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Abstract—The major challenge in content based image 

retrieval is the semantic gap. Images are described mainly on the 

basis of their numerical information, while users are more 

interested in their semantic content and it is really difficult to 

find a correspondence between these two sides. The bag of 

features (BoF) model is an efficient image representation 

technique for image classification. However, it has some 

limitations for instance the information loss during the encoding 

process, an important step of BoF. This is because the encoding is 

usually done by hard assignment i.e. in vector quantization each 

feature is encoded by being assigned to a single visual word.  

Another notorious disadvantage of BoF is that it ignores the 

spatial relationships among the patches, which are very 

important in image representation. To address those limitations 

and enhance the results, novel approaches were proposed at each 

level of the BoF pipeline. In instance the combination of local and 

global descriptors for a better description, a soft-assignment 

encoding manner with a spatial pyramid partitioning for a more 

informative image representation and a maximum pooling to get 

the final descriptors. Our work aims to give a detailed version of 

the BoF, including all the levels of the pipeline, as a support 

leading to a better comprehension of the approach. We also 

compare and evaluate the state-of-the-art approaches and find 

out how these changes at each level of the pipeline could affect 

the performance and the overall classification results. 
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I. INTRODUCTION 

The Content-Based Image Retrieval (CBIR) systems are 
supposed to provide us with a simple accessible way for 
researching and retrieving images from a large scale image 
collection based on semantic and visual content of the images. 
The main problem in content-based image retrieval (CBIR) 
and visual recognition arises from the “semantic gap” which is 
the difference between the information that one can extract 
from the visual data and the interpretation that this same data 
has for a user in a given context. In order to fill this gap many 
challenges need to be overcome, for instance, there is the large 
scale nature of the problem where the datasets are large, the 
image descriptor dimension is large and the annotated training 
data is restricted. [1, 2, 3, 4]. Also, we need to deal with other 
factors, such as the viewpoint, scale, rotation and illumination 
changes [5, 6].  

In addition to this, occlusion [7] and clutter [8] make the 
visual recognition task even harder since an object can be 

occluded and only part of it is visible. Finally, there is the 
elusive notion of similarity which includes: the intra-class 
variation, which is the diversity that exists between instances 
of the same object and the inter-class similarity, or the 
similitude between instances of different object categories. 

Our work is based on the bag of features approach. The 
main idea is that a set of local image patches is sampled using 
some method (e.g. keypoints detector) then the local 
descriptors are extracted from the patches using (e.g. SIFT 
descriptor [5]). The resulting descriptors are then quantified to 
form a codebook (e.g. using K-means) then the image 
descriptors are encoded by being projected to the linear 
subspace of the closest visual words (e.g. using LLC). Now, 
we need to go from these obtained code vectors to a visual 
representation, for this we can use the spatial pyramid scheme 
in order to capture the spatial information of these descriptors. 
The local code vectors are aggregated using a pooling method 
to obtain the final image descriptor. The resulting global 
descriptor vector is used as a representation of the image for 
learning and classification purposes (e.g. it is used to learn an 
image classification rule based on an SVM classifier). 

The main goal of this paper is to first give a helpful basis 
for the new researchers interested in image classification by 
providing them with a detailed version of the BoF method that 
includes all the levels of the pipeline. Normally, researchers 
focus on a specific level of it considering the other levels as 
known and understood. Then, at each level of the pipeline, we 
compare the standard methods used in bag of features versus 
the state-of-the-art methods to see when and how we can 
combine them to get the best performance accuracy. Finally, 
we’ll clarify the added value of each one of these novel 
approaches, if it is for capturing more information or for 
reducing the computational cost. 

In section 2, we briefly review the related work. We 
present the bag of feature pipeline in section 3 with all its 
levels. We define the purpose of each level and give the most 
relevant used approaches to achieve it. In section 4 the 
comparative system is described along with the experiments 
and results. Section 5 concludes the paper. 

II. RELATED WORK 

The bag of features (BoF) [9, 1, 10] approach has 
established itself as the state-of-the-art for image classification. 
It consists of five steps, the feature extraction phase, the 
codebook creation and encoding of the features phase, the 
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feature pooling and finally the learning and classification 
phase. Researchers tried to improve the standard bag of 
features [1] by optimizing each and all the steps in the pipeline. 

The feature extraction phase is done in two steps, first we 
sample the patches using either interest points [1, 5, 9, 11, 12, 
13, 14, 15, 16, 17, 18, 19, 20] or densely with a regular grid 
[21, 22, 23, 24]. Until recently in [25], when they combined 
the two ways and suggested to find interest points within a 
dense grid. The second step would be to extract the features 
and get the descriptors, here again we can describe the patches 
using a global spatial layout like GIST [26], a local descriptor 
like SIFT [1, 16, 5, 9], a filter based [21, 22] or a raw patch 
based [14, 20, 15, 17, 19] representations. 

