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Abstract—In distributed computing environment, efficient 
task scheduling is essential to obtain high performance. A vital 
role of designing and development of task scheduling algorithms 
is to achieve better makes pan. Several task scheduling 
algorithms have been developed for homogeneous and 
heterogeneous distributed computing systems.  In this paper, a 
new static task scheduling algorithm is proposed namely; Leveled 
DAG Critical Task First (LDCTF) that optimizes the 
performance of Leveled DAG Prioritized Task (LDPT) algorithm 
to efficiently schedule tasks on homogeneous distributed 
computing systems. LDPT was compared to B-level algorithm 
which is the most famous algorithm in homogeneous distributed 
systems and it provided better results. LDCTF is a list based 
scheduling algorithm which depends on sorting tasks into a list 
according to their priority then scheduling one by one on the 
suitable processor. LDCTF aims to improve the performance of 
the system by minimizing the schedule length than LDPT and B-
level algorithms. 
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I. INTRODUCTION 
Distributed systems have emerged as powerful platforms 

for executing parallel applications. A distributed system can be 
defined as a collection of computing systems that appears to its 
users as a single system, these systems collaborate over a 
network to achieve a common goal [1]. There are two types of 
distributed systems; homogeneous (in which processors are 
identical in capabilities and functionality) and heterogeneous 
(in which processors are different). 

In distributed computing environment, an application is 
usually decomposed into several independent and/or 
interdependent sets of cooperating tasks. Dependent tasks are 
represented by a Directed Acyclic Graph (DAG). DAG can be 
defined as a graph consists of a set of vertices or nodes and a 
set of edges G(V, E) in which each node represents a task and 
each edge represents a communication between two tasks (the 
two tasks are dependent on each other). The computation cost 
of the task is represented by a weight associated with each 
node and the communication cost between two tasks is 
represented by a weight associated with each edge. The 
communication cost between two dependent tasks is 
considered to equal zero if they are executed on the same 
processor. Figure 1 shows an example of a simple task graph 
(DAG). In the Figure, t0 is called predecessor (or parent) of t2 

and t2 is called successor (or child) of t0. The edge between t0 
and t2 means that t2 can start execution only after t0 finishes its 
execution. Efficient task scheduling of application tasks is 
essential to achieve high performance in parallel and 
distributed systems. The basic function of task scheduling is to 
determine the allocation of tasks to processors and their 
execution order in order to satisfy the precedence requirements 
and obtain minimum schedule length (or make span) [2].Task-
scheduling algorithms are broadly classified into two basic 
classes: static and dynamic. In static scheduling, the 
characteristics of an application, such as execution time of 
tasks and data dependencies between tasks are known in 
advance (during compile time before running the application). 
In dynamic scheduling, some information about tasks and their 
relations may be undeterminable until run-time [3]. 

 
Fig. 1. Example of a DAG 

Over the past few decades, researchers have focused on 
designing task scheduling algorithms for homogenous and 
heterogeneous systems with the objective of reducing the 
overall execution time of the tasks. Topcuoglu et al. [2] have 
presented HEFT and CPOP scheduling algorithms for 
heterogonous processors. Luiz et al. [4] have developed 
lookahead-HEFT algorithm, which look ahead in the schedule 
to make scheduling decisions. Eswari, R. and Nickolas, S. [5] 
have proposed PHTS algorithm to efficiently schedule tasks on 
the heterogeneous distributed computing systems. Rajak and 
Ranjit [6] have presented a queue based scheduling algorithm 
called TSB to schedule tasks on homogeneous parallel 
multiprocessor system. Ahmed, S.G.; Munir, E.U.; and Nisar, 
W. [7] have developed genetic algorithm called PEGA that 
provide low time complexity than standard genetic algorithm 
(SGA). Xiaoyong Tang; Kenli Li; Renfa Li; and Guiping Liao 
[8] have presented a list-scheduling algorithm called HEFD for 
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heterogeneous computing systems. Nasri, W. and Nafti, W. [9] 
have developed a new DAG scheduling algorithm for 
heterogeneous systems that provide better performance than 
some well-known existing task scheduling algorithms. 

