
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

132 | P a g e

www.ijacsa.thesai.org

Comprehensive Study and Comparison of

Information Retrieval Indexing Techniques

Zohair Malki

Information Systems Department

The Collage of Computer Science and Engineering in Yanbu

Taibah University,

Saudi Arabia

Abstract—This research is aimed at comparing techniques of

indexing that exist in the current information retrieval processes.

The techniques being inverted files, suffix trees, and signature

files will be critically described and discussed. The differences

that occur in their use will be discussed. The performance and

stability of each indexing technique will be critically studied and

compared with the rest of the techniques. The paper also aims at

showing by the end the role that indexing plays in the process of

retrieving information. It is a comparison of the three indexing

techniques that will be introduced in this paper. However, the

details arising from the detailed comparison will also enhance

more understanding of the indexing techniques.

Keywords—Information Retrieval; Indexing Techniques;

Inverted Files; Suffix Trees; Signature Files

I. INTRODUCTION

Information retrieval refers to the process of obtaining
relevant information from an existing database that consists of
different data that has been collected together. The current state
of information retrieval depicts the existence of two search
indexing. The first one is metadata and the second one is full
text. Metadata is formally outlined as data about other sets of
data [1]. It is more precisely described as information regarding
other information that is structured. Metadata tool of
information retrieval does not take into consideration the
complexity of the search question. It can give relevant results
to a simple query like the name of an author of a certain book.
It can also provide relevant objects to other queries that are
complex, like geographical codes. It is usually mostly utilized
in education institutions in libraries other resources with large
databases [1]. Catalogs of Libraries represent a remote
metadata. Reviews of books, art collections as well as
summaries also take the form of remote metadata.

On the other hand, full-text tool of retrieving information
refers to the use of techniques that search documents stored
from single computer. It can also refer to the use of techniques
that search of a document that exists in a collection of
documents in a collection of full-text database. A full-text
search usually performs an examination of all the words that
exists in the documents stored in the attempt of matching
criteria of searching [1]. Over the years, it has been commonly
used in online searches from databases of bibliography. Most
application programs, as well as websites, provide capabilities
of the full-text searches. Most search engines of the web
usually employ techniques of full-text search. However, there

are others that partially index the web pages. The only
condition is that the web pages must undergo examination by
their indexing systems.

Baeza-Yates and Ribeiro-Neto [2] explain that indexing
with full text usually depends on the number of documents.
Small numbers of documents can prompt direct scanning of the
contents. A strategy known as serial scanning is applied to each
query. Serial scanning is the protocol that is usually followed
by most tools in the searching process. An example of such
tools is Grep, which uses the strategy of serial scanning.
Potential largeness of documents or increase of the quantity of
queries to search prompts the division of full-text searching
process into two stages. The first is indexing and the second
one is searching. The first stage of indexing focuses on the
scanning of all the existing documents. The stage also sees the
building of a search term list. This list of search terms that is
usually built at the indexing stage is referred to as an index.
However, there are people refer it to as a concordance. The
second stage of known as search only references the index in
the performance of specific queries. The stage does not
reference the text of the documents that are original.

However, this research will focus on a study of the
indexing stage and the various techniques that are applied in
the process.

There are several indexing techniques in information
retrieval. However, this research is going to focus on three
indexing techniques namely inverted files, suffix trees, and
signature files. The three are the most commonly used
techniques in the current world of information retrieval. The
process of retrieving information usually begins with a query
from a user into the system. A query is a statement that is
formal indicating the need for particular information. An
example of a query is the search of information in online
search engines. Information retrieval queries stated by users do
not usually offer a specific object or solution to the problem.
Rather, it gives a collection of related objects that match the
problem stated in the query. However, the objects have
different levels of relevance to the query. Depending on the
technique that is used, the relevance of available information is
determined with respect to the entered queries. The results
given in a form of objects are based on their relevance to the
queries. The techniques have proven to the most reliable and
usually generate desirable results. However, the indexing
techniques differ in many ways. They usually differ in the way

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

133 | P a g e

www.ijacsa.thesai.org

they perform the relevancy tests. They also differ in their
simplicity of application. The indexing that is performed by the
techniques does not take a similar route. The research in the
paper will outline the processes of indexing that the various
techniques undertake.

