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Abstract—Recently introduced, evolutionary ontologies rep-
resent a new concept as a combination of genetic algorithms
and ontologies. We have defined a new framework comprising
a set of parameters required for any evolutionary algorithm,
i.e. ontological space, representation of individuals, the main
genetic operators such as selection, crossover, and mutation.
Although a secondary operator, mutation proves its importance
in creating and maintaining evolutionary ontologies diversity.
Therefore, in this article, we widely debate the mutation topic
in evolutionary ontologies, marking its usefulness in practice by
experimental results. Also we introduce a new mutation operator,
called relational mutation, concerning mutation of a relationship
through its inverse.

Keywords—Evolutionary ontologies; Genetic algorithms; Muta-
tion; Ontology

I. INTRODUCTION

Evolutionary ontologies (EO) reprezent a new concept,
introduced very recently by Matei et al. in [1]. Vast and com-
plex information used in artificial intelligence (AI) increasingly
requires the use of ontologies as a manifestation of knowledge.
But static information is of no use in the areas of AI, always
subjected to change. Therefore evolutionary ontologies are the
next natural step that is required to be made in AI.

EO are genetic algorithms using ontologies as individual
items instead of classical data structures such as strings of
bits, different values (real numbers, characters, objects) or
programs.

Also in EO is followed the pattern of the evolutionary
process: it is selected an initial population that undergoes
genetic operators such as crossover and mutation, then the
offsping are subjected again to selection for resuming the
algorithm until the condition of the problem to be solved is
fulfilled or the maximum number of epochs is reached.

Although originated in classical genetic operators,
crossover and mutation that are used in evolutionary ontolo-
gyies are new operators designed to meet the needs of complex
structuring of knowledge contained in ontologies.

The genetic operators of evolutionary ontologies were
introduced in [1], but was only traced the outline. The involve-
ment of mutation in evolutionary ontologies diversity requires
the detailing of the operator, which is the purpose of this
article.

The rest of the paper is organized as follows: section II
contains references to the genetic mutation operator and to the
ontologies, but we have to emphasize that the two concepts are
first used together in this article. Section III introduces muta-
tion operators for evolutionary ontologies, the absolute novelty
being relational mutation. In section IV we demonstrate the
utility of mutation operators in practice, on an application for
automatically generated scenes. Finally, the conclusions are
marked in section V.

II. RELATED WORK

Imitating the biological model, genetic mutation operator
changes the offspring resulting from crossover of the chro-
mosomes [2]. Often, genetic algorithms tend to block during
searching the solution at a local optimum. The purpose of the
mutation is to prevent this by not allowing the population to
become too similar [3].

Mutation operator does not apply to all chromosomes, but
a certain percentage of the population, called mutation rate [4].
Sahoo et al. [5] state that mutation rate generally ranges
between 0.05 and 0.02, but that sometimes is calculated as
1/n, where n is the number of chromosomal genes. Mutation
rate is an important parameter of genetic algorithms, because,
as Cao et al. show in [6] and Maaita et al. in [7], too many or
too few mutations adversely affect convergence.

Mutation operator depends on the chromosome coding
technique [8]. For the binary representation is used, in par-
ticular, bit-flipping mutation [9], which consists in changing
the values of some genes from 0 to 1 or vice versa [10].

For the integer encoding is used the random resetting
mutation operator, where the value of a gene is replaced by a
value chosen at random from an allowed range [11] or creep
mutation, where a gene value is increased or decreased by a
small value [12].

Permutation encoding involves chromosome representation
as a string of integer or real values [13]. The most suitable
mutation operators for this type of encoding are swap mutation
and inversion mutation [14]. Under the swap mutation, two
randomly chosen genes interchange their values [15]. Regard-
ing inversion mutation, two random points are selected within
the chromosome and all the genes between the two points are
reversed [15].
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Uniform and non-uniform mutation are two types of muta-
tions used for real encoding of the data. The positions of the
genes uniform mutated are chosen with equal probability [16],
and the values of these genes are replaced with uniform ran-
dom numbers [17]. Introduced by Michalewicz and presented
in [18], non-uniform mutation, is to explore solutions space
uniformly at first, and finally to become local search.

If we discuss coding tree, we meet subtree mutation, where
a randomly selected subtree is replaced by another randomly
created subtree (the process is broadly described in [19]) or
point mutation, which changes a randomly selected node with
a another node [20].

In addition to ordinary mutation operators, various types
of mutation have been researched, such as discrete [21], [22],
model-based [23] and fuzzy [24].

