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Abstract—Cardiac arrhythmia is one of the most important 

indicators of heart disease. Premature ventricular contractions 

(PVCs) are a common form of cardiac arrhythmia caused by 

ectopic heartbeats. The detection of PVCs by means of ECG 

(electrocardiogram) signals is important for the prediction of 

possible heart failure. This study focuses on the classification of 

PVC heartbeats from ECG signals and, in particular, on the 

performance evaluation of time series approaches to the 

classification of PVC abnormality. Moreover, the performance 

effects of several dimension reduction approaches were also 

tested. Experiments were carried out using well-known machine 

learning methods, including neural networks, k-nearest 

neighbour, decision trees, and support vector machines. Findings 

were expressed in terms of accuracy, sensitivity, specificity, and 

running time for the MIT-BIH Arrhythmia Database. Among the 

different classification algorithms, the k-NN algorithm achieved 

the best classification rate. The results demonstrated that the 

proposed model exhibited higher accuracy rates than those of 

other works on this topic. According to the experimental results, 

the proposed approach achieved classification accuracy, 

sensitivity, and specificity rates of 99.63%, 99.29% and 99.89%, 

respectively.  
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I. INTRODUCTION 

According to recent reports, cardiovascular disease (CVD) 
is listed as a major underlying cause of death, accounting for 
54.5% and 47.73% of all deaths in the United States[1] and in 
Turkey[2], respectively. In order to reduce the mortality rate 
caused by CVD, monitoring heart cycles for the recognition of 
early complications is a vital concern for cardiologists and 
related medical personnel. 

An arrhythmia is an abnormal cardiac rhythm. Heart 
arrhythmias are caused by any disruption in the regularity, rate, 
or transmission of the cardiac electrical impulse [3]. Among 
the various abnormalities, premature ventricular contraction 
(PVC) is one of the most significant arrhythmias [4]. PVC 
results from the early depolarisation of the myocardium 
originating in the ventricular area and is a widespread form of 
arrhythmia in adults. PVC is common, with an estimated 
occurrence of 1 to 4% in the general population. It is often seen 
along with structural heart disease and increases the risk of 
sudden death. Moreover, its assessment and treatment are 
complex [4], [5]. This paper focuses on the classification of 
PVC arrhythmias. 

In recent years, numerous studies have been conducted on 
automatic recognition of cardiovascular system problems. 
Researchers attempting to classify PVC arrhythmias have 
mostly used time-frequency analysis techniques, statistical 
measurements, and hybrid methods. The most recently 
published works are those presented in [6–15]. In [6], the 
authors applied a dynamic Bayesian network for PVC 
classification. In [7], Ittatirut et al. attempted to detect PVCs 
for real-time applications. Their work employed a real-time 
algorithm for PVC detection based on a low computational 
method. Simple decision rules were used in the classifier 
process, which was suitable for embedded applications. 
Another study [8] compared the learning capability and 
classification skill for normal heartbeats with PVC clustering 
using four classification techniques: neural networks (NN), the 
k-nearest neighbour method (k-NN), discriminant analysis 
(DA) and fuzzy logic (FL). In [9], the authors used the k-NN 
method to classify PVC beats and normal beats, while the 
authors in [10] tried to detect PVC using a neural network-
based classification scheme and extracted 10 ECG  
(electrocardiogram) structural features and one timing interval 
feature. In [11], a low-complexity data-adaptive method for 
PVC recognition was designed which achieved an accuracy of 
98.2% in the tests. In [12], the authors focused on manifold 
learning for PVC detection and proposed a method for PVC 
recognition using manifold learning and support vector 
machines (SVM). A neural network-based ECG pattern 
recognition method was presented in [13]. In that study, NN 
correctly distinguished normal heartbeats and PVCs in 92% of 
the proposed cases. In [14], the authors tried to classify PVC 
via an NN classifier and used a wavelet transform to extract 
morphological features from ECG data. In [15], Independent 
Component Analysis (ICA) was used for feature extraction and 
k-means and Fuzzy C-Means(FCM) classifiers were employed 
to recognize the PVC beat. All of these studies [6-15] used 
ECG records from the MIT-BIH Arrhythmia Database. 