Accuracy is a key factor in retrieving information [3].
Users expect accurate answers from the objects offered in
respect to their queries. The accuracy expectation usually cuts
across all the information retrieval methods as well as indexing
techniques. Users expect to have accurate information no
matter the technique that is used in the indexing process.
However, it will be shown in the paper that the techniques
differ in their accuracy. This research will compare the
accuracy levels of the three mentioned techniques.

Despite the high preference of inverted files, suffix trees as
well as signature files, they all have limitations. There are
various challenges that are associated with each technique of
indexing. The level of challenges associated with the
application of each technique will be measured in the paper. A
detailed comparison of the challenges will offer an
understanding about which technique is more limited as
compared to the others. Further, the benefits associated with
the use of each technique will be outlined. Each indexing
technique has benefits that are associated with its use. These
benefits and advantages will be critically evaluated and
compared. This comparison will offer information about which
technique among the three has the most accrued benefits upon
its application in the process of retrieving information. Finally,
each indexing technique has an objective. The objectives of the
various techniques differ across the techniques. This paper will
also undertake a study of the main objectives of the techniques
which they focus their performance.

II. INDEXING TECHNIQUES

A basic definition of indexing was given in 1988 by Salton
[4] as the facilitation of information retrieval accuracy by
collecting, parsing and storing data. The accuracy facilitation is
performed by use of various methods and techniques. As
earlier stated, users need accuracy in the information retrieval
process. The indexing process usually has an incorporation
mechanism that allows use of concepts from various
disciplines. It has been stated that there exists many
information retrieval techniques with the common ones being
inverted files, suffix trees as well as signature files. This
section will discuss each technique into details as well as the
way they work.

A. Inverted Files

Inverted files are defined as central components of an
indexing algorithm in a search engine. The engine that searches
information has a goal of query speed optimization. This
means finding documents where a certain word occurs. Then
the next step is developing a forward index. The index that is
developed plays a role of storing the lists of words in every
document. The document is then inverted, leading to a
developed inverted index. Sequential iteration is usually
required in order to query the forward index. In 2006, Belew
[5] suggested that the iteration requires to be performed in each
word and document in order to allow the verification of a

document that matches the query. Technically, the resource in
terms of time and memory that is required in the performance
of such a query lacks an aspect of being realistic. However, the
structure of the inverted files that is developed lists the
documents per every word. This is done in place of listing the
vice versa, where the words would be listed per every
document. To perform a clear illustration of the inverted file
concept, we assume an existing set of documents. Further, we
assume that every document in the set is assigned a list that
comprises of keywords. These keywords can also be referred to
as attributes. We also assume that there are optional weights of
relevance for every keyword. With the assumptions, the sorted
list of keywords will be the inverted file. Each attribute will
have a link to the documents that contains the specific
keyword. Fig. 1 shows how the concept of inverted files works
[5].

Fig. 1. Inverted files, the index file contains all words in the document and

their index, the posting file contains a link to each word with the

corresponding frequency, the document file contains the documents

According to Belew [5], the concept of inverted files is
mostly used in library systems that are commercial. It is also
used in libraries that belong to various education institutions.
The reason for the popularity is that inverted files have
enhanced efficiency in searching. Basically, the efficiency
associated with inverted files is usually necessary when dealing
with files that comprise large texts. This is the case for such
institutions, which justifies their preference of inverted files.

1) Structures Used in the Inverted Files: There are several

structures that are usually used in the implementation of

inverted files. The most commonly used structures are sorted

arrays, B-trees as well as tries. These structures will be

discussed in this section. This will help in giving more

information about the concept of inverted files. It will give

more understanding of the relationship between inverted files

and the various structures that are used in the files’

implementation process.

a) Sorted Arrays: The implementation of an inverted

file through this structure enables the file to support storage of

keywords’ lists in a sorted array. This includes several

documents that are associated with each attribute. Further, it

also includes a link to the documents that usually contain the

attributes. Primary storage based systems use a binary search

that is standard and are the most commonly used in searching

a sorted array. On the other hand, systems that are based on

secondary storage usually adapt the sorted array in conformity

to their secondary storage’s characteristics. Fig. 2. shows the

structure sorted arrays as outlined by Barto, et al [1].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

134 | P a g e

www.ijacsa.thesai.org

Fig. 2. Sorted arrays, The terms are sorted in lexical ascending order, then the duplicate words are removed

The figure contains two documents, Doc#1 and Doc#2. The
words in each document are extracted and inserted in table.
The words from both documents are sorted and possible
duplication in single document is removed. For example the
word trees are repeated in document 1, so it has been removed.
The word results are found in both documents so it can't be
removed.