In homogeneous distributed systems, researchers have 
developed many heuristic task-scheduling algorithms such as 
ISH [10], ETF [11], DLS [12], MH [13],B-level [14] and some 
heuristics that depend on the critical path such as MCP [15], 
FCP [16], and CNPT [17]. Among these algorithms, B-level 
provides the best performance in terms of schedule length, 
speedup, and efficiency. LDPT (Leveled DAG Prioritized 
Task) algorithm [18]was compared to B-level algorithm which 
is the most famous algorithm in homogeneous distributed 
systems and it provided better results. 

In this paper, the problem of scheduling precedence 
constrained parallel tasks on homogeneous physical machines 
(PMs) is addressed. A new static scheduling algorithm called 
LDCTF is proposed. The goal of LDCTF is to optimize the 
performance of LDPT [18] algorithm in order to provide better 
system performance. LDCTF is a list scheduling algorithm. It 
depends on dividing the DAG into levels then sorting tasks in 
each level into a list according to their priority and finally, 
picking tasks from the list one by one to schedule it on the 
suitable processor. LDCTF is compared to LDPT and B-level 
algorithms and it provided better results in terms of schedule 
length, speedup, and efficiency. 

The remainder of this paper is organized as follows. 
Section II provides an overview of the related work algorithm. 
The proposed algorithm is discussed in section III. Section IV 
presents performance evaluation results of the proposed 
algorithm. Finally, conclusion and future work is reviewed in 
section V. 

II. LDPT ALGORITHM  
LDPT is a list based scheduling algorithm. It depends on 

dividing the DAG into levels with considering the dependency 
conditions among tasks in the DAG. The algorithm has two 
phases: (1) Task prioritization phase, (2) Processor selection 
phase. LDPT algorithm depends on giving a priority to each 
task as shown in Figure 2 then; scheduling each task on one 
processor with taking into consideration the insertion-based 
policy. Figure 2 shows the pseudo code of LDPT algorithm. 

III. LEVELED DAG CRITICAL TASK FIRST (LDCTF) 
ALGORITHM 

LDCTF is a theoretical task scheduling algorithm. LDCTF, 
LDPT, and B-level algorithms are applied on Standard Task 
Graph STG [19] as a bench mark, and it was found that 
LDCTF algorithm is more efficient than LDPT and B-level 
algorithms. 

LDCTF is a list based scheduling algorithm. It depends on 
dividing the DAG into levels with considering the dependency 
conditions among tasks in the DAG then, applying the Min-
min method [20] which means calculating the minimum 
completion time (MCT) for each task on all processors then 
selecting the task with the lowest MCT to schedule. The 
algorithm has two phases: (1) Task prioritization phase, (2) 
Processor selection phase. 

Generate the DAG 
Divide the DAG into levels according to their 
communicated dependency 
Sort the constructed levels according to dependency 
ordering 
Sort tasks according to [their computation costs then their 
direct communication of its next level] in descending order 
While there are unscheduled levels do 
      While there are unscheduled tasks do 
 For each level do 
 Find the task with the highest computation cost 
 If there are tasks have equal computation cost 
     Then  
Choose the task with the highest communication cost with 

its Childs in next level 
 End if 
 Find the processor that minimizes the Earliest 

Start Time of the selected task 
 Assign the task to the selected processor 
 Remove the selected task from the list 
 Repeat 
 Until all tasks are scheduled 
End for each 
End while 

Fig. 2. LDPT algorithm [18] 

A. Task prioritization phase: 
In this phase, the critical path [2] is calculated for the DAG 

(critical path is the longest path from the entry task to the exit 
task in the graph) then, the DAG is divided into levels and the 
tasks in each level will be sorted into a list based on their 
priority. The priority for each task is given as follow: 

1) First, the critical task (task located on the critical path) 
in each level will have the highest priority. 

