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Abstract—This paper describes construction of multilayer 
perceptron by open source neural networks simulator - Neuroph 
and Petri net. The described multilayer perceptron solves logical 
function "xor "- exclusive or. The aim is to explore the 
possibilities of description of the neural networks by Petri Nets. 
The selected neural network (multilayer perceptron) allows to be 
seen clearly the advantages and disadvantages of the realizing 
through simulator. The selected logical function does not have a 
linear separability. After consumption of a neural network on a 
simulator was investigated implementation by Petri Nets. The 
results are used to determine and to consider opportunities for 
different discrete representations of the same model and the same 
subject area. 
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I. INTRODUCTION 
In the beginning we will examine Petri nets and their 

possible applications. In this paper we will emphasize precisely 
modeling power of Petri nets, as will examine their ability to 
present neural networks. 

The simulator selected for implementation to the neural 
network in this study is NeuroPh, which is Java - based, object 
- oriented simulator. NeuroPh is also open-source and it offers 
many opportunities for different architectures of neural 
networks [8]. NeuroPh is lightweight frameworks allowed to 
simulate neural networks and can be use basic for the 
development of standard types of neural network architectures. 
It contains well designed open source library and a small 
number of core classes that correspond to basic concepts in 
neural networks. There is a good graphics editor to quickly 
build java - based components of neural networks. 

One thing that makes Petri nets interesting is that they 
provide a balance between modeling power and analyzability: 
many things one would like to know about concurrent systems 
can be automatically determined for Petri nets, although some 
of those things are very expensive to determine in the general 
case. Several subclasses of Petri nets have been studied that 
can still model interesting classes of concurrent systems, while 
these problems become easier [1]. 

Since firing is nondeterministic, and multiple tokens may 
be present anywhere in the net (even in the same place), Petri 
nets are well suited for modeling the concurrent behavior of 
distributed systems [3, 7]. Petri nets are state-transition systems 
that extend a class of nets called elementary nets [5, 6]. Unless 
an execution policy is defined, the execution of Petri nets is 

nondeterministic: when multiple transitions are enabled at the 
same time, any one of them may fire. 

 
Fig. 1. Petri Net with an enabled transition 

In the given diagram of a Petri net [3], the place circles may 
encompass more than one token to show the number of times a 
place appears in a configuration. The configuration of tokens 
distributed over an entire Petri net diagram is called amarking. 
In the diagram of a Petri net, places are conventionally 
depicted with circles, transitions with long narrow rectangles 
and arcs as one-way arrows that show connections of places to 
transitions or transitions to places. If the diagram were of an 
elementary net, then those places in a configuration would be 
conventionally depicted as circles, where each circle 
encompasses a single dot called atoken. Syntactically a Petri 
net is described by graph of the network. There is many 
alternative definitions. The following formal definition is 
loosely based on [2]. A Petri net graph (called Petri net by 
some, but see below) is a 3-tuple, (S, T, W) where 

• S is a finite set of places 

• T is a finite set of transitions 

• S and T are disjoint, i.e. no object can be both a place 
and a transition 

 W: (S × T) ∪ (T × S) → N  (1) 
is a multiset of arcs, i.e. it assigns to each arc a non-

negative integer arc multiplicity (or weight); note that no arc 
may connect two places or two transitions. 

Here, in this definition we have conditions mainly for sets S 
and T. 

The flow relation is the set of arcs: 

 F = {(x, y)| W(x, y) >0} (2) 
In many textbooks, arcs can only have multiplicity 1. These 

texts often define Petri nets using F instead of W. When using 
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this convention, a Petri net graph is a bipartitemultigraph(S ∪
T, F)with node partitions S and T. 

The preset of a transition t is the set of its input places: 

 t = {s ∈ S | W(s, t) >0} (3) 
itspost set is the set of its output places: 

 t = {s ∈ S |W(t, s) >0} (4) 
Definitions of pre- and post-sets of places are analogous. 

A marking of a Petri net (graph) is a multiset of its places, 
i.e., a mapping M: S → ℕ .We say the marking assigns to each 
place a number of tokens. 