To quantize local descriptors into visual words, we must 
first generate the visual vocabulary. For this purpose, 
algorithms like mixture of Gaussian [27], mean-shift [28] 
agglomerative clustering [14, 17] and the most popular of all 
K-means [1, 20, 19, 22] are used. For the encoding part the 
simplest way assigns a local descriptor to the closest visual 
word, giving one and only one nonzero coefficient. Also 
known as “hard”-assignment, this does not consider codeword 
ambiguity which causes a significant information loss [29, 30, 
31]. In [32, 31], a “soft”-assignment coding is proposed to 
deal with these problems by assigning a local descriptor to all 
visual words in a weighted manner. Recently, sparse [33, 34] 
and local [34, 35, 36, 37] coding proved to be very efficient. 
They optimize a linear combination of few visual words to 
approximate a local descriptor and code it with the optimized 
coefficients. 

Once we get our code vectors we need to aggregate them 
in order to get the final descriptor, sum-pooling (average-
pooling) which simply sums the coefficients, it has been 
commonly used to obtain the image-level. Recent work 
indicates that max-pooling which chooses the largest 
coefficient for a visual word can lead to a better classification 
performance [35, 38, 34, 39]. In order to compare and quantify 
the influence of some of these methods; in the different levels 
of the pipeline; and to see how these changes affect the 
classification performance, we need an image classifier that 
could predict image labels, once the image descriptors are 
extracted. For the BoF classification, usually the 
discriminative methods result in a higher classification 
accuracy, this is why for this paper we chose to use an SVM 
classifier [40] which has been the most popular classifier in 
the past decade. 

III. BAG OF FEATURES 

Inspired from the original text representation model, bag 
of words [41] used for document classification, BoF was 
introduced first by [9] in video retrieval then with [1] for 
image categorization. An image is represented as an unordered 
collection of visual words. BoF gives an extremely compact 
description of images as they are represented as histograms of 
local descriptors. The main idea is to obtain visual words 
(features) by quantizing the local descriptors of images in the 
dataset based on a visual vocabulary. The vocabulary is 
constructed by clustering a large set of local descriptors using 
algorithms like K-means [42, 43]. The algorithm takes as an 
input the training data description and gives as an output a set 

of clusters. Each cluster would be represented by one visual 
word. The image is now represented as a bag of visual words 
and a histogram can be built with a dimension equal to the 
visual vocabulary size, each bin will contain the visual word’s 
frequency with respect to the image. 

 
Fig. 1. The BoF pipeline by [4] 

A. Feature sampling and extraction 

The goal is to obtain a representative set of image patches 
covering the most relevant information in a given image. After 
detecting the most interesting regions in each image, the 
feature extraction pipeline starts in order to compute the 
vectors that will describe these regions. A local descriptor is 
used in image categorization and object recognition tasks and 
also to match similar object instances. Many methods for 
feature description can be employed; in our work we adopted 
the commonly most used feature descriptors that achieved 
state-of-the-art results on several benchmarks over the years. 

SIFT descriptor [5] is a sparse feature representation that 
consists of both feature extraction and detection. To detect 
scale-invariant characteristic points, the SIFT approach uses 
cascaded filters, where the difference of Gaussians (DoG), is 
calculated on rescaled images progressively. Then interest 
points are described by gradient orientation histograms to get 
a128-dimensional vector as the SIFT representation for a pixel. 
Given an image, SIFT finds all the keypoints in the image 
with respect to the gradient feature of each pixel. Every 
keypoint contains the information of its location, local scale 
and orientation. Then, based on each keypoint, SIFT computes 
a local image descriptor. Combining all the local descriptors, 
we get the complete features from the image. 

A fast alternative is dense SIFT descriptor (DSIFT) 
which is provided by the VLFeat [44] open source library. 
DSIFT is an extension of the SIFT algorithm. It makes some 
new assumptions: (a) the location of each keypoint is not from 
the gradient feature of the pixel, but from a predesigned 
location; (b) the scale of each keypoint is all the same which is 
also predesigned; (c) the orientation of each keypoint is 
always zero. With this assumptions, DSIFT can acquire more 
features in less time than SIFT does. Figure 2 below shows the 
features extracted by both SIFT and DSIFT descriptors from 
the same images. SURF [6] based on the same principles and 
steps of SIFT. It has a Hessian-based detector and a 
distribution-based descriptor generator. It uses a blob detector 
based on the Hessian to find points of interest. In contrast to 
the Hessian-Laplacian detector by [18], SURF also uses the 
determinant of the Hessian for selecting the scale, as it is done 
by [45]. 

http://webcache.googleusercontent.com/search?q=cache:https://lear.inrialpes.fr/pubs/2006/NJT06/eccv06.pdf#13
http://webcache.googleusercontent.com/search?q=cache:https://lear.inrialpes.fr/pubs/2006/NJT06/eccv06.pdf#13
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Fig. 2. (a) original images (b) Visualization of SIFT features (c) 

Visualization of dense SIFT features 

An orientation is first assigned to the keypoint. Then a 
square region is constructed around the keypoint and rotated 
according to the orientation. The region is split up regularly 
into smaller 4x4 square sub-regions. For each sub-region, we 
compute a few simple features at 5x5 regularly spaced sample 
points. The horizontal and vertical Haar-wavelet responses dx 
and dy are calculated and summed up over each sub-region 
and form a first set of entries to the feature vector. The 
absolute values of the responses |dx| and |dy| are also 
calculated, together with the sum of vector to form a four-
dimensional descriptor. And for all 4x4 sub-regions, it results 
in a vector of length 64. 

