
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Implementation of a Neural Network Using Simulator
and Petri Nets*

Nayden Valkov Nenkov
Faculty of Mathematics and Informatics

University of Shumen “Episkop Konstantin Preslavsky”
9700, Shumen, Bulgaria

Elitsa Zdravkova Spasova
Faculty of Mathematics and Informatics

University of Shumen “Episkop Konstantin Preslavsky”
9700, Shumen, Bulgaria

Abstract—This paper describes construction of multilayer
perceptron by open source neural networks simulator - Neuroph
and Petri net. The described multilayer perceptron solves logical
function "xor "- exclusive or. The aim is to explore the
possibilities of description of the neural networks by Petri Nets.
The selected neural network (multilayer perceptron) allows to be
seen clearly the advantages and disadvantages of the realizing
through simulator. The selected logical function does not have a
linear separability. After consumption of a neural network on a
simulator was investigated implementation by Petri Nets. The
results are used to determine and to consider opportunities for
different discrete representations of the same model and the same
subject area.

Keywords—neural networks; simulators; logical or; petri net

I. INTRODUCTION
In the beginning we will examine Petri nets and their

possible applications. In this paper we will emphasize precisely
modeling power of Petri nets, as will examine their ability to
present neural networks.

The simulator selected for implementation to the neural
network in this study is NeuroPh, which is Java - based, object
- oriented simulator. NeuroPh is also open-source and it offers
many opportunities for different architectures of neural
networks [8]. NeuroPh is lightweight frameworks allowed to
simulate neural networks and can be use basic for the
development of standard types of neural network architectures.
It contains well designed open source library and a small
number of core classes that correspond to basic concepts in
neural networks. There is a good graphics editor to quickly
build java - based components of neural networks.

One thing that makes Petri nets interesting is that they
provide a balance between modeling power and analyzability:
many things one would like to know about concurrent systems
can be automatically determined for Petri nets, although some
of those things are very expensive to determine in the general
case. Several subclasses of Petri nets have been studied that
can still model interesting classes of concurrent systems, while
these problems become easier [1].

Since firing is nondeterministic, and multiple tokens may
be present anywhere in the net (even in the same place), Petri
nets are well suited for modeling the concurrent behavior of
distributed systems [3, 7]. Petri nets are state-transition systems
that extend a class of nets called elementary nets [5, 6]. Unless
an execution policy is defined, the execution of Petri nets is

nondeterministic: when multiple transitions are enabled at the
same time, any one of them may fire.

Fig. 1. Petri Net with an enabled transition

In the given diagram of a Petri net [3], the place circles may
encompass more than one token to show the number of times a
place appears in a configuration. The configuration of tokens
distributed over an entire Petri net diagram is called amarking.
In the diagram of a Petri net, places are conventionally
depicted with circles, transitions with long narrow rectangles
and arcs as one-way arrows that show connections of places to
transitions or transitions to places. If the diagram were of an
elementary net, then those places in a configuration would be
conventionally depicted as circles, where each circle
encompasses a single dot called atoken. Syntactically a Petri
net is described by graph of the network. There is many
alternative definitions. The following formal definition is
loosely based on [2]. A Petri net graph (called Petri net by
some, but see below) is a 3-tuple, (S, T, W) where

• S is a finite set of places

• T is a finite set of transitions

• S and T are disjoint, i.e. no object can be both a place
and a transition

 W: (S × T) ∪ (T × S) → N (1)
is a multiset of arcs, i.e. it assigns to each arc a non-

negative integer arc multiplicity (or weight); note that no arc
may connect two places or two transitions.

Here, in this definition we have conditions mainly for sets S
and T.

The flow relation is the set of arcs:

 F = {(x, y)| W(x, y) >0} (2)
In many textbooks, arcs can only have multiplicity 1. These

texts often define Petri nets using F instead of W. When using
* This paper was funded by Project RD-08-306/12.03.2015 “Research on

sites’ inspection procedures intelligent methods and applications of simulators
for neural networks and optimal methods of learning process”.

412 | P a g e
www.ijacsa.thesai.org

https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Finite_set
https://en.wikipedia.org/wiki/Disjoint_sets
https://en.wikipedia.org/wiki/Multiset
https://en.wikipedia.org/wiki/Directed_edge

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

this convention, a Petri net graph is a bipartitemultigraph(S ∪
T, F)with node partitions S and T.

The preset of a transition t is the set of its input places:

 t = {s ∈ S | W(s, t) >0} (3)
itspost set is the set of its output places:

 t = {s ∈ S |W(t, s) >0} (4)
Definitions of pre- and post-sets of places are analogous.

