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Abstract—In this paper, we present a computer vision based
system for fast robust Traffic Sign Detection and Recognition
(TSDR), consisting of three steps. The first step consists on image
enhancement and thresholding using the three components of the
Hue Saturation and Value (HSV) space. Then we refer to distance
to border feature and Random Forests classifier to detect circular,
triangular and rectangular shapes on the segmented images.
The last step consists on identifying the information included in
the detected traffic signs. We compare four features descriptors
which include Histogram of Oriented Gradients (HOG), Gabor,
Local Binary Pattern (LBP), and Local Self-Similarity (LSS). We
also compare their different combinations. For the classifiers we
have carried out a comparison between Random Forests and
Support Vector Machines (SVMs). The best results are given by
the combination HOG with LSS together with the Random Forest
classifier. The proposed method has been tested on the Swedish
Traffic Signs Data set and gives satisfactory results.

Keywords—Traffic Sign Recognition (TSR); thresholding; Hue
Saturation and Value (HSV); Histogram of Oriented Gradients
(HOG); Gabor; Local Binary Pattern (LBP); Local Self-Similarity
(LSS); Random forests

I. INTRODUCTION

Advanced driver assistance systems (ADAS) are one of
the fastest-growing fields in automotive electronics. ADAS
technology can be based upon vision systems [1], active
sensors technology [2], car data networks [3], etc. These
devices can be utilized to extract various kinds of data from the
driving environments. One of the most important difficulties
that ADAS face is the understanding of the environment and
guidance of the vehicles in real outdoor scenes. Traffic signs
are installed to guide, warn, and regulate traffic. They supply
information to help drivers. In the real world, drivers may
not always notice road signs. At night or in bad weather,
traffic signs are harder to recognize correctly and the drivers
are easily affected by headlights of oncoming vehicles. These
situations may lead to traffic accidents and serious injuries.
A vision-based road sign detection and recognition system is
thus desirable to catch the attention of a driver to avoid traffic

hazards. These systems are important tasks not only for ADAS,
but also for other real-world applications including urban scene
understanding, automated driving, or even sign monitoring for
maintenance. It can enhance safety by informing the drivers
about the current state of traffic signs on the road and giving
valuable information about precaution. However, many factors
make the road sign recognition problem difficult (see Fig. 1)
such as lighting condition changes, occlusion of signs due to
obstacles, deformation of signs, motion blur in video images,
etc.

Fig. 1: Examples for difficulties facing the traffic sign recognition
(TSR) task.

A traffic sign recognition algorithm usually consists of two
modules: the detection module and the classification module.
The detection module receives images from the camera and
finds out all the regions in the images that may contain traffic
signs; then the classification module determines the category
of traffic sign in each region. The information provided by the
traffic signs is encoded in their visual properties: color, shape,
and pictogram. Therefore, the detection and the recognition
modules are based on color and shape cues of traffic signs. In
this paper, we describe a fast system for vision based traffic
sign detection and recognition.

The rest of the paper is organized as follows. Section 2
presents an overview of past work on traffic sign detection
and recognition. Section 3 details the proposed approach to
traffic sign detection and recognition. Experimental results are
illustrated in Section 4. Section 5 concludes the paper.
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II. OVERVIEW

Many different approaches to traffic sign recognition have
been proposed and it is difficult to compare between those
approaches since they are based on different data. Moreover,
some articles concentrate on subclasses of signs, for example
on speed limit signs and digit recognition. This section gives
an overview of the techniques used in the TSR and previous
works using these techniques. According to the two basic tasks
in traffic sign recognition, we simply divide the overview into
two categories: traffic sign detection and classification.