GIST [26] captures the spatial characteristics of the scene 
categories. The main idea is to split an image using a regular 
grid and compute average response magnitudes of a number of 
Gabor filters in each spatial cell. It uses Gabor filter to extract 
a holistic description of a lot properties in the image. These 
properties are highly related to the underlying scene where the 
image was taken. It will help determine what type of object 
the image is showing. The resulting descriptor encodes the 
existence of edge-like local structures at various orientations 
and scales. 

B. Creation of the codebook and feature quantization 

The encoding phase transforms the local descriptor 
obtained to a new form, using the visual vocabulary 
(codebook or dictionary). 

1) Creating the codebook: 
K-means clustering k-means clustering is a vector 

quantization method and probably the most common way of 
constructing the visual vocabulary. It aims to partition N 
descriptors into k clusters in which each descriptor belongs to 
the cluster with the nearest mean, serving as a prototype of the 
cluster. This results in a partitioning of the data space 
into Voronoi cells [46]. To get an example of a visual word 
from the pipeline we save the paths to images for which we 
used the descriptors to create the visual words, so that we can 
visualize our visual vocabulary like shown in figure 3. 

 

Fig. 3. The image patches corresponding to a resulting visual word from our 

pipeline, after the codebook creation 

2) Encoding: The standard BoF method for encoding 

transforms the local descriptor into a more adapted form using 

the codebook [1, 42, 9], but it has some shortcomings for 

instance the information loss caused by vector quantization 

where a descriptor can be similar to many visual words or be 

different from all of them. Recently, the hard quantization of 

features was replaced by alternative methods that would keep 

more information about the original image features (soft-

assignment). A patch is assigned to multiple visual words in a 

weighted manner according to its proximity to vocabulary 

centers in the local descriptor space [47, 30, 31].This has been 

done in two ways: (1) by expressing features as combinations 

of visual words (e.g., soft quantization [32], local linear 

encoding [35]). (2) by recording the difference between the 

features and the visual words (e.g., Fisher encoding [48], 

super-vector encoding [49]). 
In the encoding step we chose to use three different 

approaches, first a hard assignment encoding as the standard 
BoF vector quantization method. Then, in order to better 
apprehend the new soft-assignment technique, we used a 
distance-based soft quantization method and a reconstruction-
based soft assignment method renowned for its good 
performance. 

Nearest Neighbors requires two parameters the number of 
neighbors (k) and the distance measure (e.g. Euclidean). The 
algorithm repeats iteratively the calculation for each descriptor. 
The code vector (representation) created will be of the size of 
the dictionary and will contain the frequency count of the 
assignment of each descriptor to a visual word. To do the 
assignment we use an L2 distance and pick the nearest 
neighbor visual word to each descriptor. 

The 1-NN algorithm is as follow:  Given the data              
D  {     }  , a distance function d and input x we 
find:                          and return    . The problem is 
that the strict memorization aspect of 1-NN leads to 
information loss. One way to deal with this is local averaging; 
instead of just one neighbor, we find K nearest neighbors and 
use them in a weighted manner. All neighbors are used, but 
with different weights. Closer neighbors receive higher 
weights. The weighting function (kernel function) is the 

Gaussian:             {
         

  
} 

  

http://www.sciencedirect.com/science/article/pii/S1018364713000761#b0245
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The K-Nearest Neighbors with Gaussian kernel similarity 
metric is as follow: Given the data   {     } , the Kernel 
function K and input x. If       the return weighted 
majority is      ∑          

 
     

Locality-constrained Linear (LLC) Coding hard-
assignment selects the first closest visual word, it is fast but it 
gives a large quantization error. Recently [35] proposed a 
reconstruction based approach where features are 
“reconstructed” by a linear combination of visual words. 

Let x be a set of D-dimensional local descriptors extracted 
from an image, i.e.    [            ]        where D is 
the descriptor’s dimension (e.g. SIFT=128) and N is the 
number of descriptors (DxN matrix). 

Given a codebook with M entries,                                       
   [            ]      .The coding scheme converts 
each descriptor into an M-dimensional code to generate the 
final image representation. For a descriptor x and a codebook 
B, coefficients are chosen to solve: 

       ∑ ‖      ‖
 
    ² +  ‖     ‖  s.t.              

Which means    could approximately be reconstructed by 

    .With       (
          

 
)  is the locality adaptor which 

gives lower weights to the basis vectors that are different from 

the input descriptor    and vice versa, this leads to the locality 

constraint. 

