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Abstract—This paper describes a Field-programmable Gate 
Array (FPGA) implementation of Adaptive Neuro-fuzzy 
Inferences Systems (ANFIS) using Very High-Speed Integrated 
Circuit Hardware-Description Language (VHDL) for controlling 
temperature and humidity inside a tomato greenhouse. The main 
advantages of using the HDL approach are rapid prototyping 
and allowing usage of powerful synthesis controller through the 
use of the VHDL code. The use of hardware description language 
(HDL) in the application is suitable for implementation into an 
Application Specific Integrated Circuit (ASIC) and Field tools 
such as Quartus II 8.1. A set of six inputs meteorological and 
control actuators parameters that have a major impact on the 
greenhouse climate was chosen to represent the growing process 
of tomato plants. In this contribution, we discussed the 
construction of an ANFIS system that seeks to provide a 
linguistic model for the estimation of greenhouse climate from 
the meteorological data and control actuators during 48 days of 
seedlings growth embedded in the trained neural network and 
optimized using the backpropagation and the least square 
algorithm with 500 iterations. The simulation results have shown 
the efficiency of the implemented controller. 

Keywords—Neuro-Fuzzy; ANFIS; VHDL; FPGA; Quartus; 
ASIC 

I. INTRODUCTION 
Under greenhouse production, the climate control is a tool 

used for yield crop manipulation that maximizes the 
entrepreneurial benefits. Once the objectives that optimize 
crop growth and development are defined, the control 
engineer must design and implement automatic control 
systems that make possible to obtain a maximum crop yield at 
minimum production costs. In this sense, control engineering 
has undergone a considerable development. Researchers have 
used many control techniques in different fields, from the 
conventional or classic strategies [proportional integral 
derivative (PID) control, cascade], artificial intelligence (AI) 
(fuzzy control, neural networks and genetic algorithms), 
advanced control techniques (predictive control, adaptive), to 
robust control strategies, non-linear and optimal control. 
Specifically, they have been applied in the area of greenhouse 
climate control [1][2][3]. Conventional control techniques are 

difficult to implement in greenhouse systems due to their 
multi-variable and non-linear nature. Where interrelations 
between internal and external variables are complex (non-
linear physical phenomena that govern these systems 
dynamics are complicated). This provides justification for the 
use of intelligent control techniques as a good alternative. In 
this way, fuzzy logic as part of AI techniques is an attractive 
and well-established approach to solving control problems [4]. 

We were brought to develop a Neuro-Fuzzy control of the 
internal humidity and internal temperature of the greenhouse. 
This last characterizes the operation of the complex system 
that the greenhouse constitutes. The identification that is in 
the center of this step is a process of search for a mathematical 
representation that minimizes the variations of the real system 
compared to the modeled system. The development of the 
plant is influenced mainly by the environmental, climatic 
variables. The greenhouse, which is a closed circle in which 
the climatic variables can be controlled, constitutes the ideal 
medium for the control of the plants growth. The greenhouse 
must not only create the favorable conditions of the plants 
growth, but it must moreover be able to ensure certain 
flexibility in the calendar of production: precocity and 
spreading out of the calendar. To carry out this objective a 
robust model using the Artificial Neural Networks and the 
fuzzy logic can be well adapted to control the nonlinear 
comportment of greenhouse climate accurately is more than 
necessary [5]. 

For the implementation of agricultural technologies 
(innovations in control systems, remote monitoring, 
information management), robustness, low-cost and real-time 
capabilities are needed. In this sense, field programmable gate 
arrays (FPGAs) proved as a good option for greenhouse 
technology development and implementation, because FPGAs 
allow fast development of prototypes and the design of 
complex hardware systems. These devices are used in many 
real applications [6]. Through FPGAs, rapid tests, 
modifications accomplishment, up-dates using single software 
modifications and an effective production cost (relation 
performance-price is very favorable) are obtained. In the same 
sense, reduction in development and commercialisation time is 
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accomplished. On the other hand, for neuro-fuzzy control 
implementation, which based on software or hardware, 
FPGAs are an alternative that keep both benefits, hardware 
speed and software flexibility. Research made about these 
devices has experienced an enormous development, in the 
academic field as well as in the industrial area. There is a great 
number of contributions about FPGAs applications in different 
fields [7][8][9]. Also, there are some contributions reported 
about hardware implementations of neuro-fuzzy control [10]. 
Moreover, problems of digitized neuro-fuzzy control have 
been studied [11]. The approach proposed here is focused on 
greenhouse technologies development, based on AI 
techniques, particularly fuzzy logic, cascaded with a feed-
forward a neural network, and system-on-a-chip (SoC) 
applications using FPGA technology, with the purpose of 
obtaining complete engineering solutions on a single 
Integrated circuit. In our case, an intelligent SoC was 
developed to carry out the perfect functionality for the 
greenhouse climate control due to an ANFIS system that seeks 
to provide a linguistic model for the estimation of greenhouse 
climate from the meteorological data and control actuators 
during 48 days of seedlings growth embedded in the trained 
neural network and optimized using the backpropagation and 
the least square algorithm with 500 iterations. 

