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Abstract—The objective of this work was to solve the problem 

of non linear time variant multi-input multi-output of greenhouse 

internal climate for tomato seedlings. Artificial intelligent 

approaches including neural networks and fuzzy inference have 

been used widely to model expert behavior. In this paper we 

proposed the Adaptive Neuro-Fuzzy Inference Systems (ANFIS) 

as methodology to synthesize a robust greenhouse climate model 

for prediction of air temperature, air humidity, CO2 

concentration and internal radiation during seedlings growth. A 

set of ten input meteorological and control actuators parameters 

that have a major impact on the greenhouse climate was chosen 

to represent the growing process of tomato plants. In this 

contribution we discussed the construction of an ANFIS system 

that seeks to provide a linguistic model for the estimation of 

greenhouse climate from the meteorological data and control 

actuators during 48 days of seedlings growth embedded in the 

trained neural network and optimized using the back 

propagation and the least square algorithm with 500 iterations. 

The simulation results have shown the efficiency of the proposed 

model. 
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I. INTRODUCTION 

In recent decades, a considerable effort was devoted to 
develop adequate greenhouse climate and crop models, for 
driving simulation, control and managing [1-2]. The objective 
in a greenhouse climate control is to further improve the 
environmental conditions of plants growth in order to optimize 
the production process [3]. The dynamic behavior of the 
internal microclimate of the greenhouse is a combination of 
physical processes involving energy transfer (radiation and 
heat) and mass balance (water vapor fluxes and CO2 
concentration) [4]. These processes depend on the outside 
environmental conditions, structure of the greenhouse, type 
and state of the crop and on the effect of the control actuators 
(typically ventilating and heating to modify inside temperature 
and humidity conditions, shading and artificial light to change 
internal radiation, CO2 injection to influence photosynthesis 
and fogging/cooling for humidity enrichment). The practical 
goal of this work is to model the greenhouse air temperature, 

air humidity, CO2 concentration and internal radiation using 
Adaptive Neuro-Fuzzy Inference Systems from real data in 
order to predict the behavior inside the greenhouse. The main 
advantages of using automated climate control are energy 
conservation, better productivity, and reduced human 
intervention [5]. 

Greenhouses are considered as complex processes. In fact, 
they are nonlinear, multi-input multi-output (MIMO) systems 
which present time-varying behaviors, and they are subject to 
relevant disturbances depending generally on meteorological 
conditions. All these make it difficult to describe a greenhouse 
with analytic models and to control them with classical 
controllers [6-7]. 

Many conventional methods for controlling a greenhouse 
climate are not effective since they are based on either on-off 
control methods, or PID approaches. This results in a loss of 
energy, labor, and productivity [8]. To maintain a steady 
climate, a more complex control system must be used [5]. The 
necessities for climate control the energy consumption or 
maximize economic profit have instigated many researchers in 
this area. Today, there are various papers dealing with 
modeling, short term climate control, and long horizon control 
devised either to minimize. In [6], a model of a greenhouse 
using the energy balance has been presented. The proposed 
model is then used to carry out a simulation on the greenhouse 
climate (temperature and humidity) with optimal control for 
part of a day. In [9] the author has proposed a greenhouse 
model including the crop transpiration. They then made a 
comparison between optimal and predictive control on the 
considered greenhouse for part of a day. In [10] the authors 
have described the application of model predictive control 
(MPC) for temperature regulation in agricultural processes (a 
greenhouse). In [11], the authors have proposed the 
application of fuzzy logic to identify and control some multi-
dimensional systems. They describe a method to reduce the 
complexity of a fuzzy controller and they show an application 

on a real system (a greenhouse). In [12], a recurrent neural 
network based on an Elman structure [13-14] is trained to 
emulate the direct dynamics of the greenhouse. In [15] the 
construction of fuzzy systems by fuzzy c-means for modeling 
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a greenhouse climate is described then the comparison with 
adaptive neuro-fuzzy inference system (ANFIS) and neural 
networks have presented. In [16] the authors have described 
the Greenhouse Design and Control using the adaptive neuro-
fuzzy inference system. 