Here we can introduce one more definition of Petri nets. As 
you can see, this definition is now based on the concept of 
graph of the network: A Petri net (called marked Petri net by 
some, see above) is a 4-tuple (S, T, W, M0), where 

• (S, T, W) is a Petri net graph; 

•  M0 is the initial marking, a marking of the Petri net 
graph. 

In words: 

• firing a transition t in a marking M consumes W(s, t) 
tokens from each of its input places s, and produces  

W(t, s) tokens in each of its output places s 

• a transition is enabled (it may fire) in M if there are 
enough tokens in its input places for the consumptions 
to be possible [4]., i.e. if. 

 ∀s: M(s) ≥ W(s, t) (5) 
In this study first will be implemented neural network 

through simulator for neural networks and then will be used 
Petri nets. It has been made realization of a neural network of 
logical function exclusive or (XOR). This standard is a logical 
function which can be realized with NeuroPh and it is suitable 
for realization with Petri nets. This results from values, which 
suggests the logical function - 0 and 1. They are relatively 
simple and suitable for different types of presentations. 

II. METHODOLOGY 
In the beginning of the study we will realize neural network 

through neural network simulator. The neural network which 
we have choose for the study implemented a simple logical 
function “exclusive or”. This logical function is linearly 
inseparable. The neural network which we are building in this 
case is a multilayer perceptron. We choose this type of neural 
network, because linear inseparable function can be realized 
with a single-layer perceptron. Table 1 shows the essence of 
the logical operation “exclusive or”. 

TABLE I.  EXCLUSIVE OR 

A B A XOR B 
0 0 0 
0 1 1 
1 0 1 
1 1 0 

Commonly used artificial neural network simulators 
include theStuttgart Neural Network Simulator(SNNS), 
Emergent, JavaNNS, Neural LabandNetMaker. For this study 
is selected the simulator NeurophStudio. This simulator has the 
potential to realize the different algorithms for training neural 
networks and arbitrary architectures. This neural network 
implements logical operation “exclusive or”. There are two 
input neurons, one neuron in the hidden layer and one output 
neuron. Figure 3 shows a model of the neural network 
implemented on NeurophStudio. In this structure of the neural 
network is used some results from "Research of simulators for 
neural networks through the implementation of multilayer 
perceptron". [9]. 

 
Fig. 2. Neural network which realizes a logic operation XOR 
(simulatorNeurophStudio) 

The training of the network is performed using the truth 
table of the logical operation ''exclusive or'', including 
following parameters: 

Max error: 0.01 

Learning rate: 0.2 

It can be seen that the network is fully trained after 4000 
iterations. After transferring this threshold begins a process of 
re-training and error begins to grow again. 

Once the network is trained, we ask sample inputs - 1; 1. At 
testing network with a sample input 1; 1 result is the following 
- the value of neuron in the hidden layer is 0,781; value of the 
neuron in the output layer is 0.263. 

This is shown in Figure 4. 
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Fig. 3. Total Network Error Graph 

 
Fig. 4. Results for inputs - 1;1 

We testing network with a sample input 1; 0. The result is 
following - the value of neurons in the hidden layer is 0,839 
and 0,998; value of the neuron in the output layer is 0.871. 

This is shown in Figure 5.  

We continue the study with another neural network. To see 
the difference in test cases, we will recreate the neural network 
by another type multilayer perceptron. This multilayer 
perceptron will decide the same task like the neural network 
above. The new neural network will have again one hidden 
layer, but with two neurons in it. 

Figure 6 shows a model of a neural network implemented 
the same logical function. There are two input neurons, two 
neurons in the hidden layer and one output neuron. 

 

 
Fig. 5. Results for inputs - 1;0 

 
Fig. 6. Neural network, which realizes a logic operation XOR, including two 
neurons in hidden layer 

It can be seen that the network is fully trained after 1900 
iterations. 