A marking of a Petri net (graph) is a multiset of its places,
i.e., a mapping M: S → ℕ .We say the marking assigns to each
place a number of tokens.

Here we can introduce one more definition of Petri nets. As
you can see, this definition is now based on the concept of
graph of the network: A Petri net (called marked Petri net by
some, see above) is a 4-tuple (S, T, W, M0), where

• (S, T, W) is a Petri net graph;

• M0 is the initial marking, a marking of the Petri net
graph.

In words:

• firing a transition t in a marking M consumes W(s, t)
tokens from each of its input places s, and produces

W(t, s) tokens in each of its output places s

• a transition is enabled (it may fire) in M if there are
enough tokens in its input places for the consumptions
to be possible [4]., i.e. if.

 ∀s: M(s) ≥ W(s, t) (5)
In this study first will be implemented neural network

through simulator for neural networks and then will be used
Petri nets. It has been made realization of a neural network of
logical function exclusive or (XOR). This standard is a logical
function which can be realized with NeuroPh and it is suitable
for realization with Petri nets. This results from values, which
suggests the logical function - 0 and 1. They are relatively
simple and suitable for different types of presentations.

II. METHODOLOGY
In the beginning of the study we will realize neural network

through neural network simulator. The neural network which
we have choose for the study implemented a simple logical
function “exclusive or”. This logical function is linearly
inseparable. The neural network which we are building in this
case is a multilayer perceptron. We choose this type of neural
network, because linear inseparable function can be realized
with a single-layer perceptron. Table 1 shows the essence of
the logical operation “exclusive or”.

TABLE I. EXCLUSIVE OR

A B A XOR B
0 0 0
0 1 1
1 0 1
1 1 0

Commonly used artificial neural network simulators
include theStuttgart Neural Network Simulator(SNNS),
Emergent, JavaNNS, Neural LabandNetMaker. For this study
is selected the simulator NeurophStudio. This simulator has the
potential to realize the different algorithms for training neural
networks and arbitrary architectures. This neural network
implements logical operation “exclusive or”. There are two
input neurons, one neuron in the hidden layer and one output
neuron. Figure 3 shows a model of the neural network
implemented on NeurophStudio. In this structure of the neural
network is used some results from "Research of simulators for
neural networks through the implementation of multilayer
perceptron". [9].

Fig. 2. Neural network which realizes a logic operation XOR
(simulatorNeurophStudio)

The training of the network is performed using the truth
table of the logical operation ''exclusive or'', including
following parameters:

Max error: 0.01

Learning rate: 0.2

It can be seen that the network is fully trained after 4000
iterations. After transferring this threshold begins a process of
re-training and error begins to grow again.

Once the network is trained, we ask sample inputs - 1; 1. At
testing network with a sample input 1; 1 result is the following
- the value of neuron in the hidden layer is 0,781; value of the
neuron in the output layer is 0.263.

This is shown in Figure 4.

413 | P a g e
www.ijacsa.thesai.org

https://en.wikipedia.org/wiki/Bipartite_graph
https://en.wikipedia.org/wiki/Bipartite_graph

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Fig. 3. Total Network Error Graph

Fig. 4. Results for inputs - 1;1

We testing network with a sample input 1; 0. The result is
following - the value of neurons in the hidden layer is 0,839
and 0,998; value of the neuron in the output layer is 0.871.

This is shown in Figure 5.

We continue the study with another neural network. To see
the difference in test cases, we will recreate the neural network
by another type multilayer perceptron. This multilayer
perceptron will decide the same task like the neural network
above. The new neural network will have again one hidden
layer, but with two neurons in it.

Figure 6 shows a model of a neural network implemented
the same logical function. There are two input neurons, two
neurons in the hidden layer and one output neuron.

Fig. 5. Results for inputs - 1;0

Fig. 6. Neural network, which realizes a logic operation XOR, including two
neurons in hidden layer

It can be seen that the network is fully trained after 1900
iterations.

Once the network is trained, we ask sample inputs - 1; 1. In
network testing with a sample input 1; 1 result is the following
- the value of neurons in the hidden layer is 0,101 and 0,902;
value of the neuron in the output layer is 0.125.

414 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Fig. 7. Total Neural Network Graph

Fig. 8. Results for inputs - 1,1

We testing network with a sample input 1; 0. The result is
following - the value of neurons in the hidden layer is 0,839
and 0,998; value of the neuron in the output layer is 0.871.

It can be seen that the results for the second architecture of
the neural network are very good. This is particularly in the
case when the neural network should give as a result 1. Thus
we did tests of two input suit in the simulator for Neural
Networks.