Modern control techniques have been developed in various 
branches [17-18]. During the last two decades, considerable 
effort was devoted to develop adequate greenhouse climate 
and crop models, for simulation, control and management 
purposes [19-20]. A proper model for a greenhouse climate is 
an essential tool for its control [21-22]. The model can be 
designed in two ways. One method is based on the physical 
laws involved in the process and the other on the analysis of 
the input-output data of the process. In the first method, the 
thermodynamic properties of the greenhouse system are 
employed. However, the parameters of the equations are time 
variant and weather-dependent, so it is difficult to obtain 
accurate mathematical models of the greenhouse climate. The 
second approach is based on the theory of system 
identification [21]. Conventional methods based on system 
identification such as ARX approaches can not correctly 
model the nonlinear behavior of greenhouse climate. 
Intelligent methods seem to be the most proper choices for the 
modeling of this type of systems [3]. Because of the properties 
of universal approximation, they can model nonlinear systems 
with trained data by arbitrary fitness. 

In contrast with a neural network identifier, a fuzzy 
identifier has some essential advantages which are described 
in the following. Due to its capability to handle both 
numerical data and linguistic information, it is feasible to 
apply fuzzy logic system for greenhouse climate modeling and 
then provide prediction for choosing optimal controlling 
decision. The growing process of tomato plants inside the 
greenhouse was modeled in this paper using the ANFIS 
system to predict the effect of meteorological variables and 
control actuators on air temperature, air humidity, CO2 
concentration and internal radiation inside the greenhouse. 
Specifically the relationship between the sensors signals and 
internal climate components is first captured via a neural 
network and is subsequently reflected in linguistic form with 
the help of a fuzzy logic based algorithm. It uses training 
examples as input and constructs the fuzzy if–then rules and 
the membership functions of the fuzzy sets involved in these 
rules as output. After training the estimator, its performance 
was tested under various internal climate conditions. Test data 
sets collected from a wide range of internal climate conditions 
(meteorological data and control actuators during 48 days of 
seedlings growth) were applied to the estimator for evaluating 
the magnitude of air temperature, air humidity, CO2 
concentration and internal radiation inside the greenhouse. 
The present paper describes simulation results of an ANFIS 
system that seeks to provide a linguistic model optimized by 
back-propagation and the least square algorithm for predicting 
the greenhouse climate. 

II. EXPERIMENTAL SET-UP 

The recordings were made during the period of February 
20

th
 to April 7

th
, 2015 on the site of BENOMOR, nursery of 

tomatoes seedlings, Guelma (Algeria), in order to prepare 
them for the tomatoes season. The greenhouse in which all the 
experimental recordings were carried out is a plastic 
greenhouse multi chapels, multi inflatable wall, 3600 m

3
 of 

volume and 1000 m
2
 of surface. Their major axis is parallel to 

the East-West direction. The roof and the side walls are 
polythene. This greenhouse with its climatic vectors of input-
outputs is identified as a climate model represented in the 
“Fig. 1”.  

To carry out our work, we divided the 48 days of data file 
into three parts, the first part include the values of first 16 days 
and we used it as training data, the second part for the 
checking and the third for testing. 

 

Fig. 1. Schematic of greenhouse climate 

III. ANFIS PREDICTIVE ARCHITECTURE 

Using a given input/output data set, the ANFIS method 
constructs a fuzzy inference system (FIS) whose membership 
function parameters are tuned (adjusted) using either a 
backpropagation algorithm alone, or in combination with a 
least squares type of method. This allows fuzzy systems to 
learn from the data they are modeling. FIS Structure is a 
network-type structure similar to that of a neural network, 
which maps inputs through input membership functions and 
associated parameters, and then through output membership 
functions and associated parameters to outputs [23]. 

In our case ANFIS is a four-layer neural network that 
simulates the working principle of a fuzzy inference system. 
The linguistic nodes in layers one and four represent the input 
and output linguistic variables, respectively. Nodes in layers 
two are term nodes acting as membership functions for input 
variables. Each neuron in the third layer represents one fuzzy 
rule, with input connections representing preconditions of the 
rule and the output connection representing consequences of 
the rules. Initially, all these layers are fully connected, 
representing all possible rules. 
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Fig. 2. ANFIS model structure of greenhouse climate 

Ten feature variables, ventilation, heating, shading, 
artificial light, CO2 injection, fogging/cooling, external 
temperature, external humidity, global radiation and wind 
speed, are selected as inputs of the ANFIS. Three trapezoidal 
membership functions are assigned to each linguistic variable. 
The suggested ANFIS model is shown in “Fig. 2”. 

 
Fig. 3. Fuzzy rule architecture of the trapezoidal membership function 

It shows the fuzzy rule architecture of ANFIS when the 
trapezoidal membership function is adopted. The architecture 
consists of 40 fuzzy rules. During preliminary experiments the 
proposed architecture proved to be sufficiently capable of 
extracting greenhouse climate model from the control 
actuators and meteorological data. “Fig. 4”, shows the flow 
chart for predicting the internal climate via ANFIS. 