           = [           ,…,            ] , where 
            is the Euclidian distance between    and   .   is a 

parameter controlling the weight decay speed for the locality 
adaptor.   denotes the element-wise multiplication and  
       insures sparseness. 

The distance regularization of LLC effectively performs 
feature selection: it selects local bases for each descriptor and 
form a local coordinate system, and in practice only those 
bases close to    in feature space have non-zero coefficients. 

This suggests, a fast approximation of LLC can be 
developed by removing the regularization completely and 
instead using the K (K < D <M) nearest neighbors of    as a 
set of local bases     and solve a smaller linear system to get 

the code vectors:         ̃ ∑ ‖      ̃ ‖
 
    s.t      ̃       

which reduces the computation complexity from      to 
        where    . 

C. Aggregation of  the encoded local descriptors to obtain the 

final image descriptor 

Now that we have our encoded descriptors, an image is 
still represented by too many code vectors (encoded 
descriptors), so we’ll need to pool these vectors in order to 
describe the image with one final descriptor. In the standard 
BoF pipeline we perform hard assignment for coding and then 
directly start aggregating the encoded local descriptors with 
sum pooling. In our work, we extend the old version of BoF 
by first adding the spatial pyramid scheme to capture the 
spatial information, we then proceed with the aggregation 
using either sum pooling or max pooling; the latter is a newly 
used approach that appears to be giving promising results. 

1) The spatial pyramid matching (SPM) [50]: aims to 

incorporate the global spatial layout into the image 

representation. Inspired from the original work of [16], the 

spatial pyramid creates a pyramid of regular grids with 

increasingly finer cells. Each spatial cell will give us a 

histogram of visual words and the concatenation of all the 

histograms in a weighted manner gives us the final descriptor. 
In the original work they construct a three-level pyramid. 

In a level i   {0,…,n}of the pyramid, the image is divided into 

2
i  

spatial cells. Each cell has a histogram of visual words, and 

the image is represented with ∑    
      vector, where M is 

the length of the codebook. This is a form of spatial pooling 
when we add the spatial position by assigning the histogram of 
each level with a weight, then we aggregate all the weighted 
histograms to get the final descriptor. 

2) Pooling: Given the coding coefficient   of each local 

descriptor in an image, a pooling operation is often used to 

obtain an image level representation   where      with M 

the total number of visual words. 
Sum or average pooling [50] With sum-pooling, the i

th
 

component of p is    ∑    
 
   , where l is the total number of 

local features in an image. Dividing    by l gives us sum or 

average pooling. The histogram of number of occurrences of 
visual words in an image is essentially obtained by applying 
sum pooling to hard-assignment coding results. 

Max-pooling [34] The i
th

 component of p is defined as  
          , where i=l,...,l . For each codeword we select the 

feature with the maximum coefficient   . Max-pooling often 
gives better classification than average pooling. When used 
with hard-assignment coding scheme, max-pooling gives a 
binary histogram, indicating the presence or absence of each 
visual word in an image. 

D. The classification phase 

In image categorization, the goal is to automatically 
annotate images with predefined categories. Once the image 
descriptors are extracted, image labels are predicted using a 
set of classifiers. 

SVM classification: In our work we rely on Support 
Vector Machine (SVM) classifiers to carry out the 
classification task. SVM is a discriminative classifier formally 
defined by a separating hyper plane. In other words, given 
labeled training data (supervised learning), the algorithm 
outputs an optimal hyper plane which categorizes new 

examples. Given a labeled set   {     }   
   where      

and   {     } .A linear maximal margin 

classifier                  can be found by solving: 

        ∑     ‖ ‖   
   s.t.      

            ,      

       . For a hyper plane       and its offset    . 

The extent of the SVM classifier lies in its easy extension 
to the nonlinear case [51]. Highly nonlinear nature of data can 
be taken into account by using the kernel trick such that the 
hyper plane is found in a feature space induced by an adapted 

kernel function   (     )  〈       (  )〉 . SVM handles 

nonlinearly separable problems using kernel functions by 

http://www.hindawi.com/journals/am/2013/175064/#B55
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projecting the data points into a higher-dimensional feature 
space        . The Multi-class problem can be 
discriminated by performing, several “one-versus-all” 
classifications. 

It was empirically found that, to achieve good performance, 
traditional SPM has to use classifiers with nonlinear Mercer 
kernels, e.g., Chi-square kernel. However, the nonlinear 
classifier has to afford additional computational complexity, 
bearing       in training and      for testing in SVM, where 
n is the number of support vectors. This implies a poor 
scalability of the SPM approach for real applications [34, 35].  

To improve the scalability, researchers opted for a 
nonlinear feature representations that work better with linear 
classifiers, e.g. the works of [52, 53, 34, 35] where the final 
representation generated by using these encodings, achieved 
state-of-the-art performances on several benchmarks with a 
linear SVM classifier. In our experiments, we use a one-
versus-all linear SVM classifier, implemented by LibSVM 
toolbox [55] and the optimized values of the parameters of 
SVM models are given by cross validation. 