Once the network is trained, we ask sample inputs - 1; 1. In 
network testing with a sample input 1; 1 result is the following 
- the value of neurons in the hidden layer is 0,101 and 0,902; 
value of the neuron in the output layer is 0.125. 
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Fig. 7. Total Neural Network Graph 

 
Fig. 8. Results for inputs - 1,1 

We testing network with a sample input 1; 0. The result is 
following - the value of neurons in the hidden layer is 0,839 
and 0,998; value of the neuron in the output layer is 0.871.  

It can be seen that the results for the second architecture of 
the neural network are very good. This is particularly in the 
case when the neural network should give as a result 1. Thus 
we did tests of two input suit in the simulator for Neural 
Networks. 

 
Fig. 9. Results for input - 1;0 

We make a comparison between the graph in the simulator 
and the description of graph by Petri net. To create a graph of 
Petri nets we must define sets S, T, M0. Let's first of all to stick 
to the first model of the architecture of the neural network 
which has one neuron in the hidden layer. In this case the set S 
is consists of the input neuron, the neuron of the hidden layer 
and the output neuron. Especially for values in the set S we 
take an example pairs of logic function ''exclusive or'', two of 
which we already discussed in examples for simulator 
NeurophStudio. So far we have two values in this set. We 
added also and the output values - 0 or 1 for each example, as 
well as the value of a hidden neuron. The value of the hidden 
neuron is rather rounded. The set T consists of three 
connections between neurons - between the two input neurons 
and neurons of the hidden layer (2) and the connection between 
neurons of the hidden layer and the output neuron (1). The set 
Mo is the initial initialization of the neural network weights. To 
build a graph of Petri nets we consider also sets P. These sets 
contain specific examples and actually reflect the positive 
examples of T. This set contains a different number of 
elements for each example and includes input and output 
values which are equal to 1. This is actually 1 of the set T 
(excluding the value of the hidden neuron), which is 
subsequently recognized as a marker in the graph of Petri nets. 

For the four cases of logical function can be built eight 
Petri nets: 

The first of them: S - 0; 0; 0; 0  
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P1 - 0 elements. 
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Second: S - 0; 1; 0; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P2 - 1 element. 
Third: S - 1; 0; 0; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P3 - 1 element. 
Fourth: S - 1; 1; 0; 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration  
Set P4 - 2 elements. 
Fifth: S - 0; 0; 1; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P5 - 1 element. 
Sixth: S - 0; 1; 1; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P6 - 2 elements. 
Seventh: S - 1; 0; 1; 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration  
Set P7 - 2 elements. 
Eighth: S - 1; 1; 1; 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration  
Set P8 - 3 elements. 

Making a comparison between the two architectures of both 
established neural networks. Let us now discuss the case with 
the second architecture of the neural network. Here we have 
two neurons in the hidden layer. This means that the set S is 
increased by 1 unit, and multitudes T and M0 increased double. 
Therefore, there could be built 16 major Petri nets. 

The first of them: S - 0; 0; 0; 0; 0  
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P1 - 0 elements. 
Second: S - 0; 1; 0; 0;1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P2 - 1 element. 
Third: S - 1; 0; 0; 0;1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P3 - 1 element. 
Fourth: S - 1, 1, 0, 0, 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P4 - 2 elements. 
Fifth: S - 0; 0; 1; 0; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P5 - 1 element. 
Sixth: S - 0; 1; 1; 0; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 

Set P6 - 2 elements. 
Seventh: S - 1; 0; 1; 0; 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration  
Set P7 - 2 elements. 
Eighth: S - 1; 1; 1; 0; 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
 Set P8 - 3 elements. 
Ninth: S - 0; 0; 0; 1; 0  
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P9 - 0 elements. 
Tenth: S - 0; 1; 0; 1; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P10 - 1 element. 
Eleven: S - 1; 0; 0; 1; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P11 - 1 element. 
Twelve: S - 1; 1; 0; 1; 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration  
Set P12 - 2 elements. 
 Thirteen: S - 0; 0; 1; 1; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P13 - 1 element. 
Fourteen: S - 0; 1; 1; 1; 1 
Mo - random initial weights of links 
T - Weights of links to specific iteration 
Set P14 - 2 elements. 
Fifteen: S - 1; 0; 1; 1; 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration  
Set P15 - 2 elements. 
Sixteenth: S - 1; 1; 1; 1; 0 
Mo - random initial weights of links 
T - Weights of links to specific iteration  
Set P16 - 3 elements. 
In the case when the plurality of T have different values (0 

and 1, 1 and 0) is obtained activation of the neuron of the 
output layer and the output is 1. In other cases, the output of 
the network is 0. This is actually case when neural network 
implements logical ''exclusive or'' function. 

