
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 7, 2015

20 | P a g e

www.ijacsa.thesai.org

FSL-based Hardware Implementation for Parallel

Computation of cDNA Microarray Image

Segmentation

Bogdan Bot

Student within Technical University of Cluj-Napoca,

Faculty of Automation and Computer Science

Cluj-Napoca, Romania

Simina Emerich

Department of Communication, Technical University of

Cluj-Napoca, Cluj-Napoca, Romania

Sorin Martoiu

National Institute of Nuclear Physics and Engineering

“Horia Hulubei” – IFIN-HH, Bucuresti, Romania

Bogdan Belean

Department of Mass Spectrometry, Chromatography and

Applied Physics, INCDTIM

Department of Communication, Technical University of

Cluj-Napoca, Romania

Abstract—The present paper proposes a FPGA based

hardware implementations for microarray image processing

algorithms in order eliminate the shortcomings of the existing

software platforms: user intervention, increased computation

time and cost. The proposed image processing algorithms exclude

user intervention from processing. An application-specific

architecture is designed aiming microarray image processing

algorithms parallelization in order to speed up computation.

Hardware architectures for logarithm based image enhancement,

profile computation and image segmentation are described. The

methodology to integrate the hardware architecture within a

microprocessor system is detailed. The Fast Simplex Link (FSL)

bus is used to connect the hardware architecture as speed up co-

processor of the microarray image processing system. Timing

considerations were presented considering the levels of

parallelism that can be achieved by using our proposed hardware

architectures. The FPGA technology was chosen for

implementation, due to its parallel computation capabilities and

ease of reconfiguration.

Keywords—microarray; FPGA; image processing; hardware

algorithms

I. CDNA MICROARRAY TECHNOLOGY

Measurement of gene expression can provide clues about
regulatory mechanism, biochemical pathways and broader
cellular function. By gene expression we understand the
transformation of gene‟s information into proteins. The
informational pathway in gene expression is as follows: DNA
→ mRNA → protein. The protein coding information is
transmitted by an intermediate molecule called messenger
ribonucleic acid mRNA. This molecule passes from nucleus to
cytoplasm carrying the information to build up proteins [1].
This mRNA acid is a single stranded molecule from the
original DNA and is subject to degradation, so it is transformed
into stable complementary DNA for further examination.
Microarray technology is based on creating DNA microarrays
which represents gene specific probes arrayed on a matrix such
as a glass slide or microchip. The most common use for DNA

microarrays is to measure, simultaneously, the level of gene
expression for every gene in a genome [2]. In this way the
microarray compares genes from normal cells with abnormal
or treated cells, determining and understanding the genes
involved in different diseases.

DNA microarrays represent gene specific probes arrayed
on a matrix such as a glass slide or microchip. Usually samples
from two sources are labeled with two different fluorescent
markers and hybridized on the same array (glass slide). The
hybridization process represents the tendency of 2 single
stranded DNA molecules to bind together. After hybridization,
the array is scanned using two light sources with different
lengths (red and green) to determine the amount of labeled
sample bound to each spot through hybridization process. The
light sources induce fluorescence in the spots which is captured
by a scanner and a composite image is produced [3].

Classical genomic microarray experiment involves
complex steps including slide production and scanning. A brief
description of a microarray experiment can be summarized as
follows: a) generation of array ready cDNA, b) cDNA
selection and microarray slide printing, c) selection of specific
cell material and fluorescent labeling, d) hybridization of the
target material on the microarray slide, e) microarray image
scanning, f) microarray image processing for gene expression
evaluation, g) high order processing (clustering and
interpretation, gene regulatory network estimation).