In this paper, an effective and comparative approach was 
developed for the classification of PVC arrhythmias. The main 
objective was to improve the accuracy of cardiac arrhythmia 
classification and examine the performance of time series and 
their equivalent reduced-size features of ECG signals. The time 
series of the signal was used to evaluate performance metrics 
for classification. In addition, principal component analysis 
(PCA), independent component analysis (ICA), and self-
organising maps (SOM) were used to reduce the size of input  
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feature vectors. To obtain the experimental results, NN, k-NN, 
SVM and decision tree (DT) classification algorithms were 
applied using different schemes. In order to provide a better 
representation, the test data used in the analysis were selected 
from the MIT-BIH Arrhythmia Database. The results showed 
that the proposed approach obtained the considerably high 
classification accuracy rate of 99.63% and provided better 
classification performance than other approaches studied 
previously. 

II. MATERIAL AND METHODS 

All ECG signals comprising Lead II (containing normal or 
PVC beats) from the MIT-BIH Arrhythmia Database were 
used in this work. The signal was passed through pre-
processing for de-noising. Beat parsing was performed on the 
noise-free signal, and 200 samples were selected as the cycle of 
the ECG beat. Because the sampling frequency of the signal 
was 360 Hz., the 200 points around the QRS complex as a 
signal window were the approximate equivalent of one cardiac 
cycle. In total, 7000 windowed ECG beats were used for the 
analysis. 

In this study, the focus was on the improvement of PVC 
classification performance. Memory requirements and the 
complexity of the model were reduced by optimising the input 
vectors. Thus, the model required less operational time.  Fig. 1 
illustrates a block diagram of the proposed approach for 
classifying the PVC beat in the ECG of an arrhythmia. The 
functioning of each step is described in detail in the following 
sections. 

A. ECG Database 

The MIT-BIH Arrhythmia Database [16], [17] was used as 
the data source for this study. The database contains 48 signals 
of 30 min duration each, and two leads – Lead II and one of the 
modified leads (V1, V2, V4, or V5). The signals of the 
database were sampled at 360 Hz. Twenty-three files were 
randomly selected to serve as a representative sample of 
routine clinical recordings and 25 files were selected to include 
uncommon complex ventricular, junctional, and 
supraventricular arrhythmias. The database was annotated both 
in timing information and beat label. In this work, the 
annotation labels were used to locate the beats in the signal 
files. A total of 43 data files were used, marked as: 100, 101, 
103, 105, 106, 107, 108, 109, 111, 112, 113, 115, 116, 117, 
118, 119, 121, 122, 123, 124, 200, 201, 202, 203, 205, 207, 
208, 209, 210, 212, 213, 214, 215, 217, 219, 220, 221, 222, 
223, 228, 230, 231, and 234. The remaining files were not used 
because they did not contain Lead II or related beats. Eight 
files of the selected records did not contain normal beats and 
ten did not contain PVC beats. Approximately 100 normal 
beats were selected for the test from each file. The data used 
consisted of 3500 (from 35 files) normal (N) beats and 3500 
(from 33 files) PVC beats. The PVC beats were intermittently 
selected from the files because these beats were unevenly 
distributed in the files.  Table I gives details of the distribution 
of the selected beats from the MIT-BIH Arrhythmia Database. 

 
Fig. 1. Overall system architecture 

TABLE I.  TOTAL NUMBER OF SELECTED BEATS FROM  MIT-BIH 

ARRHYTHMIA DATABASE 

 Beats  

Files N PVC TOTAL 

100,101,103,205 401 42 443 

106,107,108,109 99 622 721 

111,112,113,115 300 1 301 

116,117,118,119 300 568 868 

121,122,123,124 300 51 351 

200,201,202,203 400 456 856 

205,207,208,209 300 296 596 

210,212,213,214 300 669 969 

215,217,219,220 400 389 789 

221,222,223,228 400 400 800 

230,231,234 300 6 306 

TOTAL 3500 3500 7000 

B. Preprocessing 

Noise reduction in ECG signals is a significant problem. 
There are several noise factors in the ECG: EMG noise, power 
line noise, baseline wander, and composite noise [18]. 
Fluctuations in the amplitude of ECG signals have a negative 
effect on the calculated feature vectors. The same type of ECG 
signals taken from different patients can show remarkable 
variances. The differences in ECG signals are minimised by 
performing normalisation and pre-processing operations. 