A. Traffic Sign Detection

The purpose of traffic sign detection is to find the loca-
tions and sizes of traffic signs in natural scene images. The
well-defined colors and shapes are two main cues for traffic
sign detection. Thus, we can divide the detection methods
into two categories: color-based and shape-based. Color-based
methods are usually fast and invariant to translation, rotation
and scaling. As color can be easily affected by the lighting
condition, the main difficulty of color-based methods is how
to be invariant to different lighting conditions. These methods
tend to follow a common scheme: the image is transformed
into a color space and then thresholded. Some authors perform
this thresholding directly in RGB (Red Green Blue) space,
even if it is very sensitive to illumination changes. To overcome
this, simple formulas relating red, green and blue components
are employed. For example, Escalera et al. in [4] used different
relations between the R, G and B components to segment the
desired color. In [5] the difference between R and G, and the
difference between R and B channels are employed to form
two stable features in traffic sign detection. Ruta et al. in [6],
used the color enhancement to extract red, blue and yellow
blobs. This transform emphasizes the pixels where the given
color channel is dominant over the other two in the RGB color
space. In addition to RGB space, other color spaces such as
YUV and HSI are also used. For example, The YUV system
is considered in [7] to detect blue rectangular signs. In [8] a
segmentation method in both La-b and HSI color spaces is used
to extract candidate blobs for chromatic signs. At the same
time, white signs are detected with the help of an achromatic
decomposition. Then a post-processing step is performed in
order to discard non-interest regions, to connect fragmented
signs, and to separate signs located at the same post.

In the other hand, shape-based methods employ either
Haar-like features in frameworks inspired by the popular
Viola-Jones detector or the orientation and intensity of image
gradients in frameworks inspired by the Generalized Hough
Transform. The first sub-category comprises the works by
Bahlmann et al. [9] and by Brkic et al. [10], whereas in the
second we find the Regular Polygon Detector [11], the Radial
Symmetry Detector [12], the Vertex Bisector Transform [13],
the Bilateral Chinese Transform and, alike, the two schemes
of Single Target Voting for triangles and circles proposed by
Houben [14]. Many recent approaches use gradient orientation
information in the detection phase, for example, in [11], Edge
Orientation Histograms are computed over shape-specific sub-
regions of the image. Gao et al. [15] classify the candidate
traffic signs by comparing their local edge orientations at
arbitrary fixation points with those of the templates. In [16],

the Regions of Interest (ROI) obtained from color-based seg-
mentation are classified using the HOG feature. To integrate
color information in the HOG descriptor, Creusen et al. [17]
concatenate the HOG descriptors calculated on each of the
color channels. The advantages of this feature are its scale-
invariance, the local contrast normalization, the coarse spatial
sampling and the fine weighted orientation binning.

B. Traffic Sign Recognition

The purpose of traffic sign recognition is to classify the de-
tected traffic signs to their specific sub-classes. Regarding the
recognition problem, it is common to use some features with
machine learning algorithms. Maldonado et al. in [18] utilized
different one-vs-all SVMs with Gaussian kernel for each color
and shape classification to recognize signs. In [19] SVMs are
used with HOG features to carry out classification on candidate
regions provided by the interest region detectors. It withstand
great appearance variations thanks to the robustness of local
features, which typically occur in outdoor data, especially
dramatic illumination and scale changes. Zaklouta [20] uses
different sized HOG features, and adopts random forest based
classification to achieve high detection accuracy. Tang [21]
proposes an efficient method of traffic sign recognition using
complementary features to reduce the computation complexity
of traffic sign detection, and then uses the SVM to implement
the traffic sign classification. The complementary features used
in Tang [21] include HOG [22] and LBP [23]. Convolutional
Neural Network (CNN) is another method used for traffic
sign classification. It is proved in [24] that the performance
of CNN on traffic sign classification outperforms the human
performance. In [25], a CNN together with a Multi-Layer
Perception (MLP), which is trained on HOG features, was
used. In [26], a CNN with multi-scale features by using
layer-skipping connection is presented. In [1], the authors
suggest a hinge loss stochastic gradient descent method to
train convolutional neural networks. The method yields to high
accuracy rates. However, a high computing cost is paid to train
the data when using CNNs.

In general, the quality of the results obtained by any study
on TSR varies from one research group to another. It is very
difficult to decide which approach gives better overall results,
mainly due to the lack of a standard database of road images.
It is not possible to know, for example, how well the systems
respond to changes in illumination of the images since in the
different studies it is usually not specified whether images with
low illumination have been used in the experiments. Another
disadvantage of the lack of a standardised database of road
images is that some studies are based on a small set of images
since the compilation of a set of road scene images is a very
time-consuming task. The problem with working with such
small data sets is that it is difficult to evaluate the reliability
of the results.