II. NEURONAL METHODS IN THE FUZZY SYSTEMS 
In a conventional fuzzy inference system, the number of 

rules is decided by an expert who is familiar with the system 
to be modeled. In this particular case study the rules generated 
by an agriculture expert and the number of membership 
functions assigned to each input is chosen from real data. This 
is carried out by examining the desired and real input-output 
data. This situation is much the same as ANN’s. In this section 
ANFIS topology and the learning method used for this neural 
network are presented. Both neural network and fuzzy logic 
are model-free estimators and share the common ability to 
deal with the uncertainties and noise. It is possible to convert 
fuzzy logic architecture to a neural network and vice versa 
[12]. This makes it possible to combine the advantages of 
neural network and fuzzy logic [13-14]. 

Layer 1: Every node in i in this layer is a square node with 
a node function 

( )1
ii Ao xµ=  (1) 

Where x is the input node i, and Ai is the linguistic label 
(Minimum, Moderate, Maximum) associated with this node 
function. In other words, 1

io  is the membership function and it 
specifies the degree to which the Ai given x satisfies the 
quantifier Ai. Usually we choose ( )

iA xµ to be bell shaped 
with maximum equal to 11, moderate equal to 00 and 
minimum equal to 10, such as
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Where {ai, bi, ci} is the parameter set. As the values of 
these parameters change, the best bell-shaped functions vary 

accordingly, thus exhibiting various forms of membership 
functions on linguistic label Ai. In fact, any continuous and 
piecewise differentiable functions, such as commonly used 
trapezoidal or triangular-shaped membership functions are 
also qualified candidates for node functions in this layer. 
Parameters in this layer are referred to as premise parameters. 

Layer 2: Every node in this layer is a circle node labeled 
∏ which multiplies the incoming signals and sends the 
product out. For instance, 

i(x)* (y), i 1,..., 40i iw A Aµ µ= =  (3) 

Each node output represents the firing strength of a rule (In 
fact, other T-norm operators that perform generalized AND 
can be used as the node function in this layer). 

Layer 3: Every node in this layer is a circle node labeled 
N. The ith node calculates the ratio of the ith rule’s firing 
strength to the sum of all rules firing strengths: 

1 40

, 1,..., 40
...

i
i

ww i
w w

= =
+ +  (4) 

For convenience, outputs of this layer are called 
normalized firing strengths. 

Layer 4: Every node in this layer is a square node with a 
node function 

4
i i i(p x q y r )i iO w f w= = + +  (5) 

Where iw  is the output of layer 3, and (pi, qi, ri) is the 
parameter set. Parameters in this layer will be referred to as 
consequent parameters. 

Layer 5: The single node in this layer is a circle node 
labeled Σ that computes the overall output as the summation 
of all incoming signals. 
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ii
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w
= = = ∑∑ ∑  (6)

 

Thus we have constructed an adaptive network which is 
functionally equivalent to a fuzzy inference system [14-15]. 
The hybrid algorithm is applied to this architecture. This 
means that, in the forward pass of the hybrid learning 
algorithm, functional signals go forward up to fourth layer and 
the consequent parameters are identified by the least squares 
estimation. In the last backward and the premise parameters 
are updated by the gradient descent [14]. 

A. ANFIS Predictive Architecture 
Using a given input/output data set, the ANFIS method 

constructs a fuzzy inference system (FIS) whose membership 
function parameters are tuned (adjusted) using either a 
backpropagation algorithm alone, or in combination with a 
least squares type of method. This allows fuzzy systems to 
learn from the data they are modeling. FIS Structure is a 
network-type structure similar to that of a neural network, 
which maps inputs through input membership functions and 
associated parameters, and then through output membership 
functions and associated parameters to outputs [16]. 
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In our case ANFIS is a four-layer neural network that 
simulates the working principle of a fuzzy inference system. 
The linguistic nodes in layers one and four represent the input 
and output linguistic variables, respectively. Nodes in layers 
two are term nodes acting as membership functions for input 
variables. Each neuron in the third layer represents one fuzzy 
rule, with input connections representing preconditions of the 
rule and the output connection representing consequences of 
the rules. Initially, all these layers are fully connected, 
representing all possible rules. 

Six feature variables, internal temperature, internal 
humidity, external temperature, external humidity, global 
radiation and wind speed, are selected as inputs of the ANFIS. 
Three membership functions (Mfs) are assigned to each 
linguistic variable. The suggested ANFIS model is shown in 
“Fig. 1”. 