Fig. 9. Results for input - 1;0

We make a comparison between the graph in the simulator
and the description of graph by Petri net. To create a graph of
Petri nets we must define sets S, T, M0. Let's first of all to stick
to the first model of the architecture of the neural network
which has one neuron in the hidden layer. In this case the set S
is consists of the input neuron, the neuron of the hidden layer
and the output neuron. Especially for values in the set S we
take an example pairs of logic function ''exclusive or'', two of
which we already discussed in examples for simulator
NeurophStudio. So far we have two values in this set. We
added also and the output values - 0 or 1 for each example, as
well as the value of a hidden neuron. The value of the hidden
neuron is rather rounded. The set T consists of three
connections between neurons - between the two input neurons
and neurons of the hidden layer (2) and the connection between
neurons of the hidden layer and the output neuron (1). The set
Mo is the initial initialization of the neural network weights. To
build a graph of Petri nets we consider also sets P. These sets
contain specific examples and actually reflect the positive
examples of T. This set contains a different number of
elements for each example and includes input and output
values which are equal to 1. This is actually 1 of the set T
(excluding the value of the hidden neuron), which is
subsequently recognized as a marker in the graph of Petri nets.

For the four cases of logical function can be built eight
Petri nets:

The first of them: S - 0; 0; 0; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P1 - 0 elements.

415 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

Second: S - 0; 1; 0; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P2 - 1 element.
Third: S - 1; 0; 0; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P3 - 1 element.
Fourth: S - 1; 1; 0; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P4 - 2 elements.
Fifth: S - 0; 0; 1; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P5 - 1 element.
Sixth: S - 0; 1; 1; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P6 - 2 elements.
Seventh: S - 1; 0; 1; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P7 - 2 elements.
Eighth: S - 1; 1; 1; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P8 - 3 elements.

Making a comparison between the two architectures of both
established neural networks. Let us now discuss the case with
the second architecture of the neural network. Here we have
two neurons in the hidden layer. This means that the set S is
increased by 1 unit, and multitudes T and M0 increased double.
Therefore, there could be built 16 major Petri nets.

The first of them: S - 0; 0; 0; 0; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P1 - 0 elements.
Second: S - 0; 1; 0; 0;1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P2 - 1 element.
Third: S - 1; 0; 0; 0;1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P3 - 1 element.
Fourth: S - 1, 1, 0, 0, 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P4 - 2 elements.
Fifth: S - 0; 0; 1; 0; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P5 - 1 element.
Sixth: S - 0; 1; 1; 0; 1
Mo - random initial weights of links
T - Weights of links to specific iteration

Set P6 - 2 elements.
Seventh: S - 1; 0; 1; 0; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P7 - 2 elements.
Eighth: S - 1; 1; 1; 0; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
 Set P8 - 3 elements.
Ninth: S - 0; 0; 0; 1; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P9 - 0 elements.
Tenth: S - 0; 1; 0; 1; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P10 - 1 element.
Eleven: S - 1; 0; 0; 1; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P11 - 1 element.
Twelve: S - 1; 1; 0; 1; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P12 - 2 elements.
 Thirteen: S - 0; 0; 1; 1; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P13 - 1 element.
Fourteen: S - 0; 1; 1; 1; 1
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P14 - 2 elements.
Fifteen: S - 1; 0; 1; 1; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P15 - 2 elements.
Sixteenth: S - 1; 1; 1; 1; 0
Mo - random initial weights of links
T - Weights of links to specific iteration
Set P16 - 3 elements.
In the case when the plurality of T have different values (0

and 1, 1 and 0) is obtained activation of the neuron of the
output layer and the output is 1. In other cases, the output of
the network is 0. This is actually case when neural network
implements logical ''exclusive or'' function.

The sets T and Mo in Petri nets could give suggestion for
the convergence of the network: how fast neural network will
be trained, whether the training set is appropriate, how many
test to be used, etc.

We can build a graph of the petri nets to the first example
of architecture of the neural network.

We use different sample input data to describe the various
states of the neural network in the column of the petri nets. In
this case it appears that determining is set S. From state P1 in
which we have zero values, we move in the states P2 and P3.
In these conditions, already one of the input values is 1. This

416 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 1, 2016

determines the placement of a marker in these fields. From
states P2 and P3 we already go to states P4 and P5. In fourth
position, both input values are 1. We put two markers in the
box. In the next state output value is 1, so we put a marker in
the box. In the following two conditions P6 and P7 we have
two markers in the fields. In them one input value and the
output are 1. In the last state both inputs and outputs are 1. So
we have three markers in this field.