The sorted arrays structure has an easy implementation
process. It has a reasonable speed that enhances its
performance. However, the structure is limited in that it
requires frequent update of the index. The frequent updating
sometimes is expensive.

b) B-trees: The most common type of the B-tree

structure is prefix B tree. It utilizes word prefixes as the

primary keys in an index of B-tree. This makes it well

structured for the storage of indices that are textual. Every

node that is internal usually carries a number of keys that are

variable. The shortest word distinguishing the keys stored in

the next level is usually named as the key. It is not necessary

for the key to be a prefix in the index that is an actual term.

The last level in the structure is known as leaf level, as shown

in Fig 3. It carries the mandate of storing the attributes with

the data associated with them. The order of every node of the

prefix B-tree varies because there is dependence on attributes

by the internal node keys as well as their lengths [6].

Fig. 3 shows simple Prefix B tree, the first level contains
two keys, B and T. The two keys represent separators of the
following leaves,

 Words beginning with letter less than or equal B such
as Ar and Am,

 Words between B and T such as Co Fi and Ja,

 Words after T such as Un and Wa.

The second level represents other keys for the leaves
beneath them, and so on. The last level contains the words of
the documents with pointers to the corresponding document.

The B-Tree requires continuous update for maintenance of
balance in the tree. The structure has a limitation in that it is
not capable of handling many words within the same prefix.
The B-tree method is broken down in cases of multiple words.
The prefixes that are common usually call for division to avoid
space wastage. B-trees usually occupy more space as
compared to sorted arrays. However, updates are easier to
implement and are faster in comparison with the sorted arrays
[6].

Fig. 3. Binary Tree indicating three levels with keys rpresenting each node

c) Tries: The structure’s name was generated from the

word retrieval. This structure is widely used to implement

inverted files. Digital decompositions of the attributes are

highly used by the structure in the representation of the same

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

135 | P a g e

www.ijacsa.thesai.org

keywords [1]. In structures of tries, keys associated to specific

nodes are not stored by the nodes. There is similarity of the

prefixes of a string in all the descendants of a particular node.

There is no necessity of associating values with every node.

Values are instead associated with leaves alongside several

inner nodes that have correspondence to keys of interest [7].

Fig. 4 shows an example of the Trie structure.

Fig. 4. An example of Trie structure showing no association of values with

every node. Valures are instead associated with leaves alongside several inner
nodes

The example above shows listing of some keys in the nodes
while the values are indicated below the nodes. There is an
arbitrary integer value associated with every English word that
is complete. The example reveals a Trie as a finite automaton
that is deterministic and tree shaped. There is generation of
finite language by automaton tries. Further, compression of
each trie into a state automaton that is deterministic acyclic is
implemented as clearly shown in the above example. Tries are
also fast in terms of the time used in implementing inverted
files. It is also easy to implement as the example is easy to
understand.

B. Suffix Trees

A suffix tree is a Trie that is compressed and contains
suffixes of the given texts as the keys that belong to them as
well as their values as the positions present in the text. The idea
of compressing tries makes suffix trees be referred to as tries.
Consequently, the sub-trees are referred to as sub-tries. The
concept of suffix trees was developed in the year 1973 by
Weiner [8]. The first online construction of suffix was to be
developed by Ukkonen [9].

The running time associated with the algorithm was ranked
as one of the fastest at that time. However, the algorithms were
all linear-time for a size alphabet that was constant [10].

Generally, they had a running time of .In 1997,
Farach [11] designed an algorithm of suffix tree construction
that had optimism for all alphabets. It was the first algorithm of
linear-time for strings that were drawn from integers of the
alphabet, in a range that was polynomial. This was the
foundation of new algorithms that have been later developed in
the construction of both suffix trees as well as suffix arrays.