IV. EXPERIMENTS  AND RESULTS 

In this section, we first give the detailed implementation of 
our experiment then we evaluate the different methods 
introduced in Section 3 in each level of the BoF pipeline. 

A. Implementation 

1) Fetching the data: We follow the experimental setup of 

[16, 34], where the training set contains 30 images and the 

testing set contains 50 images per class. We create our ground 

truth matrix that will contain the labels of the testing images. 

2) Training phase: 

a) Detection and extraction of features:  the local 

descriptors used are DSIFT or SURF that will be combined 

sometimes with the global descriptor GIST for experimental 

purposes. 

 DSIFT: For the patch sampling process we set the 
spacing of the dense grid to 6 pixels, and the sampling 
window is set to 16*16 pixels. 

 SURF: We detect SURF keypoints using a threshold 
set to 55 as it gives the best results for our datasets, and 
we select the strongest features. We then extract the 
SURF descriptors. 

 GIST: We convolve the image with 32 Gabor filters at 
4 scales, 8 orientations, producing 32 feature maps of 
the same size of the input image. Then, we divide each 
feature map into 16 regions (by a 4x4 grid), and 
average the feature values within each region. Finally, 
we concatenate the 16 averaged values of all 32 feature 
maps, resulting in a 512-dimension GIST descriptor. 

b) Codebook computation: we use K-means algorithm 

on the descriptors extracted in the previous step in order to 

create our vocabulary; we chose a maximum number of 

iterations for K-means equal to 50 to generate 1024 visual 

words as suggested in the work of [55]. 

c) Coding: In this phase the descriptors are represented 

by a code vector using the codebook generated in the previous 

step. Here, we used 3 encoding algorithms, the standard hard 

assignment NN, KNN with a Gaussian kernel measure and 

LLC known for its good performance. 

 NN: To represent our training and testing images as a 
histogram of visual words, for each image we will 
densely sample the descriptors and simply count how 
many fall into each cluster according to our visual 
word vocabulary. This is done by finding the nearest 
neighbor k-means centroid for every feature. 

 KNN: K=5 Neighbors are used, the kernel Gaussian 
function            {           ⁄ }  is then 
calculated for each visual word using the Euclidian 
distance d .We used a Gaussian kernel and chose   
σ=500 since it gave the best results according to our 
experiments. 

 LLC: Using the Approximated Locality-constraint 
Linear Coding requires setting the number of neighbor 
visual words M considered for each encoded 
descriptor. This is set to K=5 as suggested in the 
original work [35]. As for The regularization constant   
in the computation of the projections is set to 10

-4
. 

d) Aggregation to get the final descriptor: Once we get 

all our code vectors, we need to aggregate them in order to get 

the final image descriptor. 

 Spatial pyramid: The spatial pyramid is set to 3 levels 

so the image is divided increasingly into 2
i  

spatial cells 
with i= {0,1,2}.  

 Pooling: we compared the two known methods 
average and max pooling. For sum-pooling, we’ll 
average all the code vectors to create the final 
descriptor and for max-pooling we select the feature 
with the maximum coefficient. 

e) Learning: once the code vectors are ready, we get our 

training matrix with the training labels that will be used by the 

SVM classifier in order to create the SVM model and generate 

the primal variable w of linear SVM. 

3) Testing phase: in this phase we follow the same steps 

(from a to d) explained earlier in the training phase but using 

the test images instead of the training images. 

 Classification: we classify the resulting code vectors 
using SVM, which contains the code vectors of the 
training set, their labels, the SVM model and the code 
vectors of the testing set. The classifier will predict the 
label of each image in the testing set and put it in a 
matrix. 

4) Performance and accuracy: Multi-class classification 

is done with the trained SVM that learned to separate each 

class from the rest; a test image is assigned the label of the 

classifier with the highest response. 
We Use the leave-one-out cross-validation framework to 

tune the parameters. We perform a 5-fold cross-validation 
where we train on 4 folds and we test on the remaining fold, 
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one at-a-time, and then the average accuracy is reported. 
Based on the accuracy we select the best parameters values. 

To compute the classification accuracy ((number of well 
classified images/ number of images) *100) we compare our 
ground truth labels with the predicted ones and build the 
confusion matrix for our system figure 4. 

B. Experiments and results 

The results obtained were run on 30 training and 50 testing 
examples and a 1024 sized codeword dictionary. We tested the 
setup on the standard workstation (Xeon X5650 2.67 GHz, 6 
core (12 CPU), 32 GB ram) using Matlab. We added the 
computing time column (in seconds) to evaluate the 
computational cost of the methods when running the offline 
process part of the image classification. 

The results section is composed of three main sets of 
experiments, we start with the first phase of the BoF which is 
the feature extraction, so we compare the results obtained 
using different descriptors with a standard version of the 
pipeline which uses NN for coding, no spatial pyramid and 
simple sum pooling. 

