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Abstract—Elliptic Curve Cryptography provides similar
strength of protection comparing other public key cryptosystems
but requires significantly smaller key size. This paper proposes
a new faster scalar multiplication algorithm aiming at a more
secured Elliptic Curve Cryptography scheme. This paper also
proposes a novel Elliptic Curve Cryptography scheme where
maximum length random sequence generation method is utilized
as data mapping technique on elliptic curve over a finite field.
The proposed scheme is tested on various bits length of prime
field and key sizes. The numerical experiments demonstrate that
the proposed scheme reduces the computation time compared
to conventional scheme and shows very high strength against
cryptanalytic attack particularly random walk attack.

Keywords—Cryptography; Elliptic curve cryptography; Scalar
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I. INTRODUCTION

Recently, Elliptic Curve Cryptography (ECC) [1], [2] has
gained popularity in the field of public key cryptosystem for
its smaller key size, faster processing time and robust security
against popular cryptanalytic attacks comparing to other Public
Key Cryptography(PKC) systems. These features engrossed the
attentions of manufacturers of small processing devices like
smart cards, Raspberry computers, wireless devices, pagers,
smart phones and tablets [3]. ECC is mainly used for key
exchange, digital signature and authentication [4] . However,
it can be applicable to any security applications where com-
putational power and integrated circuit space is limited.

The unique idea of ECC was proposed independently
by Koblitz [5] and Miller [6] in 1985. Since then on, a
lot of attention has been paid to ECC, it has been studied
thoroughly and still there are lots of scopes of research. Several
researches are conducted to reduce the computational cost
or to increase the level of security of the ECC scheme. For
example, Abdalhossein Rezai [7] et al. proposed an efficient
scalar multiplication algorithm for ECC using a New Signed-
Digit Representation. D. Sravana Kumar [8] et al. proposed
a new encryption algorithm using Elliptic Curve over finite
fields. F . Amounas [9] et al. proposed an algorithm to generate
a data sequence and applied it on ECC encrypted message over
the finite field GF(p). During this time, cryptanalysis of ECC
went on with the same pace.

This paper studies the basics of ECC and some existing
algorithms on it to move forward to the proposed approach.
This paper proposes a faster scalar multiplication algorithm
and a new scheme for ECC. In addition to these, a data
mapping technique on elliptic curve over a finite field is

proposed using maximum length random sequence generation
algorithm. Within our knowledge, the same approach has not
yet been reported neither for ECC scheme nor for scalar
multiplication algorithm. The message to points on elliptic
curve mapping is done using random sequence generation
algorithm that increase the security of the proposed scheme
to higher level.

The rest of the paper is organized as follows: Section II
describes the preliminary studies for proposed approach. Sec-
tion III describes the proposed ECC scheme and scalar multi-
plication algorithm along with the necessary algorithms needed
to implement the proposed ECC scheme. Section IV presents
the experimental results and discussions for the proposed
approach. Section V provides the conclusion and future work.

II. PRELIMINARY STUDY

In this section, preliminary theories and studies for ECC
scheme are briefly described. An elliptic curve E over Fp, for
a prime p > 3 is defined with the short Weierstrass equation
[10]

E : y2 = x3 +ax+b with x,y,a,b ∈ Fp (1)

where a,b are integer modulo p, satisfying: 4a3 + 27b2 6= 0
mod p, and include a point O called point at infinity. The basic
condition for any cryptosystem is that the system is closed, i.e.,
any operation on an element of the system results in another
element of the system. In order to satisfy this condition for
elliptic curves, it is necessary to construct nonstandard addition
and multiplication operations.

A. Geometric Rules of Addition

Let P(x1,y1) and Q(x2,y2) be two points on the elliptic
curve E. The sum R(x3,y3) is defined as: first draw a line
through P and Q, this line intersects the elliptic curve at a
third point. Then the reflection of this point of intersection
about X-axis is R which is the sum of the points P and Q.
The same geometric interpretation also applies to two points
P and P, with the same X-coordinate. The points are joined by
a vertical line, which can be viewed as also intersecting the
curve at the infinity point. We, therefore, have P+(−P) = O ,
the identity element which is the point at infinity.