Assuming a suffix tree for the string and length , the
definition must meet several requirements [12]. Firstly, there
must be exactly n leaves that are numbered from 1 to n in the
tree. Every node that is internal must also have at least two

children with the exceptional of the root. The labeling of the
edge is done with non empty S substrings [13]. Any two edges
that start out of a node should have strings labels that start with
a different character. This condition means that it is not
possible for a suffix to be a prefix that is proper for another.
The digit that comes last in the data is a, and it appears two
times in the data. Lastly, suffix S[i..n] is spelt out by the string
obtained after the concatenation of string labels. These labels
are the one present in the path of root to leaf.

Let us assume a string s = peeper. The non empty suffixes
of the string will be peeper, eeper, eper, per, er and lastly r.
Developing a suffix tree for the string peeper will comprise a
compressed trie containing elements peeper, eeper, eper, per, er
and r. The alphabet of the string is e, p, and r. This means that
the radix of the trie that is compressed is 3. Fig. 5 based on [10]
indicates a Trie for suffixes of the word "peeper".

Fig. 5. Trie representation of the word "peeper", the compressed version the

Trie is done with eliminating leaf white nodes

The use of suffix trees is applied when solving multiple
string problems occurring in free text search as well as text
editing. Suffix trees are also used in computational biology as
well as other areas of application. However, there are several
primary main applications of suffix trees. Firstly, they perform
a search of a string in O (m) complexity. In such an application,
M represents the substring’s length. However, there is a
mandatory requirement that there be time O (n) sufficient for
building the string’s suffix tree. Secondly, suffix trees are used
to find the repeated string that is longest. It is also applied in
the process of finding the common substring that is longest.
Lastly, the longest palindrome in a string is found through
application of suffix trees [14].

The above mentioned applications are useful as they
expand the use of suffix trees. They enable them to be used in
real life processes. For example, they are widely used in
bioinformatics applications. They are also widely used in the
search of DNA patterns as well as sequences of proteins.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

136 | P a g e

www.ijacsa.thesai.org

Fig. 6. The signature file is created by hashing every uncommon word to a given number of bits with fixed width

However, the sequences must be viewed as characters that
are long stringed. According to Callan et al [15] the greatest
advantage that makes suffix trees popular is their ability to
make long searches with minimal mismatches. This makes
them candidates to be used in data compression whey they
enable the finding of data that is repeated. Lastly, most search
engines also use suffix trees in the process of clustering data.

C. Signature Files

A signature file is a technique of indexing that usually
creates a filter that is “dirty”. An example of such a filter is the
Bloom filter that keeps all the existing documents matching to
the query entered by a user and also hopes to keep the ones that
do not match the criteria. This is done through creation of a
signature for every file which is typically a version of a hash
code [16]. Therefore, a signature is an abstraction of a record
which has been mapped. Signature files are generated through
two main methods: Word signatures as well as Superimposed
coding. The word signature approach involves hashing of
identifiers which are basically words of a record to a bit
pattern. The patterns or word signatures later form the record
signature through concatenation. On the other hand,
Superimposed generation of signed signatures involves hashing
every uncommon word to a given number of bit positions, say
S with a width that is fixed, say F, Fig. 6. Superimposing,
through bitwise OR is performed on the resulting signatures for
the generation of the record signature [17].

Fig. 6 shows a document is processed by creating list of
uncommon words. A stop list of common words must be
created to remove such words from further processing.
Common words have no effect on defining the document
character. The word list is divided into logical blocks. Each
logical block, as shown in Figure (b), is hashed by hashing
each single word. The block signature is obtained by logical
ORing the word hashes. The main idea of Bloom Filter [18] k-
th order Bloom filter has k independent hash functions H1(x),
H2(x),……Hk(x), that maps a word to a hash value in the range
0 to N-1, where N is the length of the hash bits. Formally,

Hi(Xj)=y , 1 ≤ i ≤ k; 1≤ j ≤ D; 0≤ y ≤ N-1; (1)

Where, Xj is the jth word in the uncommon list, D is the
number of uncommon words in each document. The following
procedure is applied

1) A has table of N bits size is created and all of its bits

are set to zero.