 
Fig. 1. ANFIS model structure of greenhouse climate 

B. ANFIS Modeling, Training and Testing 
ANFIS modeling process starts by obtaining a data set 

(input-output data) and dividing it into training, testing and 
checking data sets. Training data constitutes a set of input and 
output vectors. The data is normalized in order to make it 
suitable for the training process. This was done by mapping 
each term to a value between 00, 01 and 10 using the Min, 
moderate and Max method. This normalized data was utilized 
as the inputs (internal climate conditions and meteorological 
data) and outputs (actuators conditions) to train the ANFIS. In 
other words, two vectors are formed in order to train the 
ANFIS. Input vector = [internal temperature, internal 
humidity, external temperature, external humidity, global 
radiation and wind speed]. The output vector = [Ventilating 
and heating]. The ANFIS registers the input data only in the 
numerical form therefore the information about the control 
actuators, internal and external climate of the greenhouse must 
be transformed into numerical code. 

The training data set is used to find the initial premise 
parameters for the membership functions by equally spacing 
each of the membership functions. A threshold value for the 
error between the actual and desired output is determined. The 
consequent parameters are found using the least-squares 
method. 

Then an error for each data pair is found. If this error is 
larger than the threshold value, update the premise parameters 
using the gradient decent method as the following 
(Qnext=Qnov+ηd, where Q is a parameter that minimizes the 
error, η the learning rate, and d is a direction vector). The 
process is terminated when the error becomes less than the 
threshold value. Then the checking data set is used to compare 
the model with actual system. A lower threshold value is used 
if the model does not represent the system. 

“Fig. 2”, shows the uniform falling of the value of testing 
error ETest with the number of iterations during the testing 
process for the ANFIS configuration with traingular Mf and 
with gaussian Mf. The smallest error of testing (ETest) is 
reached at iteration 145 (traingular Mf) and at iteration 107 for 
Gaussian Mf. It can be seen in the “Fig. 2”, that error 
converges not to zero but to 12% and 2%. This is caused by 
the presence of some contradicting examples in the training 
and testing set. 

 
Fig. 2. Decrease of error during the testing process for the ANFIS 
configuration with Traingular Mf and with Gaussian Mf 

Training of the ANFIS can be stopped by two methods. In 
the first method, ANFIS will be stopped to learn only when 
the testing error is less than the tolerance limit. This tolerance 
limit would be defined at the beginning of the training. It is 
obvious that the performance of the ANFIS that is trained with 
lower tolerance is greater than ANFIS that is trained with 
higher tolerance limit. In this method the learning time will 
change with the architecture of the ANFIS. The second 
method to stop the learning is to put constraint on the number 
of learning iterations. In our study, the ANFIS architecture is 
stopped to learn after 500 training iterations. 

III. NEURO-FUZZY CLIMATE CONTROLLER 
As is already known from neuro-fuzzy principles, a neuro 

fuzzy controller acts as a non-linear system capable of 
implementing expert reasoning for computation of the control 
values. Indeed, a neuro fuzzy controller which is defined by a 
set of linguistic rules and fuzzy sets were trained by neural 
network and optimized using the back-propagation and the 
least square algorithm is able to compute appropriate values 
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for greenhouse actuators (heating, ventilating) taking into 
account information data from the system for control 
proposes. In the experimental greenhouse, the temperature is 
controlled by means of heaters, while the humidity is 
controlled indirectly with the ventilating index regulation. 
That affects on the temperature and the humidity. Using the 
physical model, a complete system simulator is shown in “Fig. 
3”. With this simulator, a first experiment was carried out 
using a conventional controller (on-off) with a dead band of 
2°C; this is based on a heating system that is activated or 
deactivated when the error exceeds the fixed regulation range. 
The humidity depends on the internal air temperature and the 
ventilating index. This variable is regulated by windows 
opening in the greenhouse according to the wind speed 
measurements. 

In this case, a multiple inputs, multiple outputs (MIMO) 
non-linear controller for temperature regulation was used. A 
MIMO neuro fuzzy controller can be distributed in several 
multiple inputs, single output (MISO) controllers keeping the 
same performance. These controllers are independent and can 
be executed in parallel, which is advisable for the climate 
controller implementation in a FPGA. The Neuro Fuzzy 
Controller has six input variables and two output variables, 
characterized by three fuzzy sets in the universe of discourse. 