2) Then, the expected Earliest Finish Time (EFT) is 
calculated for the other tasks in the same level and the task 
with the lowest EFT will have the highest priority. If tow tasks 
have equal EFT value then, the task with the lowest task 
number will have the highest priority. EFT of a task tion 
processor pj is computed as follow: 

EFT (ti, Pj) = wi, j + EST (ti, Pj)----------------- (1) 

3) Finally, tasks in each level are sorted into the list in 
ascending order according to their EFT value. 

B. Processor Selection Phase: 
In this phase, the tasks are picked from the list one by one 

and assigned to the processor that will minimize the earliest 
start time of the task, with taking into consideration the 
insertion-based policy. The insertion policy means that if there 
is an idle time slot on the processor between two already 
scheduled tasks and it was enough for executing the task, then 
the task is assigned on that processor in this idle slot without 
violating precedence constraints. In other words, a task can be 
scheduled earlier if there is a period of time between two tasks 
already scheduled on processor (P), where P runs idle.If two 
processors provide the same start time for the task then, the 
task is assigned to the first processor that will minimize the 
EST of it.The Earliest Start Time of a task 𝑛𝑖on a processor 
𝑃𝑗is defined as: 
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EST(𝒏𝒙,𝑷𝒎)=max[TAvailable(𝑷𝒎),max{AFT(𝒏𝒊)+𝒄𝒙,𝒊}] (2) 

Where TAvailable(𝑃𝑚) is the earliest time at which 
processor 𝑃𝑚is ready. AFT(𝑛𝑖) is the Actual Finish Time of a 
task 𝑛𝑖 (the parent of task nx) on the processor𝑃𝑚. 𝑐𝑛,𝑖is the 
communication cost from task 𝑛𝑖 to task 𝑛𝑥,𝑐𝑘,𝑖 equal zero if 
the predecessor task 𝑡𝑘is assigned to processor 𝑃𝑚. For the 
entry task,EST(𝑛𝑒𝑛𝑡𝑟𝑦, 𝑃𝑚)= 0. Figure 3shows the pseudo code 
of LDCTF algorithm. 

C. Case Study 
Consider the DAG shown in Figure 4; assume the system 

has two processors (P0, P1). The critical path for the DAG in 
Figure 4 is (t0, t1, t3, t6, t8). Table 1 shows the computation 
cost for each task. Both LDPT and LDCTF algorithms generate 
a list of tasks that shows the execution order of them. Table 2 
shows the lists generated by LDPT and LDCTF algorithms. 
For LDCTF algorithm the critical task in each level will be 
scheduled first as shown in table 2. Figure (5.a, 5.b) shows the 
Gantt chart generated by LDPT and LDCTF algorithms 
respectively. Both algorithms assign the selected task to the 
processor that minimizes the start time (EST) of it. For 
example, in Figure 5.a, the EST for task t2 on p0 is 5 and the 
EST for t2 on p1 is 4, so the task t2 is scheduled on p1.In 
Figure 5.b, the same manner if followed with taking into 
consideration the insertion-based policy. From Figure 5, it is 
shown that the schedule length (the finish time of the last task 
scheduled from the DAG) resulted from LDPT and LDCTF 
algorithms is  25, and 23 unit of time respectively. 

Generate the DAG 
Calculate the critical path for the DAG 
Divide the DAG into levels according to their communicated 
dependency 
Sort the constructed levels according to dependency ordering 
Determine the critical task for each level 
While there are unscheduled levels do 
      While there are unscheduled tasks do 
 For each level do 
 For each task in level 
 Calculate the expected EFT of selected task 
 End for 
 Sort level tasks in Tasks Ordered List according to  
 1-Critical task 
 2-Expected EFT in ascending order 
 If there are tasks have equal Earliest Finish Time 
     Then 
    Choose the task with the lowest task number 
 End if 