2) For each word in the word's list, its k hash values are

calculated, and accordingly the corresponding bits are set to

1. Thus for example if Hi(Xj)=68 for some (I,j), then the sixty-

eighth bit of the hash table is set to 1, if the bit is already 1,

then no change will be done.
When searching for specific keyword, the keyword's k hash

values are calculated. If all the corresponding values in the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

137 | P a g e

www.ijacsa.thesai.org

hash table are all set to 1, then a matching is found, otherwise
no match.

A signature approach that is naive would involve a uniform
and a random hashing. Same S bit positions are hashed by any
given n-gram [10]. A possibility exists that two n-grams that
are different will most probably hash too the same position of
bit. The occurrence of hashing same bit position by different n-
grams is referred to as collision. The possibility of collision is
contributed by the fact that the F chosen in most cases is
usually less than the number of unique n-grams in total.

III. COMPARISON OF INDEXING TECHNIQUES

This section will focus on the comparison of the three
discussed techniques of indexing in information retrieval. It is
clear from the previous discussion that the techniques differ in
many aspects. This is despite the fact that they work towards
yielding same results. All the techniques are aimed at indexing
and undertaking successful information retrieval. However, the
approaches that are used by then various techniques are
different. The techniques also vary in their performance as well
as their stability. The techniques also vary in terms of their
limitations as well as advantages. This section will critically
focus on the performance and stability of each technique and
compare them with the rest. It will also compare the limitations
of each technique and make a detailed comparison. This will
enhance the understanding and knowledge about the three
indexing techniques.

A. Performance Comparison

The performance comparison between inverted files, suffix
trees as well as signature files can take several dimensions.
However, the main parameter used in determining the
performance of the techniques is the processing time of the
various techniques [19]. This is the time that is taken for a
system using a particular technique to give response to a query
raised by a user. The comparison of the performance between
the various indexing techniques in this section will be based on
the response time. This will help to effectively determine the
performance of each indexing technique.

1) Inverted files: The structure was developed with a

primary goal of optimizing the speed of the query. The

structure’s performance is based on an iteration of a developed

inverted index. Querying the forward index is the main reason

as to why the iteration is necessary. However, as discussed, it

would be technically unrealistic to take the time required for

the iteration. Inverted files have several approaches of

performance that enhance the response time that is required.
Firstly, developed inverted files usually list the documents

on basis of “per every word”. Secondly, inverted files have a
special performance approach that is known as skipping. This
involves introduction of synchronization points which are
additional locations that usually offer a platform for the
commencement of decoding to the inverted list [19]. The index
in the inverted files contains both the difference in document
number as well as the difference in bit address. This results to
the capability of inverted files to be stored as sequence that is
compressed. It is the compression capability that enhances the
performance of inverted files and highly saves on the
processing time [2].

The results of an experiment on 100 documents from the
internet with applying skipping on the inverted files retrieval
technique is shown in Fig. 7. The experiment executed some
queries on the documents, the figure shows the CPU time
required to process those queries.

Fig. 7. The effect of skipping on the inverted files indexing performance

In the figure, L represents the skipped index

2) Suffix Trees: A suffix tree has already been expressed

in the previous section as a compression of sub tries.

Therefore, the performance of suffix trees is based on basis of

compression. It is clear that suffix trees support compression

and indeed perform when compressed. The processing and

running times associated with the algorithm are one of the

fastest. Its performance is ranked as one of the most efficient

taking processing time as a parameter. The running time of

suffix trees is generally given as .
There are several reasons for the efficient performance in

terms of time. The first reason is the support of insertion. This
is put as a condition in any dynamic suffix tree. The second
reason is the ability to perform deletion. Lastly, suffix trees
carry special capability to perform modification of strings.
These are the unique traits with suffix trees that makes the
technique’s performance to stand out among all other indexing
techniques. There is no other indexing techniques whose
performance involves insertion, deletion as well as strings
modification in the manner that suffix trees perform.

