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Abstract—Error correcting codes, also known as error 
controlling codes, are sets of codes with redundancy that 
provides for error detection and correction, for fault tolerant 
operations like data transmission over noisy channels or data 
retention using storage media with possible physical defects. The 
challenge is to find a set of m codes out of 2n available n-bit 
combinations, such that the aggregate hamming distance among 
those codewords and/or the minimum distance is maximized. Due 
to the prohibitively large solution spaces of practically sized 
problems, greedy algorithms are used to generate quick and dirty 
solutions. However, modern evolutionary search techniques like 
genetic algorithms, swarm particles, gravitational search, and 
others, offer more feasible solutions, yielding near optimal 
solutions in exchange for some computational time. The 
Chemical Reaction Optimization (CRO), which is inspired by the 
molecular reactions towards a minimal energy state, emerged 
recently as an efficient optimization technique. However, like the 
other techniques, its internal dynamics are hard to control 
towards convergence, yielding poor performance in many 
situations. In this research, we proposed an enhanced exploration 
strategy to overcome this problem, and compared it with the 
standard threshold based exploration strategy in solving the 
maximally distant codes allocation problem. Test results showed 
that the enhancement provided better performance on most 
metrics. 
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Optimization; Maximally Distant Codes; Binary Knapsack 
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I. INTRODUCTION 
The goal of this research is to allocate sets of codes that 

maximize mutual distances for use as error control codes. This 
is of great significance for many applications, like data 
retrieval and communication. Finding optimal or even near 
optimal solutions for practically sized problems using brute 
force search is a challenge due to the prohibitively large 
solution spaces. The problem A(n, m, d) is about locating a  set 
of m codewords with n bits that are at least d bit apart. The 
solution space of the small instance (7, 16, 3) is at least 1020, 
while a slightly larger instance like (8, 16, 3) has more than 
1024 solutions to explore. The solution space of a relatively 
small sized problem, like (10, 64, 3), exceeds 480 Googol 
(4.8x10102), which is large enough to rule out any exact search 
algorithm even using supercomputing power. 

According to the packing sphere theorem, aka Hamming 
bound, if S is a code of strings of n bits with d(S) = 2k+1, 
where k is the radius (maximum number of bits that can be 

corrected) and d is the distance, then the cardinality |S|, or size 
set, is defined as: 

|𝑆| ≤
2𝑛

∑ 𝐶(𝑛,   𝑖)𝑘
𝑖=0

 (1) 

Using (1), loose bounds on the sets cardinality are shown in 
Table I for selected values of d and k; d errors detection and k 
errors correction. If the inequality in (1) does not hold then the 
code S does not exist while if it holds, there is no assurance of 
existence of such a code, and this is why those bounds are not 
quite useful and better ones are needed, later sections will 
provide tighter ones as research outcomes. Later, tighter 
bounds will be presented as reported by researchers. 

TABLE I.  CODEWORDS VERSUS MINIMAL DISTANCE AND RADIUS 

 Error Correction / Detection 

n k = 1, d = 3 k = 2, d = 5  k = 3, d = 7 

8 28 6 2 

10 93 18 5 

12 315 51 13 

14 1092 154 34 

16 3855 478 94 

18 13797 1524 265 

Evolutionary optimization algorithms offer optimal or near 
optimal solutions with affordable computational effort; time 
and resources. Such algorithms have been used in solving 
complex engineering problems with varying quality and time 
tradeoffs. The CRO algorithm has emerged recently as an 
adaptive method to explore such large spaces with ordinary 
computational resources. In a previous work, we adapted the 
CRO algorithm to the maximally distant codes allocation 
problem by mapping it to the well-known binary Knapsack 
problem. The results were acceptable but with poor 
exploitation and exploration balance in some situations, as the 
algorithm spent more time exploring the space even with tight 
exploration reactions conditions, yielding less fruitful 
computations. We extended the research to adjust the 
exploration reactions through better control; randomized and 
quality dependent rather than threshold only dependent. 
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II. LITERATURE REVIEW 
Due to significance, error correcting code allocation 