The present paper provides a detailed description of
microarray image processing algorithms. The classical flow of
processing a microarray image is generally separated in the
following tasks: addressing, segmentation, intensity extraction
and pre-processing to improve image quality and enhance
weakly expressed spots. The first step associates an address to
each spot of the image. In the second one, pixels are classified
either as fore-ground, representing the DNA spots, or as
background. The last step calculates the intensities of each spot
and also estimates background intensity values.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 7, 2015

21 | P a g e

www.ijacsa.thesai.org

Fig. 1. Agilent pre-processed microarray image [4]

The major tasks of microarray image processing are to
identify the microarray image characteristics including the
array layout, spot locations, size and shape, and to estimate
spot and background intensity values. In order to estimate gene
expression levels using microarray analysis, spatial and
distributionl methods for spot segmentation are proposed, [4-8]

Examples of microarray image processing software
platforms are Agilent Feature Extraction Software (FE) [4],
GenePix Pro [9], ScanAlyze [5]. In order to determine what
kind of results these software platforms deliver and to validate
the results, Feature Extraction software was used to process a
microarray image obtained after scanning a microarray glass
with DNA information from east european house mouse “mus-
musculus”. The image resolution is 6100x2160 pixels and
covers approximately 20000 microarray spots.

TABLE I. RAW-DATA PARAMETERS FOR “MUS-MUSCULUS”

EXPERIMENT DELIVERED BY AGILENT FEATURE EXTRACTION SOFTWARE

Row

Col

GeneName

PositionX

PositionY

PValLog

Ratio

1 1 BrightCorner 395,618 100.5 7.68E+08

1 2 NegativeCtrl 415,962 995,462 9.03E+08

1 3 Psma5 437,833 100,891 8.90E+08

1 4 Mmp14 459,123 998,774 9.25E+08

1 5 Cdh11 479,825 100,143 6.86E+08

1 6 C0152H05-3 501,548 99,529 7.61E+08

1 7 Pro25G 522,726 99,879 8.11E+08

1 8 L0951F09-3 543,748 996,792 8.28E+08

… … … … … …

The specified software platform provides raw-data with
microarray image characteristics organized in an .xls form
(Table I), which are further on used in high order analyses like
clustering and gene regulatory network estimation. As the
Table 1 shows, each microarray spot represents a specific gene,
and it has a precise location.

A regular microarray image has up to hundreds of MB, and

it can be divided in independent sub-images, which consists in
a compact group of spots. Sophisticated computational tools
mentioned in the previous paragraph are available for
microarray image processing. Their main disadvantages are the
long runtime and the user intervention needed in processing.
Considering the regular distribution of microarray spots and
also their regular shape, unsupervised segmentation approach
can lead to application specific hardware architecture for
automatic microarray image processing. Consequently, we
implemented an edge detection based segmentation approach
for microarray spots. Further on, the paper includes the
description of image processing techniques for automatic edge-
based segmentation in Section II. Section III describes the
hardware implementation of the proposed segmentation
methods using a parallel computing approach. A comparison
between the processing time needed by a personal computer for
microarray image processing and the processing time obtained
using the proposed hardware architecture is performed in
section IV, taking into account the levels of parallelization of
the proposed algorithms. The paper ends with section V,
conclusions, underlining the future directions to be considered.

II. ALGORITHMS FOR AUTOMATED MICROARRAY IMAGE

PROCESSING

The variety of medical analysis to be performed and the
large number of patients, lead to a novel approach in medical
applications. Application specific devices are used for
unsupervised analysis of medical data and medical diagnosis
[12, 13]. The devices to be used in such purposes, efficiently
and with a short time to market are FPGAs [14] and graphis
processing unis (GPUs) [15].

Regarding microarray analysis, user intervention in
microarray image processing brings up the need of a work
station with a costly processing platform which will slow down
the process of microarray analyses in case of large number of
subjects is involved. In order to overcome the previous
mentioned disadvantages, the following approaches are taken
into account: image processing algorithms will be robust and
independent of operator last time adjustments; microarray
images are processed using FPGA technology in order to speed
up computation.