Although, so far, the mutation was considered a secondary
genetic operator, Lehre and Yao proved in [25] that there is
a close link between mutation and selection, which influences
the running time of genetic algorithms. Moreover, mutation is
such an important genetic operator, that significant research
has been done for implementing it in different programming
languages, such as C++ [26]. Also, mutation was used with
particle swarm optimization technique [27], whose role is to
optimize the difficult problems of mathematics in continuous
or binary space [28]. Lastly, the importance of mutation
operator is emphasized in practical applications of genetic
algorithms, like the ones regarding the alignment of multiple
molecular sequences [29], the detecting of human faces in an
image with complex background [30] and the modeling of
neural image compression [31].

The multitude of information requires the use of new data
structures, enabling knowledge sharing and reuse, therefore,
in recent years there has been an increase in the use of
ontologies [32]. An ontology can be seen as a set of related
concepts [33].

Matei et al. used, for the first time, the ontologies in
the context of genetic algorithms, introducing the concept
of evolutionary ontologies in [1]. Our goal was to enrich
the ontology knowledge already held, this being achieved by
applying genetic operators on ontologies. Due to the com-
plex nature of mutation operator, we believe that the general
framework introduced in [1] is not enough, therefore we detail
mutation in this article.

III. MUTATION IN EVOLUTIONARY ONTOLOGIES

In [1] was defined the operating framework of ontologies
under the aegis of the evolutionary algorithms. The ontological
space (onto-space) is an ontology that includes all the elements
of a domain of knowledge at information level with all their
characteristics and relationships. Formally, an onto-space is
defined as follows:

OS = (C,P, I) (1)

where C is the set of classes, P is the set of properties and I
is the set of instances.

An individual of the evolutionary ontologies is a subset of
the ontology, meaning

Ch = (SC, SP, SI) (2)

where SC ⊂ C is a subset of classes in OS, SP ⊂ P is a
subset of properties in OS and SI ⊂ I is a subset of instances
in OS.

A population consists of (µ) such individuals, but not
necessarily cover the whole onto-space, therefore

µ⋃
i=1

Chi ⊂ OS (3)

Due to the complex nature of individuals, is required the
instantiation mutation, resulting three types of mutation oper-
ators, namely class mutation, instance mutation and property
mutation.

A. Class mutation

The set of classes of onto-space, C, can be seen as a
reunion of all ontology classes

C =

nc⋃
i=1

Ci (4)

where nc is the number of classes in the ontology.

In an ontology, therefore also in onto-space, classes are
organized hierarchically [34], a class whether or not containing
one or more subclasses.

Any class or subclass Ci may have one or more subclasses,
which in turn can have subclasses, going as deep as much
require the domain of knowledge that is represented.

Ci =

nci⋃
j=1

Ci.j (5)

where nci is the number of subclasses of class Ci.

Any class or subclass Ci can be regarded as a set of
instances, composed by its own instances and all instances
of all its subclasses.

Ci =

ninstci⋃
k1=1

Ii.k1

nci⋃
k2=1

ninstk2⋃
k3=1

Ii.k2.k3 (6)

where ninstci is the number of the own instances of class Ci.

Mutation of a class Ci takes place by replacing all its own
instances with the instances of a randomly chosen subclass
of class Ci. In other words, the instances

⋃ninstci

k1=1 Ii.k1 will
be replaced by the instances

⋃ninstq1

k3=1 Ii.q1.k3 , where q1 is a
random number with values in the range [1, nci ] representing
the serial number of the selected subclass.

B. Instance mutation

The set of instances of onto-space, I , is the reunion of all
ontology instances

I =

ninst⋃
i=1

Ii (7)

where ninst is the number of instances in the ontology.

The instances are grouped together in classes, as can
be seen in (6). We consider an instance Ii.q1 , where q1 ∈
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[1, ninstci ], of a class Ci. Mutation of the instance Ii.q1
means replacing it with another instance of class Ci, namely
Ii.q2 , where q2 ∈ [1, ninstci ], q2 6= q1 and Ii.q2 /∈⋃nci

k2=1

⋃ninstk2

k3=1 Ii.k2.k3 .

C. Data Property Mutation

In an ontology, thus also in onto-space, are two types
of properties: data properties and object properties [35]. We
note with Pdi a data property, ∀i ∈ [1, npd ], where npd is
the number of data properties in OS and with Poj an object
property, ∀j ∈ [1, npo ], where npo is the number of object
properties in OS. Therefore, the set of onto-space properties
is defined as follows:

P =

npd⋃
i=1

Pdi ∪
npo⋃
j=1

Poj (8)

The mutation may be applied differently, depending on the
type of property.

A data property is characterized by a data type, that
indicates the kind of value for the corresponding instance,
which have such property data. Typically, the data types most
commonly used for data properties are numerical types and
boolean.