problem has been addressed for a long time using various 
methods. Evolutionary paradigms were applied with varying 
degrees of success; for example, the work in [1] described 
some initial experiments of Genetic Algorithms (GAs) to 
discover maximal distance codes, and discussed the potential 
advantage of genetic algorithms in this problem domain, others 
like [2], compared the performance of many evolutionary 
algorithms with local search and greedy methods in solving the 
error correcting codes discovery problem, and concluded that 
the GAs were the best of all other algorithms in general, with 
even more performance advantage as the cases got harder, 
while [3] tackled the error correcting codes allocation with two 
related techniques, Memetic Algorithm (MA) and Scatter 
Search (SS), by investigating the instantiation of those 
techniques for error correction codes design, the local 
improvement strategy and the combination method in specific, 
and reported that those techniques could outperform previous 
approaches. In [4], both GA and Genetic Programming (GP) 
were examined on three different binary error correcting codes 
problems to generate optimal sets of codes, and devised a new 
chromosome representation, claiming benefits in certain 
conditions. 

Power efficient design was addressed in many places. For 
example, a GA with integrated symbiotic mechanism was 
proposed in [5], to locate codes that provide single error 
correction and double error detection. The work formulated the 
selection of the parity check matrix into a collection of 
individual and specialized optimization problems. Another 
approach in [6] targeted the power consumption reduction in 
single error correcting, double error detecting checker circuits 
in memory, using the degrees of freedom in selecting the parity 
check matrix of the error correcting code, by using Simulated 
Annealing (SA) and GA to solve non-linear power 
optimization problems. Tests on actual memory traces of 
benchmarks indicated that considering power along with area 
and delay when selecting the parity check matrix could result 
in significant power reductions.  Closely related work was 
reported in [7], which investigated the use of different 
evolutionary algorithms to improve the lower bounds for given 
parameters by relating this problem to the well-known 
Maximum Clique Problem. As in most of the evolutionary 
methods, local search mechanisms were integrated, like the one 
in [8], which presented a new local search algorithm for the 
error correcting codes problem called the Repulsion Algorithm 
(RA), and used it with a parallel GA to solve the problem, and 
compared it against a pure parallel GA. They achieved 
important improvement with the inclusion of the RA. In a 
related context, the authors of [9] resolved the question of the 
utility of the crossover operator in earlier studies on optimizing 
DNA error correcting codes, where the crossover operator in 
question was found to be substantially counterproductive and 
the majority of the crossover events produced results that 
violated the minimum distance constraints required for error 
correction. 

Recently, few new evolutionary paradigms emerged, most 
importantly the one proposed in [10], called Chemical Reaction 
Optimization (CRO), to solve optimization problems by 

mimicking the interactions of molecules in a chemical reaction 
to reach a low energy stable state. The performance of the 
proposed algorithm was tested using three nondeterministic 
polynomial time hard combinatorial optimization problems; 
two traditional benchmark problems and a real-world problem, 
reporting competitive results compared with the existing 
successful metaheuristics. The authors employed this technique 
in [11] to the population transition problem, to maximize the 
probability of universal streaming by manipulating population 
transition probability matrix, and reported better performance 
than many commonly used methods for controlling population 
transition in many practical live streaming systems. 
Researchers have applied this technique to many intractable 
problems in various fields, like solving the grid scheduling 
problem in [12], which compared it with four generally 
acknowledged methods, and reported superior performance, 
and scheduling Directed Acyclic Graph (DAG) jobs in 
heterogeneous computing systems, and a Double Molecular 
Structure-based CRO (DMSCRO) method as in [13], to encode 
the execution order of the tasks in a DAG job, and the task-to-
computing-node mapping, along with four elementary 
operations, and a fitness function suitable for DAG scheduling, 
and verified the effectiveness over a large set of randomly 
generated and real-world problems graphs, and testing the 
performance of CRO on three nondeterministic polynomial 
time hard combinatorial optimization problems reported in 
[10], claiming that it was very competitive with the existing 
metaheuristic, and outperformed them in some cases, like the 
real-world problem. 