3) Signature Files: The performance of the signature files

is largely based on unique signature development for every

file. This development of signatures as explained in the

previous section is done through word signatures as well as

superimposed coding. An evaluation of the procession time as

a parameter to determine the efficiency in performance reveals

several things. Firstly, there is a possibility of slowness as

compared to other techniques due to the concatenation due to

the word signatures. Secondly, the time taken to respond to

queries raised by users can increase when using signature files

technique due to the sequential nature of the files [20]. This is

mostly the case for the files that use superimposed coding

other than word signatures.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

138 | P a g e

www.ijacsa.thesai.org

There are special features associated with the technique that
make it fast and pass the efficient performance test. The
technique like others supports compression in order to enhance
its performance. This enables the technique to be well placed to
improve the time for processing objects in the indexing
process. The technique also utilizes partitioning. This is usually
the most unique feature that is associated with signature files as
a technique of indexing. There are not many techniques that are
known for both vertical as well as horizontal partitioning.

B. Stability Comparison

The aspect of stability is explained in the ability of various
techniques to handle the files that contain information which
the users are looking to retrieve. Stability in the field of
information retrieval is simply the variance that is associated
with the results of the queries of various queries. This means
the relationship between the objects provided by a certain
technique with the query that is entered by a user. The
relevance of the results in respect to the queries forms the basis
of stability discussion. This section will compare the results
that are given upon the use of various techniques. This will
shed more light about the stability of suffix trees, signature
files as well as inverted files. Generally, variance is usually
measured by undertaking a balance between the risks and
rewards. The risks are the threats to a technique in performing
and giving the desired results [3]. On the other hand, the
rewards are the desired objects that can be obtained by using a
certain technique of indexing in the process of retrieving
information. However, this is usually challenging as there must
be a clear way of determining the rewards as well as the risks.
The study of stability best illustrated in a risk/reward curve as
shown in Fig. 8. Algorithm A dominates algorithm B. The
figure shows two algorithms that appear identical in terms of
mean average precision (MAP) gain may have very different
risk profiles.

1) Inverted Files: Inverted files have a considerably

desirable trade off between the risks and the rewards. They are

seen as one of the most stable indexing techniques. The index

construction in an inverted file was explained by Kanaan et al

[20] as shown in Fig. 9.
The diagram shows the possibility of deriving an inverted

file upon completion of the Trie structure. The structure as
indicated enables access to the file in main memory. This is the
basis of the strength and stability of inverted files. The reason
is that every entry has a reference position of the posting file
which is usually held in storage that is secondary. This brings
out an aspect of back up and easy tracing of entries. This has
few risks associated with it and results in a stable indexing
process.

2) Suffix trees: A suffix tree is built with a high threshold

of stability. The construction of suffix trees is performed with

the principle that every string is supposed to be padded a

marker symbol that is out of alphabet and unique. This serves

the purpose of ensuring that any suffix in the construction

does not become a substring of the other. Since the building of

the suffix trees involves leaves, every suffix has a

representation by a leaf that is unique. This means that the

reward risk assessment is passed by suffix trees. The risk that

is associated with most techniques is false results. However,

the suffix trees eradicate that by ensuring that every suffix is

served by only one leaf. Therefore, stability is maximized in

suffix trees.

Fig. 8. Risk/reward curve showing query expansion. The curve shows two

retrieval algorithms compared in performance. Algorithm A performance is

better than Algorithm B.

Fig. 9. The index construction in an inverted file. The figure based on [20]

C. Limitations Comparison

Despite the many strong points that the discussed indexing
techniques have, they usually have various limitations that
make it hard for them to perform optimally. However, the
indexing techniques are not limited in the same way. They
usually have different limitations in their performance. This
section will focus on the limitations of every indexing
technique. The limitations will then be compared to offer a
synopsis of the limitations and the ability of each technique to
overcome the challenges.

Inverted files have their share of disadvantages that usually
pose a challenge to their efficiency in offering optimum
indexing. This in turns affects their application and usage by
most users across the world. Firstly, the technique has a
limitation in that there is difficulty in the update of insertions
especially of new records [1]. This usually requires moving of
proportions of files that are large. Secondly, random access of
any system by use of the inverted file technique is usually
slow. In some cases, files are usually considered to be
organized in a sequential manner even when there is no order
to a certain key. This creates the possibility of false objects
because sometimes acquisition date can be regarded to as the
key value.