We consider a data property Pdi , with i ∈ [1, npd ]. If Ij ,
with j ∈ [1, ninsti ] is one of the instances that have this data
property, and the value corresponding to Ij for property Pdi is
val, with val ∈ [val1, valk], then applying mutation on data
property means changing the val value. Changing the val value
depends on the data type of the property Pdi , as follows:

1) If data property Pdi has an integer data type, then
there are two possibilities:

a) the val value will be changed with val′,
another value from the range [val1, valk], ie

val = val′, where val′ ∈ [val1, valk] (9)

b) the val value will be changed by adding a
value (positive or negative), which is part of
a symmetrical distribution to zero, ie

val = val + α, where α > 0 or α < 0

such that val + α ∈ [val1, valk] (10)

2) If data property Pdi has a real data type, then there
are two possibilities:

a) first possibility is similar to the first possibil-
ity for integer values, hence (9) takes place
also in this case

b) the val value will be changed by adding a
value (positive or negative), based on non-

uniform mutation, ie

val = val + α· | β − val | ·r · (1− g

G
)b

where
r is a uniformly distributed random
number [0, 1],
g is the current generation,
G is the maximum number of generations,
b is the degree of non-uniformity usually
of value 5, moreover

when α > 0, β = valk
and when α < 0, β = val1 (11)

3) If data property Pdi has a boolean data type, then
mutation acts as a switch by changing the value val
with its complement, ie

val = val′, where val′ = FALSE if val = TRUE or
val′ = TRUE if val = FALSE (12)

D. Object Property Mutation

An object property is designed to establish relations be-
tween the classes of the onto-space and thus between their
instances. Each object property has behavior of a binary
relation [36], so each object property is defined on a domain
and has values in a range.

We consider an object property Poj , with j ∈ [1, npo ],
which has the domain, respectively the range one class or a
class reunion.

(Poj ,

ndomj⋃
k1=1

Ck1 ,

nrj⋃
k2=1

Ck2) (13)

where ndomj
is the number of domain classes and nrj is the

number of range classes for object property Poj .

According to (6), an instance of the domain is Ii1.k1 ,
where k1 ∈ [1, ninstci1

] or Ii1.k2.k3 , where k2 ∈ [1, nci1 ]

and k3 ∈ [1, ninstk2
] and an instance of the range is Ii2.k1 ,

where k1 ∈ [1, ninstci2
] or Ii2.k2.k3 , where k2 ∈ [1, nci2 ] and

k3 ∈ [1, ninstk2
].

For the sake of simplicity, we note, the Poj domain with
Dj , the Poj range with Rj , an instance of the domain with
Ii1 , an instance of the range with Ii2 , the results being the
same regardless of chosen notations. Thus

Ii1PojIi2 (14)

where Ii1 ∈ Dj and Ii2 ∈ Rj .
The inverse of the Poj , if any, is P−oj with the domain Rj

and the range Dj , therefore

Ii2P
−
ojIi1 (15)

Applying mutation operator on the object property Poj
means one of the following:

1) Replacing the object property Poj with its inverse
P−oj , if it exists, very suitable for spatial relations,
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Fig. 1: Scene before relational mutation

Fig. 2: Scene after relational mutation

getting a mirror effect, as you can see in Fig. 1 and
Fig. 2.
We call this type of mutation, relational mutation, but
it does not apply in all conditions. The relations (14)
and (15) occur before mutation. After mutation:

Ii1P
−
ojIi2

Ii2PojIi1 (16)

with Ii1 ∈ Rj and Ii2 ∈ Dj . So Ii1 and Ii2
belong both to the domain and range, when applying
relational mutation. For relational mutation to be

valid, must occur:

Dj = Rj , in which case relations Poj and P−oj swap
or
Dj uRj 6= ⊥, in which case the relational mutation
applies only when relations link instances of intersection.

(17)

Of course that relational mutation may also occur in
other particular cases, which must be checked man-
ually to match the onto-space rules, but those shown
in (17) may be automatically applied as imposed by
evolutionary ontologies.

2) Changing the object property Poj with another object
property Po, which is not part of the onto-space, but
suitable for domain knowledge, so as to have the
same domain and range as the object property Poj .

Poj = Po, so that Po /∈ OS, but

(Po,

ndomj⋃
k1=1

Ck1 ,

ncoj⋃
k2=1

Ck2) (18)

If the object property Poj has inverse, we identify
two situations:

a) The new object property Po has inverse, in
which case the inverse of object property Po
will substitute the inverse of object property
Poj ;

b) The new object property Po has no inverse,
in which case the inverse of object property
Poj will be deleted from the onto-space.