 
Fig. 4. Flowchart of internal climate prediction of ANFIS system 
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IV. ANFIS MODELING, TRAINING AND TESTING 

ANFIS modeling process starts by obtaining a data set 
(input-output data) and dividing it into training, testing and 
checking data sets. Training data constitutes a set of input and 
output vectors. The data is normalized in order to make it 
suitable for the training process. This was done by mapping 
each term to a value between 00, 01 and 10 using the Min, 
moderate and Max method. This normalized data was utilized 
as the inputs (control actuators conditions and meteorological 
data) and outputs (internal climate) to train the ANFIS. In 
other words, two vectors are formed in order to train the 
ANFIS (see    “Fig. 3”): Input vector = [ventilation, heating, 
shading, artificial light, CO2 injection, fogging/cooling, 
external temperature, external humidity, global radiation and 
wind speed]. The output vector = [internal temperature, 
internal humidity, CO2 concentration and internal radiation]. 
The ANFIS registers the input data only in the numerical form 
therefore the information about the control actuators, internal 
and external climate of the greenhouse must be transformed 
into numerical code. 

The training data set is used to find the initial premise 
parameters for the trapezoidal membership functions by 
equally spacing each of the membership functions. A 
threshold value for the error between the actual and desired 
output is determined. The consequent parameters are found 
using the least-squares method. 

Then an error for each data pair is found. If this error is 
larger than the threshold value, update the premise parameters 
using the gradient decent method as the following 
(Qnext=Qnov+ηd, where Q is a parameter that minimizes the 
error, η the learning rate, and d is a direction vector). The 
process is terminated when the error becomes less than the 
threshold value. Then the checking data set is used to compare 
the model with actual system. A lower threshold value is used 
if the model does not represent the system. 

“Fig. 5”, shows the uniform falling of the value of testing 
error ETest with the number of iterations during the testing 
process for the ANFIS configuration with traingular Mf and 
with gaussian Mf. The smallest error of testing (ETest) is 
reached at iteration 145 (traingular Mf) and at iteration 107 for 
Gaussian Mf. It can be seen in the “Fig. 5” that error 
converges not to zero but to 12% and 2%. This is caused by 
the presence of some contradicting examples in the training 
and testing set. 

 
Fig. 5. Decrease of error during the testing process for the ANFIS 

configuration with Traingular Mf and with Gaussian Mf 

Training of the ANFIS can be stopped by two methods. In 
the first method, ANFIS will be stopped to learn only when 
the testing error is less than the tolerance limit. This tolerance 
limit would be defined at the beginning of the training. It is 
obvious that the performance of the ANFIS that is trained with 
lower tolerance is greater than ANFIS that is trained with 
higher tolerance limit.  

In this method the learning time will change with the 
architecture of the ANFIS. The second method to stop the 
learning is to put constraint on the number of learning 
iterations. In our study, the ANFIS architecture is stopped to 
learn after 500 training iterations. 

V. DISCUSSION OF RESULTS 

This chapter presents the results of experiments and the 
comparison and analysis of results between the experimental 
and ANFIS model depending on the greenhouse internal 
climate parameters. The results and/or the values of internal 
temperature, internal humidity, CO2 concentration and internal 
radiation are graphically represented by means of diagrams 
depending on the seedlings growth time “Fig. 6”. The values 
from prediction coincide well with the values from 
experiments. 
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Fig. 6. Comparison of measured and predicted greenhouse internal climate 
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The predictive capability of using neural network and 
ANFIS approaches are compared using statistics, which 
showed that ANFIS predictions for internal temperature 
(Etest_Tint = 0.723), internal humidity (Etest_Hint = 0.556), 
CO2 concentration (Etest_CO2 = 0.521) and internal radiation 
(Etest_Rint = 0.385) were for 2% closer to the experimental 
measurements, compared to 6% using only neural network 
method. 

VI. CONCLUSION 

In this paper, an ANFIS is used to successfully estimate 
the greenhouse climate during seedlings growth process. It can 
be claimed that the comparison of the results obtained from 
the ANFIS model and of the experimental results confirms the 
efficiency and accuracy of the model for predicting the 
greenhouse climate. By using a back propagation and least 
square training method, the ANFIS system is trained to an 
accuracy of 2% error for all four components. The error of the 
internal climate values predicted by ANFIS with the 
combination of sigmoidal and gaussian membership function 
is only 2%, reaching an  accuracy as high as 98%. When the 
traingular membership function is adopted the average error is 
around 12%, with an accuracy of 92%. 
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