We then compare the different encoding methods one can 
use in the encoding phase of the BoF pipeline; we combined 
these methods with the different descriptors from the last 
setup. 

At last we compare the pooling phase of the BoF pipeline, 

here we added the spatial pyramid scheme to the last setup and 

combined it with the different pooling methods. 

 
Fig. 4. Confusion matrix for 15 scene categories dataset resulting from our 

BOF pipeline, using SIFT+GIST as descriptors, LLC for encoding, SPM and 

max pooling. Along the diagonal we find the number of well-classified test 

images out of 50. The entry located in the ith row, jthcomlumn represents the 
number of images of class i being misclassified to class j 

1) 15 scene categories: 
Our first dataset is composed of fifteen scene categories 

which were gradually built. The initial 8 classes were 
collected by Oliva and Torralba [26], and then 5 categories 
were added by Fei-Fei and Perona [56]; finally, 2 additional 

categories were introduced by Lazebnik et al. [50]. Each 
category has 200 to 400 images all of them in jpeg format, and 
the average image size is 300 × 250 pixels. This dataset 
contains a wide range of outdoor and indoor scene 
environments. A lot of works were tested on this dataset; most 
of them focus on dictionary learning, quantization and 
classification methods and use spatial pyramid matching [50]. 
It is widely recognized that whole spatial layout information is 
effective on this dataset. The experimental results are shown 
in the tables forthcoming. 

2) Indoor dataset: 
Our second dataset of experiments is the Indoor dataset 

[57]. It contains 67 Indoor categories, and a total of 15620 
images in different resolutions. The number of images varies 
across categories, but there are at least 100 images per 
category. All images are in jpeg format. This database is 
known for being one of the most challenging open problems in 
high level vision. Most scene recognition models that give 
good results for outdoor scenes perform poorly in the indoor 
domain. The main difficulty is that while some indoor scenes 
can be well characterized by global spatial properties, others 
are better described by the objects they contain. Thus, to 
address the indoor scenes recognition problem we need a 
system that can exploit local and global discriminative 
information. 

3) Descriptor comparison: 
We know that in BoF model, keypoints are extracted from 

the grey level images and the local descriptors don’t contain 
color information. Furthermore, BoF model captures only the 
local information, losing the overall distribution of visual 
information. The performance could be enhanced if we can 
combine global features and local descriptors together. 

Both DSIFT/SURF and GIST feature representations 
describe different features in their target images. So we 
combine global GIST features with local DSIFT or SURF 
features in order to see if these complementary features could 
be used together to increase the image classification accuracy. 
Table1 shows the accuracy results for the different image 
descriptors. We used the simple vector quantization scheme 
with NN for coding, no spatial pyramid and simple sum 
pooling in order to compare the descriptors. 

TABLE I.  ACCURACY ACHIEVED WITH THE DIFFERENT FEATURE 

DESCRIPTORS 

 Image descriptor Accuracy Time 

15 Scene 

Categories 

DSIFT 

SURF 

DSIFT+GIST 
SURF+GIST 

63.34 % 

48.54 % 

66.94 % 

65.07 % 

429.98s 

291.53s 

831.07s 
672.64s 

Indoor 

DSIFT 

SURF 
DSIFT+GIST 

SURF+GIST 

32.18 % 

26.39 % 
30.51 % 

29.89 % 

14810.57s 

7455.70s 
15495.33s 

10725.74s 
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TABLE II.  ACCURACY ACHIEVED WITH THE DIFFERENT ENCODING METHODS

TABLE III.  ACCURACY ACHIEVED USING SPATIAL PYRAMID AND DIFFERENT POOLING METHODS 

 

As we can see from table1 DSIFT descriptor gives better 
results than SURF descriptor, although it is much more time 
consuming than the latter. 

We then combined the GIST feature vectors with the 
encoding of DSIFT/SURF descriptors by appending the 
feature vectors together. The best accuracy rate was achieved 
by combining DSIFT and GIST for the fifteen dataset with 
66.94% and 32.18% using DSIFT solely for the Indoor dataset. 
DSIFT is slower than SURF but gives better results. When we 
combined the local descriptors with GIST the time of 
calculations increased but so did the accuracy. GIST and 
DSIFT are slow but captures more information. 

4) Encoding comparison: 
To compare the encoding phase of the pipeline we kept the 

same codebook with 1024 entries and used the different 

descriptors with our encoding methods (NN, KNN, and LLC). 
Table 2 shows the accuracy results for using different coding 
schemes without spatial pyramid and with sum pooling. 

We see that the results are more less the same for the 
different encoding methods, where there is a minor difference 
between the accuracies when using the same image descriptor. 
However, there is an important difference in numbers when 
the encoding methods are combined with different descriptors. 
We can see that the best accuracy was achieved for the fifteen 
dataset by DSIFT+GIST descriptor combined with NN for 
encoding, and with DSIFT descriptor combined with KNN for 
the Indoor dataset. As for the computational cost, it is distinct 
from the results that the most expensive encoding method is 
LLC followed by KNN then lastly the standard NN for vector 
quantization. 