3) Replacing one of the instances Ii1 or Ii2 with an-
other instance I ′i1 , respectively I ′i2 , belonging to the
domain, respectively to the range.

starting from Ii1PojIi2 , is obtained by the application
of mutation

I ′i1PojIi2 , where I ′i1 ∈
ndomj⋃
k1=1

Ck1 or

Ii1PojI
′
i2 where I ′i2 ∈

ncoj⋃
k2=1

Ck2 (19)

The third situation may seem similar to instance mutation.
However, is another type of mutation because in the case
of instance mutation, an instance Ii is replaced by another
instance of the same class as Ii, while in the case of object
property mutation, an instance is replaced by another instance
of a class reunion, which is the domain or the range of the
object property.

IV. EXPERIMENTAL RESULTS

The concept of evolutionary ontologies was applied on user
centered automatically generated scenes application, like in all
previous similar experiments, reported in [37], [38]. This way,
the methodology is consistent throughout all the experiments.
Cycle of the algorithm takes place in the following stages: it
sets the initial population as a list of 10 randomly generated
scenes. For each scene it selects a frame. We have considered
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TABLE I: The number of differences between epochs without,
respectively with mutation

Epoch Without mutation With mutation Improvements
Median Min. Max. Median Min. Max. Median Min. Max.

5 11 9 13 13 10 16 18,18% 11,11% 23,08%
10 26 22 28 30 25 33 15,38% 13,64% 17,86%
15 34 30 38 39 34 45 14,71% 13,33% 18,42%
20 38 32 40 41 35 45 7,89% 9,38% 12,50%
25 36 32 38 39 35 43 8,33% 9,38% 13,16%
30 25 23 27 29 27 30 16,00% 17,39% 11,11%
35 26 24 27 30 29 31 15,38% 20,83% 14,81%

TABLE II: The number of differences between epochs when
using a simple mutation, respectively applying also the inverse
operator

Epoch Without inverse With inverse Improvements
Median Min. Max. Median Min. Max. Median Min. Max.

5 13 10 16 14 10 16 7,69% 0,00% 0,00%
10 30 25 33 30 27 33 0,00% 8,00% 0,00%
15 39 34 45 40 34 45 2,56% 0,00% 0,00%
20 41 35 45 42 37 45 2,44% 5,71% 0,00%
25 39 35 43 39 36 44 0,00% 2,86% 2,33%
30 29 27 30 30 30 31 3,45% 11,11% 3,33%
35 30 29 31 31 31 32 3,33% 6,90% 3,23%

three types of frames sufficient for the power of example: land,
water and interior. Every user (the algorithm is executed by 10
different users) gives each scene a grade of 1-10, according
to his/her preferences. Then it selects scenes involved in the
evolutionary process, by Monte Carlo technique, where the
grades of users are the fitness function values. The selected
scenes are subjected to crossover and mutation operators,
whereupon the algorithm repeats until at least one scene is
marked with 10 or the maximum threshold of 35 epochs is
reached.

The first set of experiments were designed having in mind
the importance of the mutation operator in the economy of
evolutionary ontologies. The results are summarized in Table I.
Two successive lines of the table, in column Epoch, denote the
epochs range for which we have recorded values.

From Table I it is noticeable that the mutation improves the
diversification with 7% to 24%, which is significant comparing
with the complexity of the individuals (which is the number of
components of a scene and the relationships between them).

A next set of experiments targeted the influence of the
completely new type of mutation, namely relational mutation.
The results are summarized in Table II. The header of Table II
has the same meaning as the header of Table I.

The inversion itself brings interesting diversification, count-
ing for up to almost 8%, which is significant for a simple
operator, taking into account that it can be applied only for
invertible relations. A graphical representation of the results
reported in Table II is depicted in figure 3.

Fig. 3: The median, minimum and maximum number of
differences in the two cases: (a) without inverse; (b) with
inverse as mutation

V. CONCLUSION

This article puts a good mathematical foundation to the
mutation operator in the context of evolutionary ontologies.
Actually, we define this operator at the level of:

• classes;

• instances;

• data properties;

• object properties (class relationships).

The most complex mutation operators are at the level of
object properties, where we define three specific operators:

• replacing the whole relation with its inverse when this
is possible;

• replacing the property itself;

• changing relations between the instances.

The complete novelty of the article is the application of
the inverse relationships as relational mutation in the context
of evolutionary ontologies. This type of mutation has proved
highly efficient in application for automated generation of
scenes, causing the innovations in scenes due to its mirror
effect.

As future work we intend to use relational mutation in an
application for automatic design of industrial products, where
its role is to maintain the diversity of relationships between
components of products.
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