We remind that this is research of the first neural network.
In the same way can be examined case of the second neural
network with two neurons in the hidden layer. Since it is
identical we shall not dwell on it here in detail.

Fig. 10. Petri net for the first architecture of the neural network

Thus created graph of Petri nets can be very useful. Here
the ability of Petri nets of analysis may be used. The research
of fields can give many details on the neural network. Could be
analyzed the truth in the result of the neural network. Neural
network gives correct result where in the fields is missing
marker or has two markers. In the study neural network we
have the correct outcome in Example 1, 4, 6, 7 (here we look at
sample values in set S). After building Petri nets based on these
examples, we building a graph of the Petri net. And here we
see that the fields corresponding to the correct result have two
markers. It is possible in general there is no marker. So just
looking the markers of graph of the petri nets can be seen how
much truth there is neural network.

We see the ability the graph of the petri nets to be used to
predict the accuracy of neural network. So using it can be
selected at appropriate architecture of the neural network. It
can be seen that Petri nets are very useful tool not only for the
representation of neural networks, but also for their study.

III. CONCLUSION
The petri nets can be useful in determining the possible

activations in the neural network and achievable conditions.
The graph of Petri nets can follow all possible input examples
of neural network. It can be seen where the neural network A
has a correct result and where - not. Thus, by displaying the
authenticity of the result in the neural network could be found
ways to improving it. There is the possibility of conducting
research on different architectures of neural networks. The
petri nets could help to find a suitable architecture of the neural
network. The results can be very useful in training of the neural
networks. By imaging the neural network through graph of
Petri nets could be found on the appropriate input examples
with which to be trained network. So can be significantly
reduced training time. Just should be selected input examples
with two markers in the graph (or without markers) of the Petri
net. Training neural networks can be much facilitated. The
results can be applied in lectures and education on neural
networks. The study of specific architecture of the neural
network can be examined with Petri nets. Here it can be
determined which is the appropriate neural network for the
specific subject area and the specific problem. Thus can predict
which architecture of the neural network will be most suitable
(how many layers, how many neurons).

Research in this area can be extended. Until now research
has not included the algorithm for training the neural network.
Remains to be seen how it can affect in Petri nets. What will
show such inclusion, how it will be implemented and what is
the results of it, is the subject of a future researches.

ACKNOWLEDGMENT
This article was published possible through support of the

University of Shumen "Episkop Konstantin Preslavsky" and its
program for development research project: „Study of
intelligent methods and applications of simulators of neural
networks and optimum methods of learning“.

REFERENCES
[1] Girault C., Valk R., Petri nets for systemengineering. guide to modeling,

verification, and application, 2003, ISBN 978-3-662-05324-9
[2] Esparza, J. and Nielsen, M., Decidability issues for Petri nets - a survey.

Bulletin of the EATCS, 1995, (Revised Ed.). Retrieved 2014-05-14.
[3] Petri, C. A. and Reisig, W., Petri net. Scholarpedia 3 (4): 6477., 2008,

DOI:10.4249 /scholarpedia. 6477.
[4] Peterson, J. L. ,. Petri Net Theory and the Modeling of Systems. Prentice

Hall., 1981, pp. 23-42, ISBN 0-13-661983-5
[5] Reisig, W., Understanding Petri nets. Modeling techniques, analysis

methods, cese studies, 2013, ISBN 978-3-642-33278-4
[6] Reisig, W., Petri Nets and Algebraic Specifications. Theoretical

Computer Science 80 (1), 1991, pp.1–34. DOI:10.1016/0304-
3975(91)90203-e (references)

[7] Rozenburg, G. and Engelfriet, J.,. Elementary Net Systems. Lectures on
Petri Nets I: Basic Models - Advances in Petri Nets. Lecture Notes in
Computer Science 1491. Springer., 1998, pp. 12 –121.

[8] Sevarac, Z., Neuroph - Java neural network framework, Retrieved from
http://neuroph.sourceforge.net/ (May, 2012).

[9] Zdravkova E., Research of simulators for neural networks through the
implementation of multilayer perceptron, Information Technologies,
Management and Society, The 13th International Conference in
Information Technologies and Management 2015, ISMA University,
Riga, 2015, p.55-56, ISSN: 1691-2489

417 | P a g e
www.ijacsa.thesai.org

http://www.scholarpedia.org/article/Petri_net
https://en.wikipedia.org/wiki/Scholarpedia
https://en.wikipedia.org/wiki/Digital_object_identifier
https://en.wikipedia.org/wiki/Digital_object_identifier

	I. Introduction
	II. Methodology
	III. Conclusion
	Acknowledgment
	References