On the other hand, Robertson and Sparck [21] suggest that
suffix trees are limited in that they usually require a lot of
space due to the nature of their construction. The internal
pointers in the tree usually require more space for storage. This

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

139 | P a g e

www.ijacsa.thesai.org

is in comparison to most of the other techniques that consume
considerably less space. Suffix trees also have a challenge in
that it is necessary for them to be built in an order of reverse.
This means that characters have to be added from the input’s
end. Lastly, the nature of the tree works against it because the
string’s length can be a single variable. This could occur within
the same class that the segments of the leaf belong. This works
against it because the side to side co existence of suffix trees
could be impossible because there would be similarity of the
class of leaf segments.

Lastly, signature files indexing technique has a share of
practical problems in its performance. There are many
methods that are used by signature files to enhance operation.
The variety in the methods of operation also expands the
limitations of the signature files. Firstly, signature files’
performance is known to deteriorate as the files grow [22].
This simply means that signature files have a limitation of
performance in files that are large. Secondly, the technique has
a disadvantage because in case the keywords number in every
document is large, then a huge hash table must be made. It
might also lead to usual queries touching a proportion of the
database that is large. Lastly, the signature files technique is
limited in handling queries that are not conjunctive [23]. This
difficulty in dealing with non- conjunctive queries limits the
performance of signature files. This mostly happens when
signature files utilize the method of Gustafson’s in the process
of indexing.

IV. CONCLUSION

The research in this paper has clearly achieved a critical
analysis of indexing techniques. It has offered information
about the construction of various techniques such as inverted
files, Suffix trees and Signature files. In addition the paper
introduced detailed structures that make up these techniques.
The research has also given more understanding of the building
of the structures and the way that they work. The paper has
detailed few benefits that are associated with the use of every
technique. The speed, as well as the space that is required for
the various techniques to optimally operate, has been outlined.
This has provided the basis of the comparison that has been
done between the various techniques.

The comparison done in this paper has taken the dimension
of performance, stability as well as limitations. The
performance of inverted files, suffix trees, as well as signature
files, is compared in the paper by using the processing time as
the parameter. The paper has done a comprehensive
comparison of the time taken for every technique to respond to
various queries that are raised by users. On the other hand, the
stability of every technique of indexing has been discussed and
compared to other techniques. The parameter used for the
stability discussion is the measure of rewards and risks
associated with every technique. Lastly, the paper has
undertaken a comparison of limitations and challenges of every
technique. This comparison has helped in knowing the
challenges a user would get by using a certain indexing
technique.

TABLE I. COMPARISON OF INVERTED FILES, SUFFIX TREES AND

SIGNATURE FILES INDEXING TECHNIQUES

Indexing

Technique
Capabilities Limitations

Inverted

Files

 Compression

 Skipping

 Iteration

 Difficult update of
insertions

 Slow random access

Suffix

Trees

 Compression

 Insertion

 Deletion

 Modification

 Requires a lot of space

 Require reverse

building

 String’s length can be

a single variable

Signature

Files

 Compression

 Vertical

Partitioning

 Horizontal

Partitioning

 Limited performance
for large files

 Must build huge hash
table in case of large

keywords in each

document

 Difficulty in dealing

with non-conjunctive
queries.

REFERENCES

[1] A. Barto, et al." Learning to Act Using Real-Time Dynamic
Programming". Hoboken:Rutledge Press pp.112-123.(2015)

[2] R. Baeza-Yates and B. Ribeiro-Neto, “Indexing Techiques,” in Modern
Information Retrieval. A. Wesley, Ed. New York: Wiley, (1999).