A. Microarray image enhancement

Image pre-processing techniques are used in order to
improve image quality and to enhance weakly expressed spots.
The most common techniques used for microarray image
enhancement is the spatial logarithm transformation or an
arctangent hyperbolic transformation.

 n
L

n

yxI
yxI 2

2ln

)1),(ln(
),(


 (1)

In (1) a spatial logarithm transformation noted IL is
described for a microarray image I(x,y) with (x,y) the current
pixel and n the number of bits for pixel representation. In (2)
an arctangent hyperbolic transformation noted IA is described
for the same microarray image. In the second transformation

12..1  nk determines the threshold from which the pixel

intensity will be enhanced.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 7, 2015

22 | P a g e

www.ijacsa.thesai.org

c) d) e)

Fig. 2. a) Logarithmic transformed image, b) arctangent hyperbolic

transformation, c) Original image, d) log transformation and, e) Arctangent

hyperbolic transformed image





























;),(,
)2/)12((

)2/)),(((2

;),(,
))1/((

)
1

),(
(2

),(

kyxI
atgh

kyxIatgh

kyxI
kkatgh

k

kyxI
atgh

yxI

nn

nn

n

A (2)

In figure 2, an original image and results for both image
transformations are presented. Indeed, unlike arctangent
hyperbolic, the logarithm transformation does not involve
another extra parameter. As a consequence, for the hardware
implementation described in section 3, the logarithm
transformation was chosen.

B. Microarray image addressing

For microarray image addressing an automatic estimation
of spot distance is presented. After the pre-processing of the
microarray images, the first step for spot localization is the
computation of image projections as described in (3). It can be
assumed that the profiles resulting from these projections
contain a periodic signal which has been affected by noise.

 




1

0

),(
1

)(
X

x

yxI
X

yHP (3)

To be able to find the periodicity, the signal is cross-
correlated with itself, procedure called autocorrelation (4).

)mod)(()()(
1

0

XjiHPiHPipv
X

j

 




 (4)






1

0

),(
1

)(
Y

y

yxI
Y

xVP (5)

with I(x, y) being the microarray image, X and Y image
dimensions, i = 0, 1,...,X-1. The first derivative of the resulted
array pv(i) crosses the X axis in points corresponding to the

0 100 200 300 400 500 600 700 800
1.2

1.4

1.6

1.8

2

2.2
x 10

4

300 400 500 600 700 800 900 1000
1

1.5

2

2.5
x 10

4

a) Horizontal profile

b) Vertical profile

xi

yi

Fig. 3. a) horizontal image profile , b) vertical image profile; xi and yi

toghether with xi+1 and yi+1 mark the borderlines which confine the microarray
spot i

peaks and values of the spots. Taking the distance between
zeros the average dimension of the spots is estimated.
Microarray spot localization using image profiles can be seen
in figure 3, where (xi,yi) represents the location of spot i from
the microarray image.

C. Microarray image segmentation

In microarray image processing, edge detection is a
fundamental tool used for intensity extraction and spot
segmentation. Edges occur at images location with strong
intensity contrast. For edge detection a high-pass filter in
Fourier domain can be applied, or convolution with an
appropriate kernel (Sobel, Prewitt etc.) in the spatial domain is
useful [16]. Convolution in the spatial domain has been chosen
for implementation because it is computationally less
expansive and offers better results.

The algorithm used for the hardware implementation is
Canny filter [17], which is considered to be optimal, based on
the following: it finds the most edges, marks the edge as close
as possible to the actual edges, and provides sharp and thin
edges. The filter that meets all the criteria mentioned above can
be efficiently approximated using the first derivative of a
Gaussian function. So the first two steps in applying Canny
filter would be smoothing the image and differentiating the
image in two orthogonal directions. Smoothing operation is
done using convolution mask. After smoothing the image,
gradient calculation (magnitude and phase) is performed in
order to find the edge strength of the spot. To do so, the image
is differentiated on two orthogonal directions as in (6) an (7),
using image convolution.

2

),1(),1(yxIyxI

x

I 





 (6)

2

)1,()1,(




 yxIyxI

y

I
 (7)

The sign and value of the orthogonal components of the
gradient determined before are used in estimating the
magnitude and the direction of the gradient.

a) b)

0 500 1000 1500 2000 2500 3000
-4

-2

0

2

4

6

0 200 400 600 800 1000
-1

-0.5

0

0.5

1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 7, 2015

23 | P a g e

www.ijacsa.thesai.org

Once the direction of the gradient is known, pixels values
around the pixel being analysed are interpolated. The pixel that
does not represent a local maximum is eliminated, by
comparing it with its neighbours along the direction of the
gradient (non-maximum suppression).

Up to this point, image processing algorithms were
presented in order to realize a robust detection of microarray
image features. A solution for implementing the previous
processing chain is presented next.