The sets T and Mo in Petri nets could give suggestion for 
the convergence of the network: how fast neural network will 
be trained, whether the training set is appropriate, how many 
test to be used, etc. 

We can build a graph of the petri nets to the first example 
of architecture of the neural network. 

We use different sample input data to describe the various 
states of the neural network in the column of the petri nets. In 
this case it appears that determining is set S. From state P1 in 
which we have zero values, we move in the states P2 and P3. 
In these conditions, already one of the input values is 1. This 

416 | P a g e  
www.ijacsa.thesai.org 



(IJACSA) International Journal of Advanced Computer Science and Applications, 
Vol. 7, No. 1, 2016 

determines the placement of a marker in these fields. From 
states P2 and P3 we already go to states P4 and P5. In fourth 
position, both input values are 1. We put two markers in the 
box. In the next state output value is 1, so we put a marker in 
the box. In the following two conditions P6 and P7 we have 
two markers in the fields. In them one input value and the 
output are 1. In the last state both inputs and outputs are 1. So 
we have three markers in this field. 

We remind that this is research of the first neural network. 
In the same way can be examined case of the second neural 
network with two neurons in the hidden layer. Since it is 
identical we shall not dwell on it here in detail. 

 
Fig. 10. Petri net for the first architecture of the neural network 

Thus created graph of Petri nets can be very useful. Here 
the ability of Petri nets of analysis may be used. The research 
of fields can give many details on the neural network. Could be 
analyzed the truth in the result of the neural network. Neural 
network gives correct result where in the fields is missing 
marker or has two markers. In the study neural network we 
have the correct outcome in Example 1, 4, 6, 7 (here we look at 
sample values in set S). After building Petri nets based on these 
examples, we building a graph of the Petri net. And here we 
see that the fields corresponding to the correct result have two 
markers. It is possible in general there is no marker. So just 
looking the markers of graph of the petri nets can be seen how 
much truth there is neural network. 

We see the ability the graph of the petri nets to be used to 
predict the accuracy of neural network. So using it can be 
selected at appropriate architecture of the neural network. It 
can be seen that Petri nets are very useful tool not only for the 
representation of neural networks, but also for their study. 

III. CONCLUSION 
The petri nets can be useful in determining the possible 

activations in the neural network and achievable conditions. 
The graph of Petri nets can follow all possible input examples 
of neural network. It can be seen where the neural network A 
has a correct result and where - not. Thus, by displaying the 
authenticity of the result in the neural network could be found 
ways to improving it. There is the possibility of conducting 
research on different architectures of neural networks. The 
petri nets could help to find a suitable architecture of the neural 
network. The results can be very useful in training of the neural 
networks. By imaging the neural network through graph of 
Petri nets could be found on the appropriate input examples 
with which to be trained network. So can be significantly 
reduced training time. Just should be selected input examples 
with two markers in the graph (or without markers) of the Petri 
net. Training neural networks can be much facilitated. The 
results can be applied in lectures and education on neural 
networks. The study of specific architecture of the neural 
network can be examined with Petri nets. Here it can be 
determined which is the appropriate neural network for the 
specific subject area and the specific problem. Thus can predict 
which architecture of the neural network will be most suitable 
(how many layers, how many neurons). 

Research in this area can be extended. Until now research 
has not included the algorithm for training the neural network. 
Remains to be seen how it can affect in Petri nets. What will 
show such inclusion, how it will be implemented and what is 
the results of it, is the subject of a future researches. 
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