Among the other applications, [14] used it in developing an 
allocation algorithm to study three utility functions for 
utilization and fairness with hardware constraints, and showed 
that it outperformed the others by a good margin, and [15] used 
the CRO in allocating sets of maximally distant codes for a 
certain set of parameters, and reported good results in a 
relatively short time for small instances, and some difficulties 
in larger instances due to exploration reactions inefficiency, 
while [16] proposed an Adaptive CRO (ACRO) to alleviate the 
effort in tuning parameters, reducing the number of 
optimization parameters in canonical CRO along with an 
adaptive scheme to evolve them. They performed simulations 
on a widely-used benchmark of continuous problems claiming 
superior performance over canonical CRO. A multiobjective 
variant of CRO was reported in [17], called nondominated 
sorting CRO, and meant to exploit chemical reaction 
optimization features in tackling problems involving multiple 
criteria, making the multiobjective algorithm efficient from a 
computational cost viewpoint. Benchmarks test against 
reported good convergence. 

Some novel approaches built on the CRO, for example the 
one in [18] proposed for training higher order neural networks, 
with two modifications; fixing the population size and using 
greedy reversible action after the regular actions. Compared to 
the basic CRO algorithm and two variants, using well known 
neural networks benchmarks, results reported significant 
statistical improvements. Another trend was to use hybrids. For 
example, [19] proposed a CRO with greedy strategy algorithm 
(CROG) to solve the binary Knapsack problem, by integrating 
a greedy strategy and random selection to repair the infeasible 
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solutions. The experimental results have shown superior 
performance compared to the standard GA, the Ant Colony 
Optimization (ACO), and the Quantum Inspired Evolution 
(QIE). The Orthogonal CRO (OCRO) is yet another example 
of hybridization reported in [2], adding quantization orthogonal 
crossover for global search. Tests on a set of several 
benchmark functions reported faster convergence speed to 
close to optimal solutions, especially for high-dimensional 
functions. Another hybrid was built on a local search to solve 
the Travelling Salesman problem (TSP) as in [21], by 
integrating the Lin-Kernighan (LK) local search, claiming 
better tradeoff between the exploration abilities of CRO and 
the exploitation abilities of LK local searcher, resulting in more 
efficient algorithm. The hybrid reported in [22], called Hybrid 
CRO (HCRO), was developed to solve task scheduling 
problems, by integrating a selection strategy with standard 
CRO. Both simulation and real-life experiments proved that the 
HCRO algorithm task scheduling was much better than the 
existing algorithms in terms of makespan and speed of 
convergence. Another hybrid was proposed in [23], by 
combining the two local search operators in the CRO with 
global search ability for global optimum, incorporating 
concepts from the CRO and the Particle Swarm Optimization 
(PSO). Tests on a set of twenty three benchmark functions 
have shown that this CRO and PSO hybrid could outperform 
the CRO in most of the experiments. Moreover, a novel 
computational method was reported in [24] as more robust and 
with less parameters than that used in the literature, called the 
Artificial Chemical Reaction Optimization Algorithm 
(ACROA), and applied it to multiple-sequence alignment and 
data mining. 

Like any other evolutionary algorithm, parameters setting is 
one of major issues in the CRO implementation, and a study of 
their dynamics was reported in [25], covering various 
parameters.  Numerical experiments for two test functions in 
the category of non-linear constrained optimization problems 
reported in the literature are carried out, indicating at par 
performance compared with other optimization methods. 

Clearly, the CRO has a potential as an optimization method 
with universal applicability, but like all other algorithms, its 
parameters selection may lead to improper convergence 
sometimes. According to [26], when averaged over all the 
involved objective functions, all search algorithms behave 
exactly the same in terms of performance. All these algorithms 
are successful in solving different kinds of optimization 
problems. Hence an algorithm, compared to others may show 
equal performance on the average, but could outperform many 
others when matched to the right problem type. 