III. HARDWARE IMPLEMENTATIONS FOR MICROARRAY

IMAGE PROCESSING ALGORITHMS

FPGA technology uses pre-built logic blocks and
programmable routing resources for configuration and for
implementing custom hardware functionality. Their main
benefits are the low cost, the short time to market and the ease
of reconfiguration. Microarray images are analysed and
processed using FPGA technology in order to speed up
computation. The hardware implementations of microarray
image processing techniques make use of the FPGA features,
which allow accessing at the same time hundreds of memory
addresses. Indeed, FPGA technology offers the possibility to
exploit spatial and temporal parallelism for microarray image
processing in order to create a fast automated process which
delivers raw-data information about microarray image
characteristics. As a consequence, FPGA are well-adapted for
processing microarray images as show in [18].

Further on an FPGA based application specific architecture
for microarray image processing is described. Xilinx board
Virtex5 ML505 was used for the application development. The
architecture includes 3 processing units PUi: PU1 realizes the
microarray image enhancement, PU2 computes image vertical
and horizontal profiles and the last processing unit PU3 uses
spatial parallelism for image segmentation. The processing
units together with a DMA controller for RAM memory access
are connected to the processor trough the plb_v46 data bus.
Autocorrelation and shock filters for microarray image
addressing are implemented using C code. Future work aims
creating processing units in order to speed up their
computation. A detailed description of our application-specific
architecture is presented in the figure 4. The same approach
which uses hardware coprocessors for high-throughput
processing was proposed in [19].

The image processing PUi units are connected as co-
processor to the Microblaze system through FSL bus in order
to speed up computation. The FSL interfaces are used to
transfer data to and from the register file on the processor to the
hardware running on the FPGA.

The FSL represents a uni-directional point to point FIFO
based communication. The methodology to interconnect the
image processing hardware units to the FSL bus is detailed in
section III.D.

A. Microarray image enhancement implementation

Spatial logarithm transformation is used for microarray

μp

PU1: Log

Enhance

PU3:

Segmentation

PU2: Profile

Computation

Memory

Controller

FSL bus

FPGA

Virtex 5

RAM

256MB

Fig. 4. Application specific architecture for microarray image processing

image enhancement. The logic bloc LOG from figure 5
calculates the logarithm of image intensity for each pixel. The
logarithm transformation is implemented on the luminance
information Y of the image, obtained using R, G, B channels
like in (8).

BGRY  114.0587.0299.0 (8)

The hardware implementation of the logarithm trans-
formation is based on linear approximation of the logarithm
function. The logarithm function is calculated in a number of
An(x,y) points stored in a memory named ROM_LOG.

Also the slope m for each line described by two adjacent
points is calculated and stored in a memory called
ROM_SLOPE. In order to calculate the logarithm of the
luminance, we are using (9) which represent the equation of a
line which has the slope m and passes through the point Ai(xi,
yi) from the initial An points.

 ii yxymy )(log (9)

For the implementation described in Fig. 6 there is a
number of 3 clock cycles necessary for processing. In order to
evaluate the log function estimation, mean square error was
calculated for y values between 1 and YMAX = 256 and the
result is shown in (10). A pipelined architecture will reduce the
computational time for the logarithm unit to 1 pixel/clock
cycle.

52 10807.1)](ln_)[ln(
1  

yMAX

yesty
Y

MSE (10)

The same type of implementation was successfully used in
[20] for high-throughput decoding of LDPC codes.

B. Microarray image profile computation

Computing the horizontal and vertical image profiles for
spot localization involves logarithm computation of pixel
intensity. Figure 5 describes the hardware architecture for
evaluating image profiles. The luminous component (Y
component) of the microarray image I(x,y), is extracted from
the RGB colour space. The spatial logarithm transformation is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 7, 2015

24 | P a g e

www.ijacsa.thesai.org

ROM_LOGaddr
data

ROM_SLOPE
addr

data

Y

Ylog

Y mod n

Y mod n

Y div n

Y

m

Y-xi

i

Fig. 5. Hardware implementation for logarithm function applied on the luminous image component for enhancement

Fig. 6. Hardware architecture for image profile n

The ΣX and ΣY RAM memories and the two adders are used
as accumulators for horizontal and vertical profiles while the
whole image is scanned. In table IV the hardware resource
usage for the implementation is described. The maximum
frequency to be used with the implementation is 286.2 MHz.