1
5
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Image descriptor Encoding Accuracy Time 

In
d

o
o
r 

Image descriptor Encoding Accuracy Time 

DSIFT 

DSIFT 

DSIFT 

 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

NN 

KNN 

LLC 

 

NN 

KNN 

LLC 

63.34 % 

64.67 % 

64.67 % 

 

66.94 % 

65.60 % 

66.14 % 

429.98s 

475.21s 

557.40s 

 

831.07s 

870.64s 

959.64s 

DSIFT 

DSIFT 

DSIFT 

 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

NN 

KNN 

LLC 

 

NN 

KNN 

LLC 

32.18 % 

32.27% 

32.03 % 

 

30.51 % 

30.36 % 

30.30 % 

14810.57s 

15884.10s 

18903.22s 

 

15495.33s 

17293.81s 

20701.02s 

SURF 

SURF 

SURF 

 

SURF+GIST 

SURF+GIST 

SURF+GIST 

NN 

KNN 

LLC  

 

NN 

KNN 

LLC 

48.54 % 

49.34 % 

50.40 % 

 

65.07% 

64.27% 

64.67 % 

291.53s 

319.36 s 

411.95s 

 

672.64s 

699.48s 

791.55s 

SURF 

SURF 

SURF 

 

SURF+GIST 

SURF+GIST 

SURF+GIST 

NN 

KNN 

LLC  

 

NN 

KNN 

LLC 

26.39 % 

22.12 % 

26.18 % 

 

29.89 % 

29.98 % 

29.89 % 

7455.70s 

7688.52s 

9699.77s 

 

10725.74s 

11553.35s 

12429.21s 
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Image descriptor Encoding SPM Pooling Accuracy Time 

In
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o
o
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Image descriptor Encoding SPM Pooling Accuracy Time 

DSIFT 

DSIFT 

DSIFT 

DSIFT 

DSIFT 

DSIFT 

 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

NN 

NN 

KNN 

KNN 

LLC 

LLC 

 

NN 

NN 

KNN 

KNN 

LLC 

LLC 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Sum 

Max 

Sum 

Max 

Sum 

Max 

 

Sum 

Max 

Sum 

Max 

Sum 

Max 

64.94 % 

67.47 % 

67.87% 

69.87 % 

65.07 % 

70.67 % 

 

64.80 % 

73.74 % 

64.67 % 

74.14 % 

64.67 % 

75.60 % 

467.10s 

469.76s 

611.88s 

618.42s 

694.75s 

661.22s 

 

855.31s 

878.74s 

944.66s 

1004.65s 

1031.66s 

1078.20s 

DSIFT 

DSIFT 

DSIFT 

DSIFT 

DSIFT 

DSIFT 

 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

DSIFT+GIST 

NN 

NN 

KNN 

KNN 

LLC 

LLC 

 

NN 

NN 

KNN 

KNN 

LLC 

LLC 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Sum 

Max 

Sum 

Max 

Sum 

Max 

 

Sum 

Max 

Sum 

Max 

Sum 

Max 

32.45 % 

37.20 % 

30.60 % 

36.45 % 

33.32 % 

37.35 % 

 

29.71 % 

38.99 % 

29.47 % 

38.42 % 

29.47 % 

39.23 % 

17923.76s 

17784.88s 

22740.40s 

22297.42s 

26032.58s 

25602.24s 

 

18118.85s 

18930.11s 

22971.09s 

27083.96s 

25801.05s 

26664.71s 

SURF 

SURF 

SURF 

SURF 

SURF 

SURF 

 

SURF+GIST 

SURF+GIST 

SURF+GIST 

SURF+GIST 

SURF+GIST 

SURF+GIST 

NN 

NN 

KNN 

KNN 

LLC 

LLC 

 

NN 

NN 

KNN 

KNN 

LLC 

LLC 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Sum 

Max 

Sum 

Max 

Sum 

Max 

 

Sum 

Max 

Sum 

Max 

Sum 

Max 

46.27 % 

56.40 % 

44.80 % 

60.94 % 

43.34 % 

58.14 % 

 

64.14 % 

69.34 % 

64.54 % 

70.40 % 

64.40 % 

69.74 % 

383.22s 

382.35s 

645.51s 

632.27s 

735.12s 

690.94s 

 

728.63s 

799.80s 

894.66s 

1015.97s 

981.35s 

1067.70s 

SURF 

SURF 

SURF 

SURF 

SURF 

SURF 

 

SURF+GIST 

SURF+GIST 

SURF+GIST 

SURF+GIST 

SURF+GIST 

SURF+GIST 

NN 

NN 

KNN 

KNN 

LLC 

LLC 

 

NN 

NN 

KNN 

KNN 

LLC 

LLC 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

 

Yes 

Yes 

Yes 

Yes 

Yes 

Yes 

Sum 

Max 

Sum 

Max 

Sum 

Max 

 