Input variables are inside and outside temperature (Ti, 
Text), inside and outside humidity (Hi, Hext), global radiation 
(Gr) and wind speed (Ws).  Membership functions sets and 
their appropriate modifications were obtained following a test 
and error strategy by making exhaustive simulations in Matlab 
until reaching a good performance through a careful tuning. 
“Fig. 4”, shows an example of a membership functions set for 
the input. For this one, three linguistic variables were used 
(MIN, minimum; MOY, medium; MAX, maximum). The set 
of fuzzy rules to develop the controller for each variable has 
been obtained from the expert grower. For tuning the fuzzy 
rules as well as for membership functions sets a trial-and-error 
strategy (manual tuning) was used, this is modifying control 
rule sets until we reaching a good performance of the 
controller by using the ANFIS editor (simulation system). 
Each possible linguistic value of inputs is assigned to a 
consequential action. 

 
Fig. 3. The model of the greenhouse control system 

 
Fig. 4. Membership function of internal temperature 

IV. DESIGN AND HARDWARE IMPLEMENTATION 

The Neuro Fuzzy Controller shown in “Fig. 5”, has been 
implemented on an FPGA. The hardware platform used is the 
Altera DE2 development and education board that is based on 
the Altera Cyclone II EP2C35F672C6 FPGA. 

 
Fig. 5. Neuro Fuzzy Controller 

In order to implement our application effectively the 
design is broken down into modules. 

A. The de-multiplexer component 
The system should accept multiple inputs with 8-bits in 

total of 48-bits. In order to reduce the number of pins used in 
FPGA we have made a de-multiplexing as shown in “Fig. 6”, 
it has one input of 8-bits and three selection lines, in order to 
learn at each clock pulse one input and he settles it into a 
buffer.  After six clock top it will acquire all inputs. At the 
seventh clock pulse it delivers the enable signal and the values 
of multiples inputs to the rest of the system. 

B. The Fuzzier module 
In this section we have realized six blocks, where each 

block is intended for one of memberships functions. The 
example of such block is presented in the figure it used for the 
external temperature given in “Fig. 7”. The blocks 
transformed the numerical data to three linguistic variables 
(MIN, MOY, MAX). For easy implementation and as we have 
three cases two bits are used to materialize these case as 
follows (min => 10, moy => 00 and max = > 11). 
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Fig. 6. The de-mulplixer component 

 
Fig. 7. The fuzzier module 

C. The command module 
The following operation is the order of the ventilating and 

the heating. This component shown in “Fig. 8”, admits at the 
inputs the various decisions for the multiple inputs and it will 
computing the rules of our FIS structure obtained by Matlab 
Fuzzy Logic Toolbox. To  reduce  the  use  of  the  hardware  
resource,  finite  state  machine  (FSM)  is  adopted  to  model  
this computing  process. Finally it will transform the 
linguistics values on the binary values. 

 
Fig. 8. The command component 

V. RESULTS AND DISCUSSION 
The next step is the simulation of the design to illustrate 

how it works. “Fig. 9”, shows the global simulation timing 
obtained by Quartus II version 8.1 SJ Web edition. ‘Data’ are 
the input values information, (T_int, T_ext, H_int, H_ext, 
W_s and  R_g) are the values of the deferent parameters, 
(fuz_Tint, fuz_Text, fuz_Hint, fuz_Hext, fuz_Ws and fuz_Rg) 
are the resultant of all the membership functions.  

‘Cmd-H-W’ is the finally output value represent the 
ventilating and heating. 

 
Fig. 9. Neuro Fuzzy Controller Quartus II simulation 

The table I shows  the  strong  similarity  between  the  
results  obtained  by Matlab Fuzzy Logic Toolbox 
environment  and  those  obtained in “Fig. 9”. It shows the 
best operation of all modules. We can also see how the 
transformation of these data from the linguistic values to 
numerical values. 

Synthesis of fuzzy neural network on FPGA: 

We have implemented the design using the DE2 board, 
contain Cyclone®II 2C35Altera FPGA device, EP1C6Q240. 
The principal features of Cyclone II EP2C35 FPGA are as 
follows: 

− 33216 Logic elements. 
− 105 M 4K RAM blocks. 
− 483,840totalRAMbits. 
− 35 embedded 1818 multipliers. 
− Four PLLs. 
− 475 user I/O pins. 
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TABLE I.  COMPARISON OF THE RESULTS GIVEN BY MATLAB FUZZY 
LOGIC TOOLBOX AND THOSE OBTAINED WITH QUARTUS II 

 

 
Fig. 10. RTL schematics of neuro-fuzzy controller 

VI. CONCLUSION 
The current work focuses on the application of neuro-

fuzzy control of a greenhouse internal climate. It successfully 
demonstrated the performance through co-simulation by using 
ANFIS and ModelSim. This implementation accurately 
reproduces the theoretical behavior of the system, thus is 

ready to be used. The future work will be destined to improve 
the design of our work including the number and the type of 
inputs membership functions. 
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