Once the profiles are calculated, spot location are
determined as shown in Fig. 3 using discrete autocorrelation.
The spot locations are delivered as partial results for further
processing. The next processing step is microarray image
segmentation based on spatial convolution, which aims to
extract specific microarray parameters, delivered as raw data
for further processing.

TABLE II. HARDWARE RESOURCE USAGE FOR MICROARRAY PROFILES

COMPUTATION ON XILINX ML505 BOARD

 Used Available Utilization

Number of Slice Registers 108 69,120 1%

Number of Slice LUTs 6,864 69,120 9%

Number of occupied Slices 1,995 17,280 11%

Number of BlockRAM/FIFO 2 148 1%

No. of BUFG/BUFGCTRLs 1 32 3%

Number of DSP48Es 5 64 7%

C. Microarray image segmentation

This section presents a hardware implementation of an
adaptive edge detection filter using FPGA, which provides the
necessary performance for fast microarray image processing.
For edge detection, Canny filter was used. The first two steps
in applying Canny filter are smoothing the image and
differentiating the image in two orthogonal directions. The next
step, non-maximum suppression, computes the gradient
direction and magnitude in order to eliminate the pixels that
represent false edges. The previously described algorithm is
applied on a microarray spot. The description of the edge
detection algorithm implementation using convolution is

described in detail in [21]. Other approaches for image
buffering for neighborhood operation and parallel image
processing are proposed in [22] and [23] respectively.

Summing up the computational time needed for each step
of the border detection implementation we obtained a total
processing time of 60 ns for a microarray spot. Future work
aims developing a customizable processing unit for a
microarray spot in order to deliver fast segmentation results.
Due to the independent processing for each spot, the
processing unit can be cloned for computing more than one
spot at a time.

D. FSL Integration of the proposed hardware architecture

The aforementioned architectures for logarithm
transformation, profile computation and spot segmentation are
interconnected so, each clk cycle, a pixel intensity from the
image is delivered to the processing unit, which, after a delay
delivers sequentially the pixels intensities from the resulted
image. The resulted image represents the microarray spots with
detected edge. The “Canny” logic bloc process sequentially
pixels intensities from the input image (denoted by Y) and
delivers sequentially pixels intensities from the output image,
which represents the detected edge. The “Canny” logic block
has also a clk and reset pins and also a start pin which specifies
a pixel intensity is available for processing. The canny output
delivers sequentially the edge processed pixel intensities,
validated through a “1” logic value on the canny_valid output.
Send_ready output ports signals a valid output of the pixel
intensity. Thus, the description of the Canny logic bloc from
Fig. 7.a is presented, whereas its simulation is detailed in figure
7.c. The simulation includes the reset of all logic blocks at the
beginning. Further on, pixel intensity values are sent as inputs
to our Canny filter block. The first computed edge is available
after an initial delay, due to the procedure which stores the

RAMx out

Y
x

X

x

I(x,y)

RAMy out

RAMy out

RAMx out

RGB

to
Y

LOG

Address

Computation

Unit

RAM

ΣX

RAM

ΣY

Raw

Data

Conv.

Filter

+

+

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 7, 2015

25 | P a g e

www.ijacsa.thesai.org

pixel intensity values within the buffers of the canny logic
blocks.