For each task in Tasks Ordered List 
 Find the processor that minimizes the Earliest Start Time 

of the selected task 
 Assign the task to the selected processor 
 Remove the selected task from the list 
 Repeat 
 Until all tasks are scheduled 
End for each 
End while 

Fig. 3. Leveled DAG Critical Task First algorithm 

 
Fig. 4. Sample DAG 

TABLE I.  COMPUTATION COST 

Task Computation Cost  
t0 2 
t1 3 
t2 1 
t3 4 
t4 3 
t5 5 
t6 2 
t7 4 
t8 6 

Figure 5 depicts the Gantt chart generated by LDPT and 
LDCTF algorithms. From the Figure, it is shown that the 
schedule length generated from LDPT algorithms is 25 unit 
time while the schedule length generated from LDCTF 
algorithm is 23 unit time. In case of LDCTF, we observe that 
there is less periods in which processors are idle than LDPT. 
According to this result, the overall running time of the 
application will be decreased and the efficiency of the system 
will be improved. 

TABLE II.   TASK LISTS FOR LDPT AND LDCTF ALGORITHMS 

 
Execution LDPT LDCTF 

1 t 0  t 0  
2 t 1  t 1  
3 t 2  t 2  
4 t 5  t 3  
5 t 3  t 5  
6 t 4  t 4  
7 t 7  t 6  
8 t 6  t 7  
9 t 8  t 8  
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Fig. 5. The schedules generated by (a) LDPT algorithm (b) LDCTF 
algorithm for sample DAG 

IV. RESULTS AND PERFORMANCE EVALUATION 

A. Simulation Environment 
To evaluate the performance of LDCTF algorithm, a 

simulator had been built using visual C# .NET 4.0 on machine 
with: Intel(R) Core(TM) i3 CPU M 350 @2.27GHz,  RAM of 
4.00 GB, and the operating system is window 7, 64-bit.To test 
the performance of LDPT and LDCTF algorithms, a set of 
randomly generated graphs is created by varying a set of 
parameters that determines the characteristics of the generated 
DAGs. These parameters are described as follows: DAG size 
(n: the number of tasks in DAG).Density (d: the probability of 
existence edge between ni in levelj and nx in the next level 
levelj+1 for DAG. Where, i, x=1,2,…, N, and N is the number 
of tasks,  j=1, 2,…, T, and T is the number of levels 
inDAG).With six different numbers of processors varying from 
2, 4, 8, 16, 32 and 64 processors. For each number of 
processors, six different DAG sizes have been used varying 
from 10, 20,40,60,80 and 100 nodes. 

B. Evaluation Metricsa 
The most important metrics for evaluating performance of 

scheduling algorithms are schedule length, speed up, and 
efficiency. Schedule length is the maximum finish time of the 
last task (exit task) scheduled from the DAG. 

Schedule length= Max(AFT(nexit)) ----------------------------(3) 

Where AFT(nexit) is the actual finish time of the exit task. 
Speedup is defined as the ratio of the schedule length generated 
from executing the application on one processor to the 
schedule length generated from executing the application on 
multiple parallel processors. 

Speed up= 
[∑ 𝒘(𝒊,𝒋)𝒏𝒊𝝐𝑽 ]𝒑𝒋𝝐𝑷

𝑴𝒊𝒏

𝑺𝑳
----------------------------------------(4) 

Where 𝑤(𝑖, 𝑗)means the weight of task ni on processor 
pjand SL means the schedule length. Efficiency is the inverse 
of speed up. 

