
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

85 | P a g e

www.ijacsa.thesai.org

Metrics for Event Driven Software

Neha Chaudhary

Ph.D. Scholar, Gautam Buddha University,

Greater Noida, India

O.P. Sangwan

Guru Jambheshwer University of Science & Technology,

Hisar, India

Abstract—The evaluation of Graphical User Interface has

significant role to improve its quality. Very few metrics exists for

the evaluation of Graphical User Interface. The purpose of

metrics is to obtain better measurements in terms of risk

management, reliability forecast, project scheduling, and cost

repression. In this paper structural complexity metrics is

proposed for the evaluation of Graphical User Interface.

Structural complexity of Graphical User Interface is considered

as an indicator of complexity. The goal of identifying structural

complexity is to measure the GUI testability. In this testability

evaluation the process of measuring the complexity of the user

interface from testing perspective is proposed. For the GUI

evaluation and calculating structural complexity an assessment

process is designed which is based on types of events. A fuzzy

model is developed to evaluate the structural complexity of GUI.

This model takes five types of events as input and return

structural complexity of GUI as output. Further a relationship is

established between structural complexity and testability of event

driven software. Proposed model is evaluated with four different

applications. It is evident from the results that higher the

complexities lower the testability of application.

Keywords—Graphical User Interface; Structural Complexity;

Testability; Fuzzy model

I. INTRODUCTION

Graphical User interfaces have special characteristics that
differentiate them from the rest of the software code. These
applications have many challenges due to its event driven
nature and infinite input domain. This event driven nature
presents a challenge to testing because there are a large number
of possible event sequences that users can invoke through a
user interface. It is important to assess the quality of software.
Software testability is one of the quality metric for software
applications and ISO has defined software testability as a
functionality and it defines functionality as “the collection of
characteristics of software that bear on the effort required to
authenticate the software produced”.

The testability of software is determined by factors such as:

 Controllability

 Observability

 Built in Test Capability

 Understandability

 Complexity

Complexity is one of the important factors to assess the
testability of software. It is concluded from the literature

survey that typical software metrics for complexity dose not
identify complex GUI. Various structural complexity metrics
are reported in literature survey. Most of the papers defined
structural complexity in terms of visual objects, size,
distribution and position and tree structure they are as follows:

1) Number of controls in an interface [1]

2) The longest sequence of different controls that is

defined to perform a specific task. In terms of the GUI XML

tree, it is depth of the tree.

3) Maximum number of choices for a user at any moment

while using that interface.

4) Time required performing certain events in a GUI.

5) Tree structure metric that defines complex GUI when

majority of its controls is toward the top and less complex

GUI when most of the control is at bottom [2].

6) Tree path count calculates the number of leaf nodes in

a tree [3].

7) Tree depth is calculated by the total number of choices

in the tree is divided by the tree depth [3].
Users interact with a GUI by performing events on some

widgets, like a button click, menu open, and dragging an icon.
All interaction of GUI and a user is with the help of these
events [4][6]. As defined in above metrics all choices presented
to the user will be in the form of events. Maximum tree depth
will be longest sequences of events. Therefore a new metric
can be defined in terms of all types of events a GUI is
consisting. It was shown from the Alsmadi I. (2011) research
that LOC metric is irrelevant for GUI because it cannot be
identified that how much code is GUI oriented. GUI events are
classified on the basis of their response to the system on
selection. Their classification is as follows [11].:-

Restricted-focus events,

Restricted-focus events open a modal window of GUI. For
example, “Set Language” is a restricted focus event.

Unrestricted-focus events

Unrestricted-focus events open modeless windows. For
example, Replace in MS WordPad is an unrestricted focus
event.

Termination events

Termination events are used to close modal windows.
Examples of Termination events include Ok, Exit and Cancel.
There are other types of events that GUI contains, and they do
not open or close windows but make other GUI events
available. Menus that contain several events are open by these
events.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

86 | P a g e

www.ijacsa.thesai.org

Menu-open

Menus can be open by using Menu-open events. They
expand the menus so that the set of GUI events would be
available to the user. Menu-open events need not interact with
the underlying software. Unrestricted-focus events open a
window that has to be explicitly terminated, whereas menu
open events has no such restriction. The most common
example of menu-open events is generated by menus that open
pull-down menus. Common example includes File, Edit, and
Format. All other remaining events in the GUI are used to
interact with the underlying software [8].

System-interaction

System-interaction events interact with the underlying
software to perform some action; common examples include
the Copy event used for copying objects to the clipboard [13].
This classification of events is used to compute structural
complexity of GUI based software. To compute the structural
complexity an assessment process is defined. An overview of
Assessment Process is presented in the next section.