B. Point Doubling

First, draw the tangent line to the elliptic curve at P which
intersects the curve at a point. Then the reflection of this point
about X-axis is R. As an example the addition of two points
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Fig. 1: Point addition on elliptic curve
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Fig. 2: Point doubling on elliptic curve

and doubling of a point are shown in Fig.1 and Fig.2 for the
elliptic curve y2 = x3− x. Point R(x3,y3) can be derived as

x3 = λ
2− x1− x2

y3 = λ (x2− x3)y2
(2)

where

λ =

{ y1−y2
x1−x2

i f P 6= Q
3×x2

1+a
2×y1

i f P = Q

C. Conventional ECC Scheme

The conventional ECC scheme is shown in Fig. 3.Suppose
Alice wants to send a message to Bob and E is an elliptic
curve over Fp. G is an agreed upon (and publicly known)
point on the curve. Bob chooses integer b and calculates
Pb = b×G and makes it public. Alice maps the plaintext
m to point M on curve and secretly chooses a random integer k.

Alice encrypts M as
C1 = k×G and C2 = M+ k×Pb.

Bob decrypts by calculating

M =C2−b×C1
=C2−b× kG
= M+ k×Pb− k×Pb
= M

D. Random Number Generation

Random number can easily be generated using Linear-
Feedback Shift Registers (LFSR) [11] from maximum length
polynomial. For polynomial f (x) = x4 + x+ 1, it has a shift
register of length m = 4. So, it can produce a sequence of
length 2m−1, i.e.,15. In the numbers, sequence of bits appears
random and has a very long cycle. For the given polynomial,
random number sequence can be generated by calculating

xi mod f (x) f or i = 0,1,2, ...,14. (3)

The generated random number sequence will be like Fig. 4.

0 0 0 1 (=01)
0 0 1 0 (=02)
0 1 0 0 (=04)
1 0 0 0 (=08)
0 0 1 1 (=03)
0 1 1 0 (=06)
1 1 0 0 (=12)
1 0 1 1 (=11)
0 1 0 1 (=05)
1 0 1 0 (=10)
0 1 1 1 (=07)
1 1 1 0 (=14)
1 1 1 1 (=15)
1 1 0 1 (=13)
1 0 0 1 (=09)

Fig. 4: Random
number sequence.

Stream of values produced by registers
in LFSR is completely determined by
its current or previous states and the
Exclusive-OR operation.

III. PROPOSED APPROACH

In this section, the proposed ECC
scheme, proposed scalar multiplication
algorithm and the necessary algorithms
to implement the ECC scheme are de-
scribed.

A. Proposed ECC Scheme

Suppose, Alice and Bob want to
communicate using ECC scheme. They
have to agree on some issues related
to elliptic curve parameters and base
point. The proposed ECC scheme for
covert communication is described in
Algorithm 1 and shown in Fig. 5.

B. Proposed Scalar Multiplication Algorithm

The efficiency of an ECC implementation mainly depends
on the way it implements the Scalar or Point Multiplication
[12]. Most of the existing algorithms focus on the minimization
of Hamming weight [13] of the given value by converting
it to binary or sign binary numbers [14]. The proposed
algorithm also works with a view to making the hamming
weight minimal choosing whatever is suitable between sign
binary or binary multiplication without conversion overhead.
The proposed Scalar Multiplication algorithm is described in
Algorithm 2.

C. Rational Point Generation

To generate rational point P(x,y) from the elliptic curve
equation E : y2 = x3 +Ax+B over Fp for a large prime p, it
is necessary to satisfy the condition, 4A3 + 27B2 6= 0 mod p.
Any point (xi,yi) for i = 0,1, .., p−1 is a rational point on the
curve if y2

i == x3
i +Axi +B mod p holds. The rational point

generation is described in Algorithm 3.
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Fig. 5: Proposed ECC scheme

Algorithm 1 Proposed ECC Scheme

1: Both agree on curve E : y2 = x3 +Ax+B on large prime
field Fp for prime p and a common point G.

2: Alice chooses a random number a and a random point A
on the curve, keeps them as her private key PrA{a,A}.
She calculates PuA1 = aA and PuA2 = a(A+G) and made
them public.

3: Bob chooses random number b and a random point B
on the curve, keeps them as his private key PrB{b,B}.
He calculates PuB1 = bB and PuB2 = b(B+G) and made
them public.