III. MAXIMALLY DISTANT CODES 
Data transmission and retention reliability requires the use 

of codes with error tolerance capability. Finding such sets of 
codes using exact search strategies requires hefty 
computational power even for a moderately sized instance. The 
objective of the search may vary; from finding a set of n-bit 
maximally distant codewords with predefined set size, to 
finding the largest set of n-bit codewords with some predefined 
minimum hamming distance. There can be many ways to map 
this problem to evolutionary algorithms, like a matrix 

representing a set of codewords as a candidate solution, or a 
binary vector representing m codes n bits each. Both of those 
mappings require a good deal of time to validate the solutions 
after reactions. A good mapping must provide a balanced 
memory and processing cost during the search to achieve 
acceptable utilization of resources. The maximally distant 
discovery problem maps well to the binary Knapsack problem 
with minimal validity test cost, and will be used in the two 
implementations; the standard and proposed version with 
enhanced exploration. 

Also critical to the processing cost, and hence the search 
quality, is the ability of the mapping and the processing to offer 
diversification while producing valid solutions to avoid 
wasting computational resources. The maximally distant codes 
allocation problem lends itself easily to the binary Knapsack 
problem, where the ones and zeros in a vector representing a 
candidate solution indicate inclusion and exclusion of 
codewords of the corresponding positions. The problem is well 
suited to evolutionary search paradigms in general. 

The theoretical bounds of A(n, d) stated in Table I are 
practically lose, and over a thousand papers have been written 
describing methods to improve those bounds, and the results 
till recent dates are partially shown in Table II as stated in [27]. 

TABLE II.  CODEWORDS VERSUS MINIMAL DISTANCE LOWER BOUNDS 

 Hamming Distance 

n d = 3 d = 5 d = 7 

8 20 4 2 

10 72 12 2 

12 256 32 4 

14 1024 128 16 

16 2720 – 3276  256 – 340 36 – 37 

18 10496 – 13104 1024 – 1280 128 – 142  

20 36864 – 43688 2560 – 4096 512 

IV. CHEMICAL REACTION OPTIMIZATION 
The CRO algorithm starts with an initial set of randomly 

selected molecules, and iteratively applies one of four reactions 
until some stopping criteria is met. The exploitation reactions 
have an equal number of inputs and outputs and hence the 
population size remains fixed regardless of how often they are 
applied. On the contrary, the exploration reactions have no  
balance; they either decrease or increase the population size as 
they generate one out of two or two out of one, and unless they 
are equal in frequency, the population size grows to an 
unwanted limit or diminishes to one. Extremely large 
population size is a computational burden, while extremely 
small population size is inefficient in space exploration. 
Balancing the population size is important for a fruitful search. 

To allocate sets of maximally distant codes, we need to 
maximize the minimum distance between any two codes in the 
set or the mean distance among all codes. Since the CRO is a 

237 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 7, No. 1, 2016 

minimization strategy, codewords similarities will be used as a 
cost function for guiding the search. For n-bit codewords, the 
similarity is in the range 0 to n-1, and for m codewords, there 
exist m (m-1)/2 values of similarity related to all pairs. Using a 
composite cost function with a balancing factor 0 ≤ μ ≤ 1, we 
used the following cost function: 

𝐶 =
2𝜇

𝑚(𝑚 − 1)� � 𝑆𝑖𝑗
𝑚

𝑗=𝑖+1

𝑚

𝑖=1
+ (1 − 𝜇)𝑀𝑎𝑥(𝑀𝑎𝑥�𝑆𝑖𝑗�) (2) 

Where: 

S is the Similarity matrix of m2 entries. 

m is the number of Codewords. 

 

The CRO design has two major components, which are 
molecules that represent solutions, and elementary reactions, 
necessary to traverse the solution space looking for an optimal 
or near optimal solution. 

A. Molecules 
Molecules represent possible solutions to the problem and 

their characteristics make one molecule distinguishable from 
another. Chemically, bonds form and break acquiring and 
releasing energy, respectively. This energy exchange with the 
surroundings abides by the first law of thermodynamics, which 
states that energy can neither be created nor destroyed. The 
major attributes that describe a molecule are: 

− Structure, which represents the solution currently held 
by a molecule. In our case, the molecule has the form of 
a binary vector whose size is equal to 2n for n-bit 
codewords. 