Sum 

Max 

Sum 

Max 

Sum 

Max 

23.44 % 

31.41 % 

15.05 % 

29.98 % 

17.50 % 

31.41 % 

 

29.50 % 

36.81 % 

29.50 % 

36.93% 

29.50 % 

36.99 % 

12306.90s 

12498.50s 

20238.74s 

20160.84s 

22281.54s 

20763.74s 

 

14263.72s 

15183.18s 

21631.45s 

22830.13s 

24736.23s 

24167.81s 
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5) Spatial pyramid with pooling comparison: 
For the last phase we compare the different pooling 

methods.Table3 shows the accuracy results for combining the 
different descriptors and coding methods with spatial pyramid 
then aggregating with either max or sum pooling. We notice 
that the accuracy increased immediately when we added the 
spatial pyramid scheme and max pooling but so did the 
computational time. These two recent approaches enabled our 
setup to achieve the best performance with 75.60% for the 
fifteen dataset and 39.23% for the Indoor dataset, both using 
DSIFT+GIST as a descriptor and LLC for encoding. 

For the performance we can surely assert that max pooling 
do improve the overall classification over the widely used sum 
pooling method, but we can't say much about the difference in 
computational time between the two approaches. 

C. Discussion 

In order to evaluate the new approaches in the bag of 
features model, we compared them to the previous standard 
methods with respect to the same codebook and many other 
constraints as mentioned in the implementation details. The 
paper gives the results using two popular datasets and a linear 
SVM classification. 

The local descriptor DSIFT is the better choice for a good 
feature extraction and when combined with the global 
descriptor GIST it captures more information, resulting in an 
even better performance. 

The different encoding methods NN, KNN, LLC gave 
more less the same results when combined with average 
pooling and no spatial pyramid, but when combined with 
spatial pyramid and max pooling LLC gave the best results. 
The important fact is that spatial pyramid matching and max 
pooling did significantly improve the performance of all the 
encoding methods. The improvement of the encoding methods 
accuracies is about 5 to 10%. This shows that spatial 
information is important for image classification. 

Including both local and global descriptors for the first 
step of the BoF model, enhanced the performance. Local 
context and global quantized information were combined to 
make conventional features more discriminative. Using those 
resulting robust features we built our vocabulary with K-
means algorithm which represents the online process part of 
the BoF model. 

For the encoding step, we used 3 different approaches the 
hard assignment NN algorithm, a soft assignment distance-
based KNN algorithm and a soft assignment reconstruction 
method LLC. Vector quantization with NN is fast but gives 
poor results; LLC is much more efficient since the assignment 
is optimized as to minimize the reconstruction error unlike the 
purely distance-based assignment with KNN. 

The computational efficiency of spatial pyramid matching 
combined with max pooling for the last step of the BoF model 
yielded the highest classification rates on challenging data for 
instance the Indoor dataset. 

The importance of this work lies in the details about each 
level of the pipeline that includes the methods used and their 

efficiency. This results in an apprehension of each step, which 
leads us to a better understanding of the BoF model as a whole. 

Our setup enabled us to achieve the best performance 
using DSIFT and GIST as descriptors since they capture more 
information, then LLC for encoding which was combined with 
spatial pyramid matching and max pooling. The classification 
was then measured on the basis of the BoF model by using a 
linear SVM classifier. These changes in each level of the 
pipeline resulted in an enhancement of the results over the 
basic bag of features model. The new approaches maybe a bit 
costly but the gained efficiency is worth the added computing 
time. 

V. CONCLUSION 

This paper presents an overall insight on the bag of 
features model. We proposed an image classification pipeline 
which we used to compare and evaluate the standard bag 
features methods with the new ones and it appears that these 
changes in each step of the pipeline did indeed affect the 
performance. 

In fact, we came to the conclusion that the right 
combination of the methods used in each level of the pipeline 
as we did in our setup leads to better results.  The first 
amelioration took place in the first step of the pipeline where 
we combined some descriptors used for features extraction 
that captures local and global context information. Actually 
this improvement is due to the global GIST descriptor which 
adds a spatial envelope to the local features and generates a 
more complete description of the image. 

In the next step we compared different encoding methods, 
first NN representing the hard assignment vector quantization, 
then KNN for a distance-based soft assignment and lastly LLC 
as a reconstruction-based soft assignment. The resulting code 
vectors were finally used in the last step of the pipeline where 
another improvement took place, when we added a spatial 
pyramid layer for when we want to aggregate our code vectors 
combined with sum pooling as a basic aggregation method or 
max pooling as a new approach. The SPM max-pooling 
combination clearly boosted the performance results. 

At last, we can say that each step of the pipeline holds part 
of the final results which means that selecting the methods to 
use is the most crucial part of the BoF model.   In fact, the 
good performance we achieved is mainly due to the recent 
approaches we introduced in each step of the pipeline which 
increased the classification accuracy over the standard bag of 
features baseline. 
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