In this study, the mean of the signal was set to zero. The 
zero mean signal * ( ) |     +  was calculated using 
Equation (1): 

  ( )   ( )     

where y(t) is the calculated signal, * ( ) |     + is the 
raw ECG,     is the arithmetic mean of  x(t), and L is the 
length of the signal. 

Thereafter, a median filter was used to reduce noise. The 
median filter is a simple nonlinear smoother that can suppress 
noise while holding sharp edges in signal values [19].  
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The filtered signal * ( ) |     + was calculated using 
Equation (2): 

  ( )     * (   )  ( )  (   )+ 

where Y(t) is the filtered signal and y(t) is the input signal. 

 
Fig. 2. Input signal, cascade low-pass filter result, and final result of the filter 

from data file 203 

A cascade low-pass filter to remove frequency components 
below 2 and 0.5 Hz from the signal was applied in the final 
signal  ( )  to remove the baseline wander and powerline 
noise. Frequency components of the baseline wander are 
generally below 0.5 Hz; however, in the event of a stress test, 
this value can be higher. Consequently, the frequency limit was 
adjusted to 2 Hz [20]. The required change of filter type from 
low- to high-pass filters can be achieved by subtracting the 
output of the low-pass filter from the suitably delayed input 
signal. Fig. 2 demonstrates the input signal, cascade-filtered 
signal, and filter results of the first 5000 samples of data file 
203 on the MIT-BIH Database. 

C. Beat Parsing 

Each beat’s window length of 200 points was established 
from the filtered ECG signal according to the location of the R 
point in the QRS complex (99 points on the left side of the R 
point, 100 points on the right side of the R point, and the R 
point itself). The associated location of the R points composed 
the annotation files of the MIT-BIH Database. No QRS 
detection algorithm was used. The selected beats constituted a 
7000 × 200 data matrix. 

D. Feature Reduction 

In this study, the time series of the one beat was used for 
classification. In addition, feature reduction methods were used 
for dimension reduction. Consequently, the performance of the 
classification algorithms using the time series and their reduced 
features were compared. PCA, ICA, and SOM were used to 
reduce the size of the input vectors, and the computation time 
of classification was diminished. Both single-beat time series 
and reduced dimension data were used as input vectors of the 
classifiers for comparison and a notable acceleration was 
obtained. 

PCA is a numerical technique that uses perpendicular 
conversion to transform a set of observations of possibly 
correlated features into a set of values of uncorrelated features, 
called principal components [21]. ICA is a very versatile 
statistical method in which observed random data are linearly 
transformed into elements that are maximally independent 
from each other [22]. SOM is an unsupervised neural network 
method, improved by Kohonen, which proposes an effective 
and easily interpretable mapping from a higher dimensional 
input space into a lower dimensional (especially, two-
dimensional) space [23], [24].  The feature reduction 
parameters are described in the result section. 

E. Classification 

In this work, NN, k-NN, SVM, and DT classification 
algorithms were used for classification, and are briefly 
discussed below. 

A three-layered feed-forward neural network was applied 
for pattern classification in this study [25]. The input layer was 
composed of 200 nodes corresponding to the 200 points of one 
beat. Moreover, results of the PCA, ICA and SOM feature 
reduction approaches were also tested using this method. In 
that case, the sizes of the input layer were 2, 17, and 10 for the 
PCA, ICA and SOM, respectively. The output layer consisted 
of two nodes. 

The k-NN algorithm is one of the most conventional 
methods in pattern recognition because of its effective non-
parametric nature. The nearest neighbour decision rule assigns 
the classification of the closest training samples in the feature 
space to an uncategorised sample point [26].  This algorithm 
does not depend on the statistical distribution of training 
samples. The classification process of the samples is realised 
according to the nearest neighbourhood of training examples. 
The algorithm uses numerous distance measures. An instance 
is classified by a majority vote of its k-nearest neighbours. In 
this work, k was established as 1 after the parameter 
optimisation step. Euclidean distance was used as the measure 
function. 