− Potential Energy, which represents the energy 
corresponding to the structure, and it depicts the value 
of the objective function of the current molecular 
structure. 

− Kinetic Energy, which represents the level of tolerance 
of a molecule to change to a less favorable structure, 
i.e., with higher potential energy. 

B. Elementary Reactions 
Elementary reactions are the means to explore various parts 

of the solution space and to exploit the most feasible 
neighborhoods. Reactions allow molecules to collide with each 
other or with the walls causing structural changes, making 
possible a product formation. There are two types. 

− Exploitation 

Exploitation is a process that tends to search for better 
solutions in the neighborhood of one. This is achieved through 
molecule collisions, either with the wall or with another 
molecule. Typically, molecule(s) go through subtle change 
hoping for better ones. Exploitation is carried out through two 
major reactions: 

∗ Wall Collision 

This is a unimolecular reaction in the form of a collision 
with a wall to bounce with some energy loss and a subtle 
structural deformation. The lost energy is stored in a central 
energy buffer and its amount is proportional to the sum of its 

kinetic energy and its potential energy gain. The factor used is 
called kinetic energy loss rate. This reaction performs local 
search with ability of escaping local minima. 

∗ Molecular Collision 

This is a bimolecular reaction, and it occurs when two 
molecules collide and bounce back, it is similar to that of wall 
collision in that these reactions are also not vigorous. The 
result of this reaction is a subtle structural change of the 
reactants. 

− Exploration 

Exploration is a process that tends to search for better 
subspaces for later exploitation, and hence escaping local 
optima. This is achieved through major structural change to 
molecules which are not capable of getting better anymore. 
Exploration is carried out through two major reactions, 
decomposition and synthesis, when molecules representing 
solutions exhaust chances of exploitation. Description and 
conditions of those reactions are detailed below. 

∗ Decomposition 

This is a unimolecular reaction, but it differs from the wall 
collision in that it produces two molecules instead of one, with 
relatively significant structural change. When a molecule hits a 
wall, it breaks up into two molecules with new structures. 
Typically, the new structures reflect major transformation, and 
hence it is important for exploration when the local search in a 
certain neighborhood is not feasible anymore. Energy is 
transferred from the buffer to sustain its change to form the 
new molecules. 

∗ Synthesis 

This is a bimolecular reaction, and it also occurs when two 
molecules collide and combine to form a single molecule. 
Synthesis reactants involve a vigorous change in their 
molecular structures, which is also necessary to reach out for 
new subspaces. 

The following sections detail the four elementary reactions 
using a simple example to find 8 maximally distant 5-bit 
codewords, The reactants are shown in red color while the 
products are in blue color. 

1) Unimolecular Reactions 
There are two unimolecular reactions; wall collision and 

decomposition. In wall collision, a molecule hits the wall and 
bounces back with some deformation; a minor structural 
change.  

One way to carry out this is to pick an entry at random and 
scan from there up, with wrap around, looking for an opposite 
one, to flip both. Another way to do it is to select two random 
numbers in the range 0 to 31 to index the entries to flip under 
the condition that the selected entries are opposite, i.e. one of 
them is 1 and the other is 0. Fig. 1 shows an example of wall 
collision reaction using two random cuts. 

0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 1 0 
 

0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 

Fig. 1. Wall Collision Reaction 
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The second unimolecular reaction is decomposition. In this 
case, a molecule breaks up to make two new molecules with 
major structural differences from the original ones. Typically, 
two copies of the molecule are modified by selecting a random 
number in the range 0 to 31 to make a cut in the two structures, 
then the upper part of one and the lower part of the other are 
shuffled, by circulating those strings a random number of bits. 
Fig. 2 shows an example, the gray cells are the fixed parts, and 
the rest of each is the result of circulation. 

0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 
 

0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 0 0 
 

0 0 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 

Fig. 2. Decomposition Reaction 

2) Bimolecular Reactions 
There are two reactions that involve two molecules as 

reactants. The first is synthesis, in which the two selected 
molecules are merged into one. A molecule is formed as a 
bitwise logical xor of the two molecules, then 1’s or 0’s are 
inverted at random to keep the numbers of 1’s right; m entries. 
Fig. 3 shows an example. The gray cells are 1’s, inverted 0’s, 
to make the number of 1’s equal 8 for a valid solution. 