[3] K. Darwish, “Building a Shallow Arabic Morphological Analyzer in one
Day,” in Acl Workshop on Computational Approaches to Semitic
Language. Illinois: Sage, PP. 47-57. (2002)

[4] G. Salton, “Automatic Text Processing,” in The Translation Analysis
and Retrieval of Information by Computer. Washington: Cambridge,
Addison-Wesley publishers, 3(2), pp. 45-70. (1988)

[5] R.K. Belew, “Adaptive information retrieval,” in Machine Learning in
Associative Networks. Michigan: University of Michigan Press., pp. 78-
83. (2006)

[6] BAYER, R., and K. UNTERAUER "Prefix B-Trees." ACM
Transactions on Database Systems, 2(1), 11-26. (1977)

[7] Manolis Terrovitis, Spyros Passas, Panos Vassiliadis, Timos Sellis " A
Combination of Trie-trees and Inverted Files for the Indexing of Set-
valued Attributes " CIKM’06, , Arlington, Virginia, USA. November 5–
11,(2006)

[8] Weiner, P. "Linear pattern matching algorithms" 14th Annual IEEE
Symposium on Switching and Automata Theory, pp. 1–
11, doi:10.1109/SWAT.1973.13. (1973),

[9] Ukkonen, E. "On-line construction of suffix
trees" (PDF). Algorithmica 14 (3): 249–260. doi:10.1007/BF01206331.
(1995).

[10] H. Chen, “Machine learning for information retrieval” in Neural
Networks, Symbolic`Learning, and Genetic Algorithms. New York:
Elsevier Science Inc., pp. 17-31. (2008)

[11] Farach, Martin "Optimal Suffix Tree Construction with Large
Alphabets" , 38th IEEE Symposium on Foundations of Computer
Science (FOCS '97), pp. 137–143. (1997)

[12] Wikipedia, "Suffix Trees", Online
https://en.wikipedia.org/wiki/Suffix_tree (2014)

[13] S Ghwanmeh et al. “Comparison Between Inverted and Signature Files
Based on Arabic Documents,” in International Journal of Applied
Science and Computations. Hobeken:Rutledge Press., pp. 174-193.
(2005)

[14] Sartaj Sahni "Data Structures, Algorithms, & Applications in Java,
Suffix Trees" Online, (1999)

[15] J. Callan et al. “ TREC and Tipster Experiments with Inquiry,” in
Information Processing and Management. New York: Cambridge
University Press., pp. 117-122. (2008)

http://airelles.i3s.unice.fr/files/Weiner.pdf
https://en.wikipedia.org/wiki/Symposium_on_Foundations_of_Computer_Science
https://en.wikipedia.org/wiki/Symposium_on_Foundations_of_Computer_Science
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%2FSWAT.1973.13
http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
http://www.cs.helsinki.fi/u/ukkonen/SuffixT1withFigs.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1007%2FBF01206331
https://en.wikipedia.org/wiki/Martin_Farach-Colton
http://www.cs.rutgers.edu/~farach/pubs/Suffix.pdf
http://www.cs.rutgers.edu/~farach/pubs/Suffix.pdf
https://en.wikipedia.org/wiki/Symposium_on_Foundations_of_Computer_Science
https://en.wikipedia.org/wiki/Symposium_on_Foundations_of_Computer_Science

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 1, 2016

140 | P a g e

www.ijacsa.thesai.org

[16] W. Croft and D. Harper, "Using probabilistic models of document
retrieval without relevance information". Maidenhead: Open University
Press, , pp. 12-24. (2009)

[17] William B. Frakes and Ricardo Baeza-Yates " Information Retrieval:
Data Structures & Algorithms" Online, (2015).

[18] William Stallings, Lawrie Brown "Computer Security: Principles and
Practice, 3rd Edition" Pearson publications, (2014)

[19] G. Kanaan, “Comparing Automatic Statistical and Syntactic Phrase”, in
Indexing for Arabic Information Retrieval, Chicago: Cambridge, , pp 34-
60. (1997)

[20] G. Kanaan, et al. “Indexing for Successful Retrieval,” in Information
Retrieval Techniques. Illinois: Oxford University Press., pp. 18-
25(2006)

[21] E. Robertson and K. Sparck, “Relevance Weighting of Search Terms,”
in Journal of theAmerican Society for Information Science. Washington:
Rutledge., pp. 45-54. (2004)

[22] R. Attar and A.S. Fraenkel, "Local Feedback in Full-Text Retrieval
Systems". Washington:Sage Press., pp. 53-67.(2007)

[23] G. Salton and M. J. McGill, “Indexing Techniques Comparison,” in
Introduction to modern information retrieval. New York: McGraw-
Hill., pp. 67-89. (2003)