4: If Alice wants to send message M to Bob, then Alice
encrypts the message in following way

a) maps message M to point PM using random se-
quence generation method, M→ PM .

b) generate a random number k.
c) Calculate C1 = (a + k)G and C2 = PM + (a +

k)PuB2− (a+ k)PuB1.
d) Alice sends {C1,C2} to Bob.

5: Bob decrypts the message in the following way
a) Calculate PM =C2−bC1.
b) Then message is derived, PM →M.

Algorithm 2 Scalar Multiplication, kP

1: procedure SCALAR MULTIPLICATION(k,P)
2: R← 0
3: S← 1
4: while k > 0 do
5: x← blog2kc
6: if (k−2x)> (2x+1− k) then
7: R← R+(s)2x+1.P
8: k← 2x+1− k
9: s←−s

10: else
11: R← R+(s)2x.P
12: k← k−2x

13: end if
14: end while
15: Return R
16: end procedure

D. Rational Point Addition

Algorithm provision for Rational Point Addition has al-
ready been described in section II-A. The algorithm is pre-
sented in Algorithm 4.

E. Message to Point Mapping

This section describes how a message M is mapped to point
PM . First random sequences from maximum length polynomial
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Algorithm 3 Rational Point Generation

1: procedure RATIONALPOINTGENERATION(p,A,B)
2: for i = 0 to p do
3: for j = 0 to p do
4: if (i3 +a× i+b) mod p == j2 mod p then
5: Pi.x← i
6: Pi.y← j
7: Pi+1.x← i
8: if j 6= 0 then
9: Pi+1.y← p− j

10: else
11: Pi+1.y← j
12: end if
13: end if
14: break
15: end for
16: end for
17: return P
18: end procedure

Algorithm 4 Rational Point Addition

1: procedure RATIONALPOINTADDITION (P(x,y), Q(x,y))
2: if P == 0 then
3: R← Q
4: end if
5: if Q == 0 then
6: R← P
7: end if
8: if P.y ==−Q.y then
9: R← 0 . when, P =−Q

10: end if
11: if P == Q then . Point Doubling
12: λ ← 3×P.x2+a

2×P.y
13: R.x← λ 2−2×P.x
14: else . Point Addition
15: λ ← P.y−Q.y

P.x−Q.x
16: R.x← λ 2− (P.x+Q.x)
17: end if
18: if λ 6= 0 then
19: R.y←−P.y+λ × (P.x−R.x)
20: else
21: R← 0
22: end if
23: return R
24: end procedure

are generated. For random sequence, this paper used LFSR
technique on the polynomial x7 + x6 + 1 to generate random
sequences. This polynomial has maximum period of 127 values
ranging from 1 to 127. So it can represent 127 characters
without any repetition. This paper uses only alphanumeric
letters where every letter is assigned a value in the order it
is generated in the sequence. For letters starts with numbers
[0−9], small letters [a− z] and capital letters [A-Z] .

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, numerical experiment results of proposed
ECC scheme and the scalar multiplication algorithm are de-

Algorithm 5 Random Sequence Generation

1: procedure RANDOMSEQUENCEGENERATOR(x7 +x6 +1)
2: f lag← 0x01
3: data← f lag
4: index← 1
5: do
6: newbit← ((data� 6)∧ (data� 5)) AND 1)
7: data← ((data� 1)∨newbit) AND 0x7 f
8: Rindex← data
9: index← index+1

10: while data 6= f lag
11: return R
12: end procedure

scribed. This paper proposes a new ECC scheme with a view
to achieving robust securities. The results of the proposed
approach are compared with the existing approach to find the
effectiveness of the proposed approach in terms of number
of operations and computational costs. Running time of the
algorithm depends on the prime number and the message to
be encrypted. This can also vary machine to machine and
compiler to compiler. So this study implements some existing
algorithms for comparisons. The approach presented in this
paper is coded using C on an Intel laptop with speed of 2.13
GHz and 2GB of RAM under Ubuntu 14.04 LTS using gcc -
4.9 compiler. For the operations of large bits this paper uses
GMP library [15] , version-6.0.0a. The large primes are taken
from The Prime Pages library [16] . It is tested on a message
of 2.7 kb file containing only numbers and alphabets.