0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 
 

0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
 

0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 1 0 

Fig. 3. Synthesis Reaction 

The second bimolecular reaction is the molecular collision, 
where two molecules collide to bounce with subtle structural 
difference. In this case, a good deal of the properties of both 
are handed over to the resulting molecules. A random number 
in the range 0 to 31, is used to make cuts in the two reactants, 
then the upper parts are swapped, and if the solutions are 
invalid, having more or less 1’s than m, the molecules are 
scanned to invert 1’s or 0’s properly. Fig. 4 shows an example, 
the gray cell represents a random cut for both reactants, the 
upper parts are then swapped and the molecules are scanned to 
invert 1’s or 0’s at random to keep the numbers of 1’s right; m 
entries. The gray cells in the products refer to inverted entries. 

Iterative application of reactions to molecules representing 
solutions generates better ones converging to an optimal or 
near optimal solution. It is quite important for convergence to 
carry out transformations that provide balanced exploration and 
exploitation.  

0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 
 

0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 
 

0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 1 0 
 

0 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0 1 0 

Fig. 4. Molecular Collision Reaction 

Table III shows the significance of those reactions to the 
exploration and exploitation aspects. 

The algorithm starts by setting initial parameters; 
population size as an initial number of molecules in the pool, 
molecular collision rate, kinetic energy loss rate, initial kinetic 
energy, buffer size, and decomposition and synthesis 
thresholds. Then, a set of initial molecules are generated at 
random, or through some vision for a more feasible initial set. 
A series of reactions, typically one at a time, are applied 
iteratively until the stopping criterion is satisfied, concluding 
with best possible solutions.  

In each iteration, either one unimolecular or one 
bimolecular reaction is triggered, based on a preset rate called 
MoleColl. 

TABLE III.  ACTIONS AND SIGNIFICANCE 

 Reactions: Types and Contributions 

Reaction Type Exploration Exploitation 

Wall Collision Unimolecular Minor Major 

Decomposition Unimolecular Major Minor 

Synthesis Bimolecular Major Minor 

Molecular Collision Bimolecular Minor Major 

V. BALANCED EXPLOITATION AND EXPLORATION 
The exploitation and exploration balance of the standard 

implementation suffers most of the time, especially when used 
to solve large instances as reported by many researchers, 
resulting in low improvement rates after few thousands 
computations. It is quite hard to figure out how the search 
traverses the solution landscape, but improving the exploration 
reactions performance is necessary for convergence.  

New search operators were found useful as stated in the 
literature. In this work, the performance was enhanced by 
relaxing the exploration reactions. 

In the unimolecular path, decomposition reaction in the 
standard implementation takes place if the selected molecule 
satisfies the decomposition criterion, i.e., (number of hits − 
minimum hit number) > α, where α can be interpreted as the 
tolerance of duration for the molecule without obtaining any 
new local minimum solution. If so, the molecule will 
experience decomposition, otherwise it will go through a wall 
collision. 

In the bimolecular path, synthesis reaction in the standard 
implementation takes place if the selected molecules, two or 
more, satisfy the synthesis criterion; the total kinetic energy is 
less than some preset minimum β. If it is satisfied by all the 
selected molecules, they combine through synthesis. 
Otherwise, they experience an molecular collision. 
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Fig. 5. Enhanced CRO Algorithm 

The solutions generation function performs one of the four 
reactions, based on a preset rate MoleColl, shown in Fig. 5 as 
unimolecular or bimolecular decision. Otherwise, it performs 
unimolecular reactions. In the standard implementation, one of 
the two conditions DEC and SYN, standing for decomposition 
and synthesis discussed earlier, decide whether to carry out 
decomposition or synthesis, respectively, or one of the other 
reactions, wall collision or molecular collision, respectively, as 
shown in Fig. 6 and Fig. 7. The solution evolution is achieved 
by repetitively provoking one of the four elementary reactions. 
Convergence requires proper exploration, and triggering the 
decomposition and synthesis processes based on some static 
threshold may not be efficient. 