𝑬𝒇𝒇𝒊𝒄𝒊𝒆𝒏𝒄𝒚 = 𝒔𝒑𝒆𝒆𝒅𝒖𝒑
𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒑𝒓𝒐𝒄𝒆𝒔𝒔𝒐𝒓𝒔

--------------------------(5) 

C. Experimental Results 
The schedule length generated byLDPT and LDCTF 

algorithms is shown in Figure 6, 7, 8, 9, 10, 11 for 10, 20, 40, 
60, 80, 100 tasks respectively and the results are recorded in 
table 3. According to the results, the schedule length is 
decreased that will minimize the running time of the 
application. The improvement ratio in schedule length is 
(2.75%). Figure 12, 13, 14, 15, 16, 17 show a comparative 
study of the speed up of LDPT and LDCTF algorithms in case 
of 2, 4, 8, 16, 32, 64 processors respectively. Table 4 shows the 
speedup results of LDPT and LDCTF algorithms. From the 
results, we can see that the improving ratio in speed up is 
(3.2%). Table 5 shows the efficiency results of LDPT and 
LDCTF algorithms. From Figure 18, 19, 20, 21, 22, 23 we can 
see that LDCTF is more efficient than LDPT algorithms with 
improving ratio (1.9%). The schedule length generated by B-
level, LDPT, and LDCTF algorithms is shown in Figure 24, 
25, 26, 27, 28, 29. Figure 30, 31, 32, 33, 34, 35 shows a 
comparative study of the speed up of B-level, LDPT, and 
LDCTF algorithms. The efficiency results of B-level, LDPT, 
and LDCTF algorithms are shown in Figure 36, 37, 38, 39, 40, 
41. 

 
Fig. 6. Schedule length for 10 tasks 

 
Fig. 7. Schedule length for 20 tasks 

Figure6, 7, 8, 9, 10, 11 depict the schedule length versus 
number of tasks with varying number of processors 2, 4, 8, 16, 
and 32 processors. It is shown that the schedule length in case 
of applying LDCTF algorithm is less than LDPT algorithm. 
This is because the periods in which processors are idle in case 
of LDCTF are less than LDPT algorithm. 
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Fig. 8. Schedule length for 40 task 

 
Fig. 9. Schedule length for 60 task 

 
Fig. 10. Schedule length for 80 task 

 
Fig.  11.  Schedule length for 100 task 

 
Fig.  12.  Speedup on 2 processors 

 
Fig. 13. Speedup on 4 processors 

 
Fig. 14. Speedup on 8 processors 

 
Fig. 15. Speedup on 16 processors 
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TABLE III.   SCHEDULE LENGTH RESULTED FROM LDPT AND LDCTF ALGORITHMS 

Number 
of tasks  

2 processor  4 processor  8 processor  16 processor  32 processor  64 processor  
LDPT LDCTF LDPT LDCTF LDPT LDCTF LDPT LDCTF LDPT LDCTF LDPT LDCTF 

10 598 619 438 481 503 501 390 377 516 508 718 701 
20 1070 1091 784 763 615 629 504 490 856 838 733 720 
40 2319 2265 1304 1236 827 818 691 637 1348 1325 1151 1117 
60 3427 3430 2141 2055 1114 1053 765 783 1557 1544 1469 1441 
80 4408 4204 2403 2349 1330 1261 1072 955 1442 1403 1690 1642 
100 5734 5551 2821 2724 1654 1604 1218 1124 1858 1806 1755 1666 