SVM is popular in machine learning for pattern 
recognition, especially for binary classification [27], [28]. The 
input data are transformed into a high-dimensional feature 
space. In this space, the data points are linearly separated by a 
hyper-plane. Because the patterns are not linearly separable in 
most cases, the patterns are mapped into a high-dimensional 
space using an appropriate kernel, and then, the optimisation 
step is fulfilled.  Various kernel transformations are used for 
mapping the data into high-dimensional space, some of which 
include linear, sigmoid, polynomial, and radial basis function 
(RBF). In this study, parameter optimisation was used to find 
the optimum SVM parameters. After this stage, the C 
parameter was set as 100, the Gamma parameter was set as 4, 
and the polynomial was selected as the kernel-type parameter. 

DT is a predictive model which can be used to characterise 
both classifiers and regression models. DT refers to a 
hierarchical model of decisions and their results and is used to 
classify a sample into a predefined set of classes based on their 
feature values. DT consists of nodes that form a rooted tree 
meaning. It is a directed tree with a node called a root that has 
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no entering edges. All other nodes have only one entering 
edge. A node with outgoing edges is referred to as a test node. 
All other nodes are known as leaves, or decision nodes [29]. 
Each leaf is allocated to one class demonstrating the most 
accurate target value. The leaf holds a probability vector 
specifying the probability of the target feature with a definite 
value.  

Thus, from the last leaf to the root, the most likely path to 
the destination can be calculated by multiplying all other 
probability values of the leaves. The efficiency of the 
calculation can be improved by cutting specific branches of the 
tree or changing the defining characteristics. There are many 
common decision tree algorithms, some of which are ID3, 
C4.5, CART, CHAID, and MARS. At the generating stage of 
the DT, the gain ratio was used as the criterion parameter, 4 as 
the minimal size for the split, 2 as the minimal leaf size, and 20 
as the maximal depth. 

III. EXPERIMENTS AND RESULTS 

The approach was tested on 200 time series samples of one 
beat. These samples were applied to the classification methods 
discussed in Section II as the input vectors. A parameter 
optimisation step was performed to obtain optimum parameter 
values. 

In the NN classifier, a hidden layer consisting of 10 
neurons was used. The output layer consisted of two neurons. 
The size of the hidden layer was selected by empirical 
observation. Even numbers between 2 and 20 were tested for 
hidden layer size. In the hidden layer, maximum accuracy was 
obtained at around 10 neurons. Table II shows classification 
accuracies versus neuron size of the hidden layer of the neural 
network classifier using time series, ICA, PCA, and SOM 
features as input vectors. The NN was trained by a back 
propagation algorithm. At the training and testing stage, 
training cycle and learning rate parameters were set as 500 and 
0.3, respectively. The error threshold parameter was set as 
0.00001 to terminate the iterations when mean square error 
(MSE) was attained. 

As a result of a grid search, the present experiments showed 
that the best k value of the k-NN algorithm was found at one; 
however, all k values in the test range achieved high results. 
Euclidean distance was used as the distance measure in this 
study. Since the k-NN classifier obtained the highest results, it 
was used in the parameter optimisation stages of the feature 
reduction algorithms. 

For the SVM classification experiments, parameters were 
determined using a grid search like that done with the k-NN 
experiments. Four kernel functions (polynomial, RBF, sigmoid 
and linear), a complex SVM fixed parameter (C) having 12 
different kernels with values in the exponential range of 0-
1000, and 18 different Gamma parameters having values in the 
exponential range of 0-100 were tested by the grid search. 
After the optimisation stage, the polynomial kernel function 
was selected, C was set as 100, and Gamma set as 4. 