The proposed enhancement has a different approach to 
trigger those processes. In the unimolecular path, the selected 
molecule is allowed to perform both decomposition and wall 
collision, but only one of them is committed and the other is 
abandoned. In the bimolecular path, the two selected molecules 
are allowed to perform both synthesis and molecular collision, 
and again only one of them is committed and the other is 
abandoned. Fig. 8 and Fig. 9 shows pseudocode for the 
enhanced reaction triggers. 

Procedure UnimolecularReaction 
If DEC  { 

ApplyDecompositionReaction 
} 

 Else 
      { 

ApplyWallCollisionReaction 
} 

End procedure 

Fig. 6. Standard Unimolecular Reactions 

Procedure BimolecularReaction 
If SYN  { 

ApplySynthesisReaction 
} 

 Else 
      { 

ApplyMolecularCollisionReaction 
} 

End procedure 

Fig. 7. Standard Bimolecular Reactions 

Procedure UnimolecualarReaction 
MakeDecompositionReaction 
MakeWallCollisionReaction 
SelectReactionRoulette 
CommitReaction 

End procedure 

Fig. 8. Enhanced Unimolecular Reactions 

Procedure BimolecualarReaction 
MakeSynthesisReaction 
MakeMolecularCollisionReaction 
SelectReactionRoulette 
CommitReaction 

End procedure 

Fig. 9. Enhanced Bimolecular Reactions 

In this reaction triggering scheme, the exploration reactions 
compete with exploitation reactions on two to one basis in the 
unimolecular types and on one to two bases in the bimolecular 
types. This means favoring the exploitation in the bimolecular 
reactions and favoring the exploration in the unimolecular 
reactions. The process is randomized but the fitness of the 
products plays a role in the triggering process. This scheme 
may lead to undesired increase in the population size, due to 
favoring the decomposition over synthesis, which can be 
resolved by a check against lower and upper bounds, to reinsert 
and drop molecules based on some criterion like the fitness 
value. 

End 
 

Best Solution 

Yes 

Start 

Set Initial Parameters 

Generate Initial Molecules 

Evaluate Initial Molecules 

Uni-Molecular 
Reaction? 

Select 2 Reactants Select 1 Reactant 

Synthesis / M. Collision Decomposition / W. Collision 

Stopping 
Criterion? 

Evaluate / Commit 

Yes 

Evaluate / Commit 
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VI. EXPERIMENTS 
In the initialization phase, PopSize, KELossRate, 

MoleColl, Buffer, InitialKE, α, and β were configured based on 
the literature recommendations, and the initial set of molecules 
is generated at random. Their initial potential energies are 
determined by their corresponding objective function values 
while their initial kinetic energies were set to InitialKE. 

Table IV shows the standard algorithm performance 
reported earlier. The target was to locate sets of maximally 
distant codes of 8-bit strings, for three cost calculation 
scenarios: maximum similarity (corresponding to minimum 
distance), mean similarity (corresponding to mean distance) 
distance, and the two together with equal significance.  

Table V shows the enhanced exploration method impact, 
using the same instances and initial population reported earlier. 
Although marginal, test results demonstrate better performance 
especially using the minimum distance metric. 

TABLE IV.  IMPACT OF THE WEIGHTING PARAMETER ON SEARCH 

 Weighting Parameter 

 μ = 0.0 μ = 0.5 μ = 1.0 

Set Size Mean Min Mean Min Mean Min 

8 4.43 4 4.46 4 4.57 3 

16 4.06 2 4.27 2 4.27 2 

32 3.77 1 4.13 1 4.13 1 

64 3.72 1 3.86 1 3.86 1 

TABLE V.  IMPACT OF THE WEIGHTING PARAMETER ON SEARCH 

 Weighting Parameter 

 μ = 0.0 μ = 0.5 μ = 1.0 

Set Size Mean Min Mean Min Mean Min 

8 4.52 4 4.57 4 4.68 3 

16 4.29 3 4.36 2 4.39 2 

32 3.95 2 4.21 1 4.22 1 

64 3.88 1 3.93 1 3.96 1 

Table VI shows the performance of the algorithm in 
locating sets of 10-bit codewords with various set sizes. The 
proposed enhancement outperformed the standard, in both 
minimum distance and mean distance metrics. Many of those 
runs were repeated many times with the same initialization for 
fair comparison. 