TABLE IV.  SPEEDUP RESULTED FROM LDPT AND LDCTF ALGORITHMS 

Number 
of 
processo
rs  

10 tasks 20 tasks 40 tasks 60 tasks 80 tasks 100 tasks 

LDPT LDCT
F LDPT LDCT

F LDPT LDCT
F LDPT LDCT

F LDPT LDCT
F LDPT LDCT

F 

2 1.5971
01 

1.6040
76 

1.6469
14 

1.7102
56 

1.8893
04 

1.8840
24 

1.8610
15 

1.9253
34 

1.9419
21 

1.9385
53 

1.9512
1 

1.9576
03 

4 1.9265
73 

2.3298
1 

2.6259
84 

2.7224
49 

3.0162
6 

3.0592
2 

3.5092
59 

3.5670
59 

3.2618
36 

3.3303
91 

3.6481
07 

3.6589
73 

8 2.3397
03 

2.4219
78 

3.4263
7 

3.4263
7 

4.0710
71 

4.2586
39 

4.7182
1 

4.9189
85 

5.4388
54 

5.6113
92 

5.4669
6 

5.6153
85 

16 1.9653
85 

2.0157
79 

3.1266
03 

3.1723
58 

5.5702
13 

5.7496
34 

5.6490
07 

5.8885
6 

5.6715
01 

6.0300
69 

7.6720
43 

7.7075
61 

32 1.9653
85 

2.0157
79 

4.3638
34 

4.4021
98 

4.7180
67 

4.8926
01 

5.6724
81 

5.8834
17 

7.4985
76 

7.6959
07 

7.6335
7 

7.9859
85 

64 2.0669
37 

2.0881
15 

2.7823
61 3 4.6014

07 
4.7749
39 

5.3621
33 

5.5298
58 

6.1674
53 

6.2910
99 

6.7556
31 

7.0241
31 

TABLE V.  EFFICIENCY RESULTED FROM LDPT AND LDCTF ALGORITHMS 

Number 
of 
processo
rs  

10 tasks 20 tasks 40 tasks 60 tasks 80 tasks 100 tasks 

LDPT LDCT
F LDPT LDCT

F LDPT LDCT
F LDPT LDCT

F LDPT LDCT
F LDPT LDCT

F 

2 61.596
24 

63.943
66 

55.795
77 

56.945
72 

52.517
07 

53.225
4 

52.229
63 

53.032
63 

51.058
13 

51.529
83 

51.248
17 

51.629
96 

4 38.207
55 40 34.657

4 
34.955
31 

30.534
75 

30.586
41 

28.247
12 

28.198
47 

26.869
57 

26.906
83 

27.489
18 

27.439
98 

8 40.216
32 

40.216
32 

23.462
53 

24.341
09 

17.451
32 

17.845
7 

15.934
51 

16.258
71 

14.761
2 

15.021
03 

14.978
16 

15.227
79 

16 32.630
62 

32.630
62 

20.134
23 

23.231
8 

12.440
79 

13.064
07 

10.424
2 

10.835
25 

8.1819
33 

8.5122
6 

8.9742
3 

9.2369
88 

32 35.926
77 

35.926
77 

14.667
99 

14.667
99 

10.179
64 

11.002
99 

7.3950
91 

7.8543
15 

7.1481
39 

7.3946
27 

5.8211
22 

6.1243
05 

64 37.264
62 

37.264
62 

18.537
59 

18.537
59 

8.3720
93 

8.3720
93 

5.6114
34 

5.5937
89 

4.3856
28 

5.1400
07 

4.3117
91 

4.6669
96 

 
Fig. 16. Speedup on 32 processors 

 
Fig. 17. Speedup on 64 processors 
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Figure 12, 13, 14, 15, 16, 17 depict speedup versus number 
of processors with varying number of tasks (20, 40, 60, 80, 
100). It is shown that LDCTF algorithm provides better speed 
up than LDPT algorithm. This is because in case of LDCTF 
algorithm, all processors have finished the execution of tasks earlier 
than LDPT algorithm. 

 
Fig. 18. Efficiency on 2 processors 

 
Fig. 19. Efficiency on 4 processors 

Figure 18, 19, 20, 21, 22, 23 depict efficiency versus 
number of processors with varying number of tasks (20, 40, 60, 
80, 100). It is shown that LDCTF algorithm is more efficient 
and provides better performance than LDPT algorithm. Most of 
processor elements have been perfect utilized in our algorithm 
because of the communication among tasks is not affected in 
algorithm breadth procedures. 

Figure 24, 25, 26, 27, 28, 29 depicts the schedule length 
versus number of tasks with varying number of processors 2, 4, 
8, 16, 32, and 64 processors. It is shown that the schedule 
length in case of applying LDCTF algorithm is less than LDPT 
and B-level algorithms. 