TABLE II.  NEURAL NETWORK CLASSIFIER CLASSIFICATION ACCURACIES 

(%) FOR  DIFFERENT INPUT VECTORS AND HIDDEN LAYER SIZE 

Hidden layer size Time series ICA PCA SOM 

2 0.9729 0.961 0.9677 0.7879 

4 0.9783 0.9704 0.9791 0.8744 

6 0.9873 0.9766 0.9829 0.924 

8 0.983 0.9771 0.9827 0.9343 

10 0.9846 0.9779 0.9814 0.9466 

12 0.98 0.9773 0.982 0.9574 

14 0.981 0.977 0.9864 0.9703 

16 0.982 0.9776 0.9831 0.9756 

18 0.9801 0.9783 0.9817 0.9723 

20 0.9809 0.9779 0.9851 0.977 

 
Fig. 3. Cumulative variance versus number of PCs for first 20 principal 

components 

In addition, PCA, ICA and SOM were applied to reduce the 
size of the feature vectors. Processed data were used in the 
same classifiers. Remarkable achievements were obtained and 
classification time was reduced. Before implementing the 
classification test, the grid search was used to find the counts of 
the best principal components (PCs) and independent 
components (ICs) resulting in the highest accuracy rate for the 
classifiers. It was found experimentally that k-NN classifiers 
feeding PCA features achieved the highest accuracy. The 
calculation of the SOM features took more time than other 
dimension reduction methods.  The computation times of the 
PCA, ICA, and SOM feature reduction methods were 2.5, 1.2, 
and 67.3 s, respectively. 

As shown in Fig. 3, when calculating principal 
components, cumulative variance started with a small number 
and increased rapidly. Cumulative variance reached 0.926 and 
0.997 at principal component counts 5 and 20, respectively. All 
principal components between 0 and 30 were tried out and the 
number of principal components that provided the best result 
for the classification algorithms was calculated.  
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When the principal component count was 17, the 
cumulative variance was 0.995. This value obtained the best 
result; therefore, the PCs = 17 value was used as the principal 
component for the tests in this study. 

The FastICA algorithm was used for calculating the 
independent components [22] in the ICA experiments. All 
independent components between 0 and 30 were tried out with 
parameter optimisation and the number of independent 
components providing the highest result for the classification 
algorithms was calculated. The ICs = 10 value obtained the 
highest results according to the experiments. 

SOM was used to reduce the size of the input vector to 2. 
The network size was taken as 30 and the training rounds were 
specified as 30. The two-dimensional output vector was 
calculated by the SOM network to be used as the input vectors 
of the classification algorithms. 

Classification models have a common strategy of dividing 
the dataset into two parts, one for training and the other for 
testing.  The classification accuracy obtained from the test part 
more precisely projects the performance. An upgraded version 
of this technique is known as cross-validation. A 10-fold cross-
validation method was used in this study for training and 
testing of the classification algorithms. In the 10-fold cross-
validation, first, the dataset was split into 10 subsets of the 
same size. Sequentially, one subset was evaluated using the 
classification algorithm trained on the other 9 subsets. Thus, 
each subset of the whole dataset was predicted once. The 
average accuracy of these 10 trials was calculated as a 
classification result. The cross-validation accuracy is the 
percentage of data which are properly classified. The cross-
validation technique can prevent the problem of over-fitting 
[28]. 

The classification performance of the classifiers can be 
measured by calculating the accuracy, sensitivity, and 
specificity. These performance parameters are defined as 
shown in Equations (3)-(5). 

            
     

           
 

               
  

     
 

              
  

     
 

where TP and TN symbolise the total number of correctly 
classified PVC beat (true positive) samples and N beat (true 
negative) samples. The FP and FN symbolise the total number 
of misclassified PVC beat (false positive) samples and N beat 
(false negative) samples. 

Table III shows the classification performance parameters 
(accuracy, specificity, and sensitivity) of classifiers using the 
time series of the signal as an input feature vector. When the 
time series of the signal was fed to the classifiers, the k-NN 
classifier achieved the highest accuracy of 99.56%. 

Tables IV-VI present a comparison of classification results 
for classifiers fed to the PCA, ICA and SOM features, 
respectively. Classification results showed that the k-NN 

classifier achieved the highest accuracy for the reduced data by 
ICA, PCA and SOM. The SOM features achieved less success 
than the other features. 

