FPGA 
technology is proved to be an efficient solution for an 
application-specific architecture for microarray image 
processing. 

Future work aims to develop application-specific hardware 
architecture for more complex methods for automatic 
microarray image processing such us, partial differential 
equations (PDE)-based gridding or clustering-based spot 
segmentation. 
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