II. STRUCTURAL COMPLEXITY ASSESSMENT PROCESS

Based on types of events an assessment process for
structural complexity is designed. This process is outlined next:

1) Input to the process is GUI application. The

Application under Test (AUT) is identified which essentially

means identification of the locations of source files and any

library modules needed to compile/build the AUT. This is

known as baseline AUT.

2) To extract GUI components GUITAR (GUI Testing

framework) is used, which generates. GUI Structure (using a

module called the GUI ripper) by automatically traversing all

the windows of the GUI.

3) Event calculator computes count of each type of events.

It is a kind of parser which takes GUI structure as input and

return count of type of event.

4) Each event is assigned a weight value.

5) Normalization of data: Softmax scaling method is used

to map all values between 0 and 1. Softmax scaling is based

on the logistic function given in equ. (1):
y = 1 / (1 + e

-x
) (1.1)

Where y is the normalized value and x is the original value.

The logistic function transforms the original range of [-
∞,∞] to [0,1] and also has a linear part on the transform. The
values of the variables must be modified before using the
logistic function in order to get a desired response.

This is achieved by using the following transform

x’ = (x - x)/((/2)) (1.2)

where x is the mean of x , is the standard deviation, and
is the size of the desired linear response.

Fig. 1. Structural Complexity Assessment Process

Once the number of events is calculated their weight value
is multiplied to each count.

6) Fuzzy Inference System (FIS) is the process of

formulating the mapping from an input space to output space

[13]. A fuzzy model is proposed with five inputs, namely

Unrestricted Focus Events, Menu Open Events, Termination

Events, System Interaction Events and Restricted Focus

Events. Figure1.2 shows the fuzzy model. The proposed model

consists of five inputs and provides a crisp value of structural

complexity using Rule Base. In this model Mamdani’s fuzzy

inference method is used as shown in figure 3.

After the fuzzification process, there is a fuzzy set for each
output variable that needs defuzzification. The input for the
defuzzification process is a fuzzy set (the aggregate output
fuzzy set) and the output is singleton number. Further centroid
method is used for defuzzification.

Events are classified in five types and further they are
divided into three states (linguistic variables) i.e. low, medium
and high.

The input variable Unrestricted Focus Events has been
divided into three levels i.e. Low, medium and high.

Similarly other four inputs are divided into three states i.e.
low, medium and high. The output variable complexity is also
is classified as low, medium and high.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

87 | P a g e

www.ijacsa.thesai.org

Fig. 2. Fuzzy model for Structural Complexity Assessment

Fig. 3. Fuzzy Inference System: Complexity Assessment Model

A. Rule base and evaluation process

When input data is fuzzified, processing is carried out in
fuzzy domain. The model integrates the effects of multiple
factors Unrestricted Focus Events, Menu Open Events,
Termination Events, System Interaction Events and Restricted
Focus Events into a single measurable parameter that will
define the structural complexity of test case, based on the
following knowledge/rule base. The rule base can further be
advanced by creating more ranges (fuzzy sets) for the input
variables. All inputs and outputs are fuzzified as shown in
figure 1.4. All possible combinations of inputs were considered
that will create 3

5
 i.e. 243 sets. The structural complexity for all

243 combinations is classified as low, medium and high by
expert judgment. This indicates to formulation of 243 rules for
the fuzzy model and some of the rules are presented below:

1) If value assigned for Unrestricted Focus Events is high,

Menu Open Events is high, Termination Events is high, System

Interaction Events is high and Restricted Focus Events is high

then structural complexity is high.

2) If value assigned for Unrestricted Focus Events is high,

Menu Open Events is high, Termination Events is high, System

Interaction Events is high and Restricted Focus Events is

medium then complexity is high.

3) If value assigned for Unrestricted Focus Events is high,

Menu Open Events is high, Termination Events is high, System

Interaction Events is high and Restricted Focus Events is low

then complexity is high.
.

.

.

? If value assigned for Unrestricted Focus Events high,
Menu Open Events is medium, Termination Events is high,
System Interaction Events is high and Restricted Focus Events
is high then complexity is high.

…..

243. If value assigned for Unrestricted Focus Events very
low, Menu Open Events is low, Termination Events is very
low, System Interaction Events is low and Restricted Focus
Events is low then complexity is low.

Fig. 4. Rule Viewer for the Complexity Assessment Model

All 243 rules are inserted and rule base is created. A rule is
fired based on the particular set of inputs. In this model
Mamdani style inference has been used.