TABLE III.  CLASSIFICATION RESULTS (%) FOR TIME SERIES AS INPUT 

 
Accuracy Sensitivity Specificity 

k-NN 99.56 99.29 99.83 

NN 98.46 99.06 97.86 

SVM 98.09 96.86 99.31 

DT 97.96 97.40 98.51 

TABLE IV.  CLASSIFICATION RESULTS (%) FOR PCS AS INPUT 

 
Accuracy Sensitivity Specificity 

k-NN 99.63 99.29 99.89 

NN 98.14 98.97 97.31 

SVM 98.56 97.43 99.69 

DT 95.90 93.23 98.57 

TABLE V.  CLASSIFICATION RESULTS (%) FOR ICS AS INPUT 

 
Accuracy Sensitivity Specificity 

k-NN 99.26 98.80 99.71 

NN 97.79 99.06 96.51 

SVM 98.04 97.00 99.09 

DT 94.73 92.11 97.34 

TABLE VI.  CLASSIFICATION RESULTS (%) FOR SOM FEATURES AS INPUT 

 
Accuracy Sensitivity Specificity 

k-NN 98.36 97.14 99.57 

NN 94.60 93.89 95.31 

SVM 81.39 69.60 93.17 

DT 77.54 55.29 99.80 

Fig. 4 shows the average accuracy achieved by the k-NN 
classifier versus the number of PCs and ICs. The number of 
PCs varied from 1 to 25 and their effects on classification 
accuracy were determined. The count of PCs for the k-NN 
classifier was found as 17. The cumulative variance of the first 
17 principal components was 0.995. After beginning with 
small numbers of PCs, the average accuracy increased rapidly 
and then levelled off at around 7 PCs. The average accuracy 
stayed at around 99% at higher PC numbers. Additional 
increase in PC numbers did not significantly increase the 
accuracy of the classifier. 

The number of ICs from 1 to 25 and their effects on 
classification accuracy were also examined. The count of ICs 
for the k-NN classifier was calculated as 10. As is seen in Fig. 
4, the average accuracy began with small IC numbers and then 
increased sharply. On the other hand, there were slight 
fluctuations in the classification performance of the k-NN 
classifier at ICs higher than 15. The ICs from 8 to 15 achieved 
high classification accuracy results. 

Parameter optimisation was applied in order to find the 
optimum k value that gave the best result for the k-NN 
classifier for the input vector time series, PCs, ICs, and SOM 
features. The odd numbers from 1 to 15 were tried as a k value. 
The highest average accuracy of 99.63% was reached at k = 1, 
but all k values in the range achieved high results (> 98.8%) 
using the time series and PCs features. Fig. 5 shows the 
average accuracy versus the k number of the k-NN classifier 
for input vector time series, ICA, PCA, and SOM features. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 6, No. 7, 2015 

39 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 4. Average accuracy versus number of PCs and ICs for k-NN classifier 

 
Fig. 5. Average accuracy versus number of k for input vector time series, 

PCs, ICs, and SOM 

As seen in Fig. 5, when the k value increased, the 
classification performance of the algorithm decreased slightly. 
The time series and PCs features achieved approximately the 
same classification accuracy; however, the ICs and SOM 
features remained slightly lower for all k values. When the 
SOM features were used as an input vector of the k-NN 
classifier, the highest classification accuracy was achieved by 
the k = 3 value. 

Table VII shows the classification times (in seconds) for 
the 10-fold cross-validation of the classifiers.  As seen in the 
results, classifiers that were fed with time series took more 
time for calculation because the size of the input vector was 
200. The k-NN classifier presented an acceptable calculation 
time for all types of input vectors. The NN classifier took more 
time than the other classifiers because of its complex 
computation mechanism. Table VIII shows the results of the 
proposed method in this work in comparison with results of 
other methods available in the literature dealing with the 
classification of PVC. In the proposed method, a k-NN 
classifier which was fed PCs features was used and an average 
accuracy of 99.63% for the 10-fold cross-validation was 
achieved. The proposed approach obtained a higher 
performance than the existing methods. 

TABLE VII.  CLASSIFICATION TIMES (S) FOR 10-FOLD CROSS-VALIDATION 

 
Time Series PCA ICA SOM 

k-NN 45 4 3 1 

NN 2008 225 16 75 

SVM 56 13 17 636 

DT 181 21 19 7 

TABLE VIII.  PERFORMANCE METRICS (SPECIFICITY, SENSITIVITY, 
ACCURACY), CLASSIFIERS AND DATABASE FILE COUNT USED IN TEST OF 

PROPOSED METHOD AND PUBLISHED PVC CLASSIFIERS AS REPORTED BY THE 

AUTHORS 

Researchers Classifiers  Spe. Sen. Acc. File Count 

Jie Zhou [5] Quantum NN - - 97.74 11 

De Oliveira et 

al.[6] 

Bayesian 

Network 
99.86 95.09 - -  

Ittatirut et al.[7] 
Simple 

decision rule 
99.55 91.05 - 26 

Bortolan et 

al.[8]  

NN, k-NN, 

DA, FL 
98.7 91.3 - 48 

Christov et al. 