Table VII shows comparative performance of the two 
implementations in locating sets of 12-bit codewords with 
various set sizes. Table VIII shows comparative performance 
of the algorithms in finding three sets of fixed size and 
codeword length. Clearly the enhanced exploration is better in 
at least the mean distance metric if not in both. 

 

TABLE VI.  PERFORMANCE AGAINST SET SIZE (10-BIT CODEWORDS) 

 Standard Enhanced 

Set Size Mean Min Mean Min 

 8 5.34 4 5.68 5 

16 5.13 3 5.26 4 

32 5.09 3 5.12 4 

64 5.08 2 5.07 3 

128 5.08 2 5.08 2 

TABLE VII.  PERFORMANCE AGAINST SET SIZE (12-BIT CODEWORDS) 

 
Standard Enhanced 

Set Size Mean Min Mean Min 

 32 6.42 4 6.68 4 

64 6.26 3 6.42 4 

128 6.15 3 6.28 3 

256 6.12 3 6.14 3 

512 6.10 2 6.11 2 

TABLE VIII.  PERFORMANCE AGAINST CODEWORD LENGTH / SET SIZE 

  
Standard Enhanced 

Code  Length / Set Size Mean Min Mean Min 

10-bit / 16 5.11 4 5.36 5 

12-bit / 64 6.13 3 6.41 4 

14-bit / 256 7.24 3 7.58 3 

TABLE IX.  SUCCESS RATE COMPARISON 

  Success Rate 

Code Bound Computations Standard Enhanced 

8, 16, 3 28 16,000 12 14 

8, 4, 5 6 4,000 11 13 

10, 64, 3 93 64,000 11 14 

10, 16, 5 18 16,000 10 11 

12, 256, 3 315 256,000 11 13 

12, 32, 5 51 32,000 9 14 

14, 1024, 3 1092 1,024,000 8 10 

14, 128, 3 154 128,000 8 9 

The power of finding solutions is expressed as success rate 
as shown in Table IX, where the two implementations were run 
20 times each with the objective of finding sets of 4 code 
lengths: 8, 10, 12 and 14, and two variations of each.  
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The number of computations was based on the space size. 
The proposed enhanced exploration implementation 
demonstrated a marginal improvement over the standard, in 
terms of the number of times it could locate a solution. 

The advantage of the enhanced exploration is shown in Fig. 
10 as progress plot, mean distance and minimum distance of 
the best solution over time. The standard implementation 
stabilized within few thousands of iterations, while the 
enhanced kept improving for longer time, indicating better 
exploration power. The enhanced strategy resulted in larger 
fluctuations of the mean distance over time due to the 
continuous generation of solutions in new subspaces, and 
hence better exploration with increased time budgets. 

 
Fig. 10. Search Progress; Locating 12-bit Codeword Sets 

Tests were run on i7 Intel quad core processor based 
desktops with 16 GB DRAM. Typical runs took from few 
minutes for small instances to few tens of minutes for the 
largest, carrying out tens of thousands computations, until 
improvement rate reaches 0.1%. 

VII. CONCLUSION 
Solving the Mapping the Maximally Distant Codes 

Allocation Problem by the Chemical Reaction Optimization 
algorithm has been reported in literature with some problems 
especially with larger instances. The issue is that the 
exploration reactions consume a good deal of fruitless 
computations. In this enhancement, we proposed a different 
approach to manage the exploration reactions. Instead of using 
preset threshold based triggering, causing unpredicted reactions 
rate, we involved the fitness of the selected molecules and 
randomization process to trigger those reactions. Using various 
metrics, progress or fitness change over time and success rate, 
the proposed triggering methods outperformed the standard 
implementation. 
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