The proposed logic block has to be connected to the FSL
data bus. The FSL protocol is used to delivered pixel intensities
values to the processing unit. Thus, the processing unit
represents the slave device. The master device is the processor
which reads data from RAM and delivers data to the slave
device and also receives the results of the canny edge detector
filter, which, as previously mentioned, acts as a slave device.
The write and read operation on the FSL bus are performed
using the getfsl and putfsl c functions. A finite state machine is
also designed to control the Canny logic unit through the FSL
bus. The FSL bus is described as follows: two clk inputs for
master and slave, FSL_S_Data input port for writing the pixel
intensities to be processed into the FSL FIFO, FSL_M_Data
output port to read the resulted pixel

intensity delivered by the Canny logic unit to the FSL FIFO,
FSL_M_Write and FSL_S_Read represent the control signal for
read and write operation in and out of the FSL FIFO.
FSL_S_Exists is a control signal which specifies if the FSL
FIFO is empty or not. Taking into account the FSL protocol,

finite state machine (FSM) is designed for the control of the
proposed processing unit for Canny edge detector (see Fig. 5b).
The FSM has 4 states, st_reset, st_wait, st_work and
End_work, and drives the canny edge detector hardware
implementation using the FSL data bus (see Fig. 5.c for the
FSM). The following example is considered for testing the
architecture for edge detection: a 20x20 pixels size microarray
spot is written in the FSL FIFO buffer. The initial state st_reset
initializes a counter of the number of pixels to be written in the
FIFO to „0‟. While FIFO is not empty (FIFO_empty = ‘0’) the
pixel intensities are delivered to the Y port of the processing
block through the FSL_S_Data, and the counter is incremented
to count the processed pixel intensities. The maximum value
for the counter is 400. In St_work state, the processing block
starts the processing, and through the output port
“canny_valid” delivers the control signal FSL_S_read to read
the next pixel intensity from the FIFO to be processed. The
read pixel intensities are processed, and when a result is
available (canny_valid = ‘1’) the end_treatment signalize the
end of processing and the next state becomes st_wait,
wherefrom the processing continues if FIFO_empty = ‘0’ or
the FSM waits for new values to be written in the FSL FIFO.

FSL_M_Write

FSM

Output

fifo_emty

FSL_M_Clk

FSL_S_Clk

Reset Reset

Clk

FSL_S_Data Input

FSL_S_Exists

FSL_S_Read

FSL_M_Data

Canny

Reset

CLk

Y[7...0]

Start

canny [8...0]

canny_valid

send_READY

StartTreatment

EndTreatment

output_valid

End_workSt_Work

St_Reset

Reset

Nbtreat <= ‘’0'
Count <= ‘0’

St_Wait

nbtreat<=nbtreat+1
Counter <= ‘0’

If nbtreat=’0' then

nbtreat<=’0'

FIFO_empty = ‘1’

FIFO_empty = ‘0’

EndTreatment

counter <=

counter + 1;
Read_next <= 1

readNext

FSL

FIFO

a)
b)

c)

Fig. 7. Canny filter integration to a microprocessor system through FSL bus

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 7, 2015

26 | P a g e

www.ijacsa.thesai.org

IV. PARALLEL COMPUTATION FOR MICROARRAY IMAGE

PROCESSING ALGORITHMS

Further on, the flow of microarray image processing
techniques is presented, together with the parallel computation
strategies which can be applied on. After image enhancement
using logarithm transformation, vertical and horizontal
projections are computed in order to estimate spot location and
dimension. Once the spot location is established, segmentation
is applied and, using border detection spot intensity extraction
is performed and the level of expression for each gene is
estimated. Thus, the differentially expressed genes are found
by comparing the log odd ratios of the intensities from the two
channel of the microarray image. If the log odd ratios are
higher than 2 the corresponding genes are consider over
expressed [24]. This being the interpretation of spot intensities,
we proceed to the parallelization of the algorithms, considering
the increased number of spots available on one microarray
chip, up to 4x44k.

The levels of parallelization for the previously described
image processing algorithms are discussed next. In case of
image enhancement, we consider M, N the image dimensions
and p the number of logarithm computation units. Due to the
independent computation of logarithm for each pixel, the
maximum level of parallelization for image enhancement is
(MxN)/p. For spot position estimation, the level of
parallelization is M+N. Autocorrelation and shock filters are
applied on image profiles for estimating spot positions. Due to
the recursive description of the algorithms they cannot be
easily parallelized. Nevertheless, they are not applied over the
full image. As a consequence, the parallelization is not
mandatory. Thus they are not considered for describing the
timing considerations presented further on.