Figure 30, 31, 32, 33, 34, 35 depicts speedup versus 
number of processors with varying number of tasks (10, 20, 40, 
60, 80, 100). It is shown that LDCTF algorithm provides better 
speed up than LDPT and B-level algorithms. This is because in 
case of LDCTF algorithm, all processors have finished the 
execution of tasks earlier than LDPT and B-level algorithms. 

 
Fig. 20. Efficiency on 8 processors 

 
Fig. 21. Efficiency on 16 processors 

 
Fig. 22. Efficiency on 32 processors 

 
Fig. 23. Efficiency on 64 processors 
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Fig. 24. Schedule length for 10 tasks 

 
Fig. 25. Schedule length for 20 tasks 

 
Fig. 26. Schedule length for 40 tasks 

 
Fig. 27. Schedule length for 60 tasks 

 
Fig. 28. Schedule length for 80 tasks 

 
Fig. 29. Schedule length for 100tasks 

 
Fig. 30. Speedup on 2 processors 

 
Fig. 31. Speedup on 4 processors 
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Fig. 32. Speedup on 8 processors 

 
Fig. 33. Speedup on 16 processors 

 
Fig. 34. Speedup on 32 processors 

 
Fig. 35. Speedup on 64 processors 

 
Fig. 36. Efficiency on 2 processors 

 
Fig. 37. Efficiency on 4 processors 

 
Fig. 38. Efficiency on 8 processors 

 
Fig. 39. Efficiency on 16 processors 
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Fig. 40. Efficiency on 32 processors 

 
Fig. 41. Efficiency on 64 processors 

Figure 36, 37, 38, 39, 40, 41 depicts efficiency versus 
number of processors with varying number of tasks (20, 40, 60, 
80, 100). It is shown that LDCTF algorithm is more efficient 
and provides better performance than LDPT and B-level 
algorithms. 

D. Discussion of Results 
First, LDCTF algorithm is compared to LDPT algorithm 

and it provided better results in terms of schedule length, speed 
up, and efficiency. This is because in case of LDCTF, the 
critical path is taken into account and the critical task will be 
scheduled first in each level. This means that the task with the 
highest computation and communication cost will be scheduled 
first resulting in minimum schedule length, higher speed up, 
and higher efficiency.  

Finally, LDCTF is compared to B-level algorithm and it 
provided better results in terms of schedule length, speed up, 
and efficiency. This is because B-level algorithm depends on 
paths idea and this will increase the communication overhead 
during assigning tasks on processors. On the other side, 
LDCTF algorithm depends on levels idea that will minimize 
the communication overhead during assigning tasks on 
processors. Another reason is that B-level algorithm must 
calculate the b-level value for each task before scheduling so 
that, the arithmetic calculation in LDCTF is less than B-level 
algorithm which leads to minimize the complexity factor. 

V. CONCLUSION AND FUTURE WORK 
In this paper, a new static scheduling algorithm (LDCTF) is 

developed for homogeneous distributed computing systems. 
The performance of LDCTF algorithm is compared with LDPT 
algorithm. LDCTF is evaluated for different DAGs and found 
to be giving better results than LDPT algorithm in terms of 
schedule length, speed up, and efficiency with improving ratio 
2.75%, 3.2%, and 1.9% respectively.  

The performance of LDCTF is also compared with B-level 
and LDPT algorithms and found to be giving better results in 
terms of schedule length, speed up, and efficiency. LDCTF, 
LDPT, and B-level algorithms are applied on Standard Task 
Graph STG as a bench mark, and it was found that LDCTF 
algorithm is more efficient than LDPT and B-level 
algorithms.The future scope of the idea can be as follows: 

• In this paper LDCTF algorithm is applied on Directed 
Acyclic Graph (DAG). In the future it can be applied on 
Directed Cyclic Graph (DCG). 

• LDCTF can be applied on Heterogeneous Distributed 
Computing Systems (HDCS). 

• LDCTF can be applied in a dynamic strategy instead of 
static strategy. 

• Finally, duplication technique can be applied with 
LDCTF algorithm to minimize the communication 
overhead. 
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