The output of GUI complexity has been observed using
rule viewer for particular set of inputs using MATLAB fuzzy
Tool Box as shown in figure 4.

Defuzzification

After getting the fuzzified output as specified in previous
section, these values are defuzzified to get the crisp value of
the output variable priority. Transformation of the output from
fuzzy domain to crisp domain is called defuzzification. In this
model defuzzification is done using centre of gravity (COG)
method. The final crisp value for COG is 0.8. Final value of
complexity assessment for given input is 0.8, which lies in a
complex GUI category.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

88 | P a g e

www.ijacsa.thesai.org

For example if following values are considered as inputs to
the model: Unrestricted Focus Events =0.9, Menu Open
Events=0.9, Termination Events=0.9, System Interaction
Events=0.9 and Restricted Focus Events=0.9.

III. EVALUATION OF FUZZY BASED COMPLEXITY

ASSESSMENT METHOD

For the evaluation of fuzzy based test case prioritization
method software artifacts are taken from Event Driven
Software Lab (Dept. of Computer Science, University of
Maryland, USA) established in 2005. These applications are
part of an opensource office suite which has has been
considered in many research. This application suite is known
as TerpOffice3 and includes TerpWord (a small word-
processor), TerpSpreadSheet (a spreadsheet application),
TerpPaint (an image editing/ manipulation program) and
TerpPresent (a presentation tool). These applications are
implemented using Java. These applications are fairly large
with complex GUIs nearly as the size of MS WordPad. These
applications do not have any complex underlying “business
logic.” This property of applications makes them perfect
subject applications for GUI research.

TABLE I. EVENTS AND NORMALIZED VALUES FOR TERPPAINT 3.0

Event type
TerpPaint

3.0

Weighted

Value

Value

Transformation

Logistic

Normalization

System

Interaction
589 58.9 6.0607 0.9977

Termination 0 0 -8.8630 0.0001

Non

Restricted

Focus

1 10 -6.3293 0.0018

Restricted

Focus
11 55 5.0725 0.9938

Menu Open 51 51 4.0590 0.9830

Mean - 34.98 - -

Standard

deviation
- 24.80809545 - -

For all these application value of termination event is zero.
So this value is not considered. Count of all events is coming in
different range so different weight value is assigned to make
these values come in same range. Softmax scaling is used to
map all values in the range of 0 to 1. For all applications these
values are calculated and they are shown in the table 1 to 4 for
all applications. Table 1 shows events and normalized values
for TerpPaint 3.0.

Table 2 shows event and normalized value for TerpPaint
3.0. For this application number of menu open events is very
high as compared to other applications.

Table 3 represents Events and Normalized values for Terp
SpreadSheet 1.0. In this application total numbers of events are
small as compared to other application.

TABLE II. EVENTS AND NORMALIZED VALUES FOR TERPPRESENT 3.0

Event type

Terp

Present

3.0

Weighted

Value

Value

Transfor

mation

Logistic

Normalizat

ion

SYSTEM

INTERACTION
682 68.2 3.1606 0.9593

TERMINATION 0 0 -6.7453 0.0012

NON RESTRICTED

FOCUS
0 0 -6.7453 0.0012

RESTRICTED

FOCUS
10 50 0.5171 0.6265

MENU OPEN 114 114 9.8130 0.9999

Mean - 46.44 - -

Standard deviation -
43.27556

354
- -

TABLE III. EVENTS AND NORMALIZED VALUES FOR TERPSPREADSHEET

3.0

Event type
TerpSprea

d Sheet 3.0

Weighted

Value

Value

Transforma

tion

Logistic

Normalizat

ion

SYSTEM

INTERACTION
401 40.1 5.2760 0.9949

TERMINATION 0 0 -7.4079 0.0006

NON RESTRICTED

FOCUS
0 0 -7.4079 0.0006

RESTRICTED

FOCUS
6 30 2.0813 0.8891

MENU OPEN 47 47 7.4585 0.9994

Mean - 23.42 - -

Standard deviation -
19.87223

188
- -

Table 4 shows events and normalized values for TerpWord
3.0. this application is fairly large application in terms of
number of events as compared to other applications.