Once the spot locations are estimated, where k is the
number of spots, filters like Sobel or Canny for image
segmentation can be parallelized, and the maximum
parallelization level is k. In other words, for each spot,
hardware architecture of the canny edge detector can be
inferred. Nevertheless, the FPGA (V5 ML505) resources are
limited, and k cannot be as high as the total number of spots.

In order to estimate the computational time, the highest
level of parallelization according to the XC5VlX110T FPGA
chip was taken into account. We consider the number of
logarithm units p = 100 for an M x N = 6100x2160 pixels
Agilent image. The number of hardware architectures for edge
detection in case of microarray spots, denoted by k, is 10. In
Table III parallelization levels are listed together with the
computation time for the microarray image processing
algorithms.

Total computational time for logarithm transformation,
profile computation and microarray image segmentation is
around 23,154 ms, encouraging for future implementations.

In the next plot, on X axis, are represented different
microarray images with different sizes (size defined by the
number of microarray spots included) and on Y axis
computational time using a personal computer and the
proposed application specific architectures implemented on
Virtex5 FPGA.

TABLE III. PARALLELIZATION LLELIZATION LEVELS AND TIMING

Image processing
algorithms

Level of
parallel.

Input data
Processing
time

1. Log. transformation MxNxp-1 ≈100 MB 3480 us

2. Image profiles M + N ≈100 MB 82,6 us

3. Autocorrelation 2 M+N -

4. Shock filters 2 M+N -

5. Canny filter k ≈100 MB 16312 us

It is to be mentioned that the results presented in figure 6
correspond to the presented image processing techniques and
hardware implementation with and without the levels of
parallelization included. The red curves represent the
processing time without the levels of parallelization applied
and the green curve corresponds to the processing time with
the levels of parallelization included. Compared with the work
presented in [21], the levels of parallelization are included,
which lead to an improvement regarding the computational
efficiency, as described in figure 8.

0

20000

40000

60000

80000

100000

120000

140000

0 5000 10000 15000 20000 25000

P_Virtex5

Virtex5

PC

Fig. 8. Computational time on PC (Dual Core, 1800 MHz, 2GB RAM) and

Virtex5 (125Mhz, 256 MB RAM)

Moreover, the hardware architectures for Gaussian
filtering, gradient computation and non-maximum suppression
within the image segmentation detailed in sections III.C
function in a pipeline manner. Thus, the output of the Canny
logic block from figure 7 is delivered each clock cycle.

V. CONCLUSIONS

The present paper proposes hardware implementations for
microarray image processing algorithms, which take ad-
vantage of the FPGA technology features in order to
implement an automated system for fast microarray image
processing. Consequently, the proposed architectures are
connected as co-processors to an FPGA based system, proving
the efficiency of the proposed implementation, with respect to
the computational time. The main benefit of the proposed work
is the possibility to replace the workstation together with the
software platform for microarray image processing with a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 6, No. 7, 2015

27 | P a g e

www.ijacsa.thesai.org

system on a chip. The proposed FPGA-based system can be
easily integrated within the microarray canner level. Due to the
reduced computational time and cost, a large number of
microarray analyses can be performed, compared with the
existing computational tools.

The levels of parallelism for microarray image processing
algorithms are described. Considering the computation
efficiency of the proposed microarray image processing task,
the experimental results based on algorithm parallelization
show significant improvements compared both with a general
purpose processor (PC) and with a FPGA based system
without levels of parallelization included. Thus, FPGA
technology is proved to be an efficient solution for an
application-specific architecture for microarray image
processing.

Future work aims to develop application-specific hardware
architecture for more complex methods for automatic
microarray image processing such us, partial differential
equations (PDE)-based gridding or clustering-based spot
segmentation.

ACKNOWLEDGEMENTS

This paper is supported by the Human Resources
Development Programme POSDRU/159/1.5/S/137516
financed by the European Social Fund and by the Romanian
Government.

REFERENCES

[1] Mark Schena, Micropuce Biochip Technology: Oxford University Press,
1999.

[2] A. M. Campbell, W. T. Hatfield, L. Heyer, "Make microarray data with
known ratios," CBE – Life Sciences Education, vol. 6, 196-197, 2007.

[3] Peter Bajcsy, "An Overview of DNA Microarray Image Requirements
for Automated Processing," IEEE Transac-tions on Image Processing,
VOL 13, NO 1, pp. 15-25, Janu-ary 2004.