A. Experimental Results of Proposed ECC Scheme

Proposed ECC scheme is compared to the conventional
ECC scheme on computational cost and the level of security
they offer against popular cryptanalytic attacks. Conventional
ECC uses only one secret number as a private key and one
point on the curve as a public key. On the other hand, the
proposed ECC scheme uses one number with a point on
the curve as private key and two points on the curve as
public key. The additional points increase the computational
cost but strengthen the security higher than the conventional
ECC. Table I shows the elliptic curve operations needed
for conventional ECC [17] and proposed ECC Scheme. The

TABLE I: Comparison of required operations between [17]
and proposed ECC

Algorithm Operations Addition Subtraction Multiplication

[17]
Key Generation 0 0 1

Encryption 1 0 2
Decryption 0 1 1

Proposed ECC
Key Generation 1 0 2

Encryption 1 1 3
Decryption 0 1 1

comparison of computational costs of Key generation, ECC
encryption and ECC decryption methods of proposed scheme
with the conventional ECC scheme are presented in Fig. 6,
Fig. 7 and Fig. 8.

(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 1, 2016 

642 | P a g e
www.ijacsa.thesai.org 



160 224 256 384
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Key size

Pr
oc

es
si

ng
tim

e
(s

ec
)

[10] Proposed

Fig. 6: Comparison of key generation cost between [10] and
proposed ECC
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Fig. 7: Comparison of encryption cost between [17] and
proposed ECC

B. Experimental Results of Proposed Scalar Multiplication

The efficiency of an ECC scheme depends largely on the
scalar multiplication. Most of the existing algorithms have
the overhead of converting the scalar number to binary or
sign binary presentation to minimize the Hamming Weight.
Proposed algorithm doesn’t have such overhead except it needs
pre-computed doublings and minimizes the Hamming Weight.
The computational cost of the proposed Scalar Multiplication
is shown in Fig. 9. The experimental results show that the com-
putational cost of the proposed scalar multiplication algorithm
is less than that of [18] and [7] which proves the efficiency of
the proposed scalar multiplication algorithm.
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Fig. 8: Comparison of decryption cost between [17] and
proposed ECC
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Fig. 9: Comparison of computational cost of scalar multipli-
cation among [18], proposed ECC and [7]

C. Resistance against Attack on Proposed ECC Scheme

Proposed ECC has higher level of security than con-
ventional ECC and experimental results for different attacks
confirm it. The standard attack on ECC is Random Walk [19]
which uses Pollard-Rho method for solving Elliptic Curve Dis-
crete Logarithm Problem(ECDLP) [20] . The strategy behind
the algorithm is to produce a sequence of randomly generated
terms (R,a,b) where R is a point on the curve E and a,b
lie in Fp. As E(Fp) is periodic, eventually it will back again
to some point. Using this technique, the secret is calculated.
Pollard-Rho [21] proved that the expected running time of the
method is

√
π×n

2 steps, where a step here is an elliptic curve
addition. As the proposed algorithm has two different secret
keys the expected running time will be twice of the stated cost.
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Fig. 10: Finding repetition of points using random walk
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TABLE II: Comparison of computation cost required to break
ECC

ECC [22] Proposed ECC
Key Size Cost MIPS years Cost MIPS years

160 280 9.6×1011 2×280 1.92×1012

186 293 7.9×1015 2×293 1.58×1016

234 2117 1.6×1023 2×2117 3.2×1023

354 2177 1.5×1041 2×2177 3.0×1041

426 2213 1.0×1052 2×2213 2.0×1052

So the expected cost of breaking the proposed ECC scheme
will roughly be 2×

√
π×n

2 steps. A MIPS (Million Instructions
Per Second) year is presented as the computational power of a
computer that is rated at 1 MIPS and utilized for one year. The
comparison of computation cost required to break the proposed
ECC with the conventional ECC [22] are presented in Table II.

V. CONCLUSION AND FUTURE WORK

This paper proposes a new ECC scheme and a scalar
multiplication algorithm for it. When developing ECC scheme,
this paper aims the higher level of security to be the foremost
criteria to improve than the conventional ones. For scalar
multiplication, reduction of computation cost is chosen to
be the primary criteria and this is achieved including the
advantages of both binary and signed binary presentation in
the proposed algorithm. Future study aims to integrate the
advantages of double scalar multiplications in the proposed
ECC scheme to further minimize the computation cost. Then,
the proposed scheme will be evaluated on different key sizes
against different cryptanalytic attacks for further improvement
of the proposed scheme.
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