TABLE IV. EVENTS AND NORMALIZED VALUES FOR TERPWORD 3.0

Event type
TerpWo

rd 3.0

Weighted

Value

Value

Transforma

tion

Logistic

Normalizat

ion

SYSTEM

INTERACTION
1628 162.8 9.7407 0.9999

TERMINATION 0 0 -5.6195 0.0036

NON RESTRICTED

FOCUS
1 10 -4.6760 0.0092

RESTRICTED FOCUS 23 115 5.2308 0.9947

MENU OPEN 10 10 -4.6760 0.0092

Mean - 59.56 - -

Standard deviation -
66.62112

578
- -

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

89 | P a g e

www.ijacsa.thesai.org

Fig. 5. Structural complexities of Applications under test

All normalized values shown in table 1 to table 4 are given
as input to fuzzy model and their structural complexity is
calculated and shown in figure 5.

Further fault seeding has been done on all applications and
200 faults are injected in each applications and different
version of applications are created and tested with GUITAR[5].

Number of faults identified by each application is shown in
figure 6.

Fig. 6. Number of faults identified by each application

IV. CONCLUSION

Number of identified faults represents teastability of
software, where TerpPaint shows highest Testability and its
structural complexity is lowest. Testability of TerpWord is

lowest and its complexity is highest. Structural complexity of
TerpPresent and TerpSpreadsheet is same and their fault
revealing capability is almost same. Hence it is evedent from
the results that higher the complexity lower the testability of
application.

For evaluation of GUI structural complexity metric is
defined which is based on types of events. A fuzzy model is
developed for GUI evaluation. Its results are evaluated with 4
different applications. A relationship is further established with
testability with this metric.

ACKNOWLEDGMENT

For the evaluation software artifacts are taken from Event
Driven Software Lab (Dept. of Computer Science, University
of Maryland, USA). This repository is a huge help for the
researchers in the field.

REFERENCES

[1] Magel, K. and Izzat, A. , “GUI Structural Metrics and Testability
Testing”, in Proceedings of IASTED SEA, USA, 2007, pp. 159-163.

[2] Alsmadi Izzat and Al-Kabi Mohammed, “GUI Structural Metrics”,
Published in the International Arab Journal of Information Technology,
Vol. 8, No. 2, 2011, pp. 124-129.

[3] Alsmadi Izzat and Al-Kabi Mohammed, “The Introduction of Several
User Interface Structural Metrics to Make Test Automation More
Effective”, Published in the Open Software Engineering Journal, 2009,
pp. 72-77.

[4] Memon Atif, “ Automatically Repairing Event Sequence-Based GUI
Test Suites for Regression Testing”, ACM Transaction on Software
Engineering and Method. Volume 18, Issue 2, 2008.

[5] Hackner R., Daniel, Memon Atif, “ Test Case Generator for GUITAR”,
International Conference on Software Engineering, (Washington, DC,
USA), 2008

[6] Memon Atif, Soffa Lou Mary, Martha E. Pollack, “ Coverage Criteria
for GUI Testing” , Proc. of the 8th European Software Engineering
conference held jointly with 9th ACM SIGSOFT international
symposium on Foundations of Software Engineering, 2001, pp. 256-267.

[7] Memon Atif, McMaster Scott, “ Call-Stack Coverage for GUI Test Suite
Reduction”, IEEE Transaction on Software Engineering, Volume 34,
2008.

[8] Memon Atif, Strecker Jaymie, “ Relationships Between Test Suites,
Faults, and Fault Detection in GUI Testing” , In ICST'08 Proc. of the
First international conference on Software Testing, Verification, and
Validation, (Washington, DC, USA),2008.

[9] Memon Atif, Nagarajan A. and Xie Q., “Automating Regression Testing
for Evolving GUI Software”, Journal of Software Maintenance and
Evolution: Research and Practice, Volume 17, no. 1, 2005, pp. 27-64.

[10] Memon Atif , Xie Qing, “Studying the Fault-Detection Effectiveness of
GUI Test Cases for Rapidly Evolving Software”, IEEE Transaction on
Software Engineering, Volume 31, no. 10, 2005, pp. 884-896.

[11] Huang Chin-Yu, Chang Jun-Ru and Chang Yung-Hsin, “Design and
analysis of GUI test-case prioritization using weight-based methods”,
The journal of Systems and Software vol. 83, 2 010, pp. 646-659.

[12] Chaudhary Neha, Sangwan O.P., Singh Yogesh, “Test Case
Prioritization Using Fuzzy Logic for GUI based Software”, International
Journal of Advanced Computer Science and Applications, 2012.

[13] Memon A., Soffa Lou M., “Regression testing of GUIs”,
In the Proc. of the 9th European software engineering conference New
York, NY, USA, 2003, pp. 118-127.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Structural Complexity

Structural
Complexity

0
20
40
60
80

100
120
140
160

Number of faults identified

Number of faults
identified