[4] Yang Y, Staord P and Kim YJ. Segmentation and intensity estimation
for microarray images with saturated pixels. BMC Bioinformatics; 2011.
12:462.

[5] Wanga Z et al. Hybrid clustering for microarray image analysis
combining intensity and shape features. Neurocomputing; 2014.
142:408{418.

[6] Using fuzzy logic and particle swarm optimization to design a decision-
based filter for cDNA microarray image restoration, Chang, Bae-Muu;
Tsai, Hung-Hsu; Shih, Ji-Shiang, Engineering Applications Of Artificial
Intelligence, 36 Pages: 12-26, 2014.

[7] Giannakeas Net al. Spot addressing for microarray images structured in
hexagonal grids. Computer Methods and Programs in Biomedicine;
2012. 106:1.

[8] Giannakeas N et al. Segmentation of microarray images using pixel
classication - Comparison with clustering-based methods. Computers in
Biology and Medicine; 2013. 43:705{716.

[9] Agilent Feature Extraction Software v10.5, User guide, 2008.

[10] Handran S, Zhai YZ (2003) Biological relevance of GenePix results.
Molecular Devices - Application Notes, pp 1–9

[11] M.B. Eisen, "ScanAlyze User Manual," Stanford University, 1999.

[12] Florea L, Florea C, Vertan C, Sultana A (2011) Automatic tools for
diagnosis support of total hip replacement follow-up. Adv Electr
Comput Eng 11(4):55–62.

[13] Tonti, Simone et al.n An automated approach to the segmentation of
HEp-2 cells for the indirect immunofluorescence ANA test
Computerized Medical Imaging and Graphics , Volume 40 , 62 – 69,
2015

[14]]Kamal A. ElDahshan et al., Hardware Segmentation on Digital
Microscope Images for Acute Lymphoblastic Leukemia Diagnosis
Using Xilinx System Generator , International Journal of Advanced
Computer Science and Applications, 5(9), pp. 33-37, 2014

[15] Moulay Ali Nassiri, Jean-François Carrier, Philippe Després, Fast GPU-
based computation of spatial multigrid multiframe LMEM for PET,
Medical & Biological Engineering & Computing, April 2015.

[16] Tanvir Abassi, Usaid Abassim, "A Proposed FPGA Based Architecture
for Sobel Edge Detection Operator," Journal of Active and Passive
Electronic Devices, pp. 271–277, 2007.

[17] J. Canny, "A computational approach to edge detection," IEEE Trans
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679-698,
Nov. 1986.

[18] B. Belean, M. Borda, A. Fazakas, "Adaptive Microarray Image
Acquisition System and Microarray Image Processing Using FPGA
Technology," Lecture Notes in Computer Science 5179, pp. 327-334,
2008.

[19] Călin BÎRĂ, Lucian PETRICĂ, Radu HOBINCU, OPINCAA: A Light-
Weight and Flexible Programming Environment For Parallel SIMD
Accelerators, Romanian Journal of Information Science and
Technology, 16(4), pp. 336–350, 2013.

[20] Belean B et al., Low Complexity Approach for High Throughput Belief-
Propagation based Decoding of LDPC Codes, Advances in Electrical
and Computer Engineering, 13(4):2013, pp 69-72.

[21] Belean B, Borda M, Le Gal B, Terebes R (2012) FPGA based system for
automatic cDNA microarray image processing. Comput Med Imaging
Graph 36(5):419–429.

[22] Kazmi M. et al., FPGA Based Compact and Efficient Full Image
Buffering for Neighborhood Operations, Advances in Electrical and
Computer Engineering, 15(1):2015, pp. 95-104.

[23] Maciej Wielgosz, Mauritz Panggabean and Leif Arne Rønningen, FPGA
Architecture for Kriging Image Interpolation, (IJACSA) International
Journal of Advanced Computer Science and Applications, Vol. 4, No.
12, 2013

[24] Marczyk M. et al., Adaptive filtering of microarray gene expression
data based on Gaussian mixture decomposition, BMC Bioinformatics
2013, 14:101