[9] 
k-NN 96.7 96.9 - - 

Ebrahimzadeh 

and Khazaee 

[10] 

MLP NN - - 95.4 7 

Li et al.[11] 
Template 
Matching 

- 93.1 98.2 22 

Ribeiro et al. 

[12] 
SVM 98.28 89.39 - - 

Foo et al.[13] NN - - 92.2 4 

Inan et al. [14] NN - 98.33 95.16 40 

Jenny et al. [15] 

k-Means, 

Fuzzy c-

Means 

80.10 81.10 80.94 - 

Proposed 

method 

k-NN, NN, 

SVM, DT 
99.89 99.29 99.63 43 

IV. CONCLUSION 

In this paper, an approach was proposed to correctly 
classify PVC beats.  At the classification stage, 10-fold cross-
validation was used to ensure the reliability of the classification 
process. Most of the tested classifiers obtained high accuracy 
rates. In particular, the k-NN classifier achieved the highest 
accuracy results of 99.63% using PCA features as input 
vectors. The DT classifier produced the least satisfactory 
results of all the feature sets. The SVM and DT classifiers 
using SOM features attained the lowest accuracy rates of 
81.39% and 77.54%, respectively. Considering the 
computation time, the k-NN classifier attained the best results 
using reduced feature vectors. All of the tested classifiers 
achieved remarkable acceleration by reducing the size of the 
feature vectors. However, the computational time of the NN 
was higher than the others, even when using reduced input 
feature vectors. 

The accuracy, sensitivity, and specificity were calculated in 
order to compare the training algorithms. In terms of 
recognition accuracy, it can be seen that the k-NN 
classification algorithm achieved the best performance 
according to the experiments. 

In comparison with other works, the PVC classification 
approach presented in this paper showed a higher performance 
of classification accuracy. Most of the current studies ([5] [7] 
[10] [11] [13]) have used a specific subset of data in the 
database. In this study, rather than using a specific subset, 
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almost all PVC beats existing in the database were used. De 
Oliveira et al. used 947 PVC beats for classification, with 80% 
of the data used for training and 20% for testing. However, 
they did not give sufficient details of their experimental 
implementation, such as the number of cross validations. 
Furthermore, the number of records used in the study was not 
specified [6].  

In another work, Ittatirut et al. tested their method with 26 
records. They excluded some records such as those using 
pacemakers and those containing heart blockage and atrial 
fibrillation from their experiments [7].  

On the other hand, Bortolan et al. used all the ECG 
recordings from the MIT-BIH Database. However, the size of 
the learning set was very small (260 beats for the global set, 76 
beats for the local set). The best accuracy achieved was 88.5% 
from the global set with a DA classifier and 98.7% from the 
local set with a k-NN classifier [8]. Similarly, Christov et al. 
used a k-NN algorithm to classify PVC beats in all files in the 
Database and achieved sensitivity and specificity rates of 
96.9% and 96.7%, respectively [9]. Inan et al. used most of the 
signal files, tested the data with an NN classification algorithm 
and achieved an accuracy of 95.16% [14]. Jenny et al. used an 
unsupervised learning algorithm and, therefore, achieved lower 
accuracy rates than those of the other works [15]. 

This study showed that high classification accuracy can be 
obtained without implementing any feature extraction method 
and by using time series of the signal for input. PCA can be 
used to reduce the size of the input vectors representing the 
data. Because of its high computational speed, the proposed 
method in this work may advance the capability of any system 
performing real-time PVC analysis. The classification 
approach presented in this paper can be implemented as part of 
a computer-aided diagnosis system and can speed up the 
diagnosis process. The proposed method can be further 
developed for future use in detecting more ECG arrhythmias. 
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