III. PROPOSED METHOD

The proposed system consists of three stages: segmenta-
tion, shape detection and recognition. In the first stage, we
aim to segment the images to extract ROIs. In the second one,
we detect the desired shapes from the ROIs. In the last stage,
we recognize the information included in the detected traffic
signs. Fig. 2 illustrates the algorithm scheme of the proposed
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Fig. 2: Algorithm scheme.

method. In this section, we detail each step of the proposed
approach.

A. Segmentation

Color segmentation algorithms are influenced by weather
condition, daytime, shadows, orientation of objects in relation
to the sun and many other parameters. These parameters
change frequently in dense urban area scenes. In addition, there
are many other objects in the street of the same color as traffic
signs (red and blue). Therefore, the color information is only
used to generate ROIs without performing classification.

To overcome the difficulties related to illumination changes
and possible deterioration of the signs, the HSV color space
is used in our system. We implement both enhancement and
thresholding techniques. First, we enhance the input image in
HSV color space. Then, we segment the image using fixed
thresholds. These thresholds were empirically deduced using
traffic sign images. The resulting binary image is then post-
processed to discard insignificant ROIs and to reduce the
number of ROIs to be provided to shape classification stage.

1) Enhancement: Approved by many experiments, HSV
color space is a good choice for color image enhancement.
There is only a weak correlation between HSV components,
which indicates that a modification to one component will only
slightly change another. Unfortunately, in some situation, the
slightly change in HSV will result in great color distortion. In
this paper, the hue and saturation component are kept intact
and only value component of the input image is subjected
for enhancement. This enhancement is done according to two
steps: Luminance enhancement and Contrast enhancement.

First, The luminance enhancement is applied to the value
component using the formula provided in [27]. Suppose that
V1(x, y) denote the normalized V channel in HSV space and
V2(x, y) be the transferred value by applying nonlinear transfer

Fig. 3: Enhancement results.

function defined below.

V2 =
V 0.75z+0.25
1 + 0.4(1− z)(1− V1) + V

(2−z)
1

2
(1)

where, z is the image dependent parameter and is defined as
follows

z =


0, for L ≤ 50
L−50
100 , for 50<L ≤ 150

1, for L>150

(2)

where, L is the value (V ) level corresponding to the cumula-
tive probability distribution function (CDF) of 0.1. In equation
2 the parameter z defines the shape of the transfer function or
the amount of luminance enhancement for each pixel value.

The second step is the contrast enhancement. In this
process, the Gaussian convolution using Gaussian function
G(x, y) is carried out on the original V channel of the input
image in HSV space. The convolution can be expressed as:

V3(x, y) =
M−1∑
m=0

N−1∑
n=0

V (m,n)G(m+ x, n+ y) (3)

V3 in equation 3 denotes the convolution result, which contains
the luminance information from the surrounding pixels. The
amount of contrast enhancement of the centre pixel is now
determined by comparing centre pixel value with the Gaussian
convolution result. This process is described in the following
equation:

V4(x, y) = 255V2(x, y)
E(x,y) (4)

where

E(x, y) =

[
V3(x, y)

V (x, y)

]g
(5)

where, g is the parameter determined from the original value
component image in HSV space for tuning the contrast en-
hancement process. This parameter g is determined using
following equation:

g =


1.75, for σ ≤ 2
27−2σ

13 , for 2<L<10

0.5, for σ ≥ 10

(6)

where, σ denotes the standard deviation of the individual block
of the original value component image. The standard deviation
is determined globally, as it was done in [27]. Fig. 3 shows an
example of image before and after enhancement process.
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TABLE I: Thresholds used for road sign detection.

Red Bleu
Hue 0 < H < 12 Or 300 < H <360 190 < H <260

Saturation 25 < S < 250 70 < S < 250
Value 30 < V < 200 56 < V < 128

Fig. 4: Segmentation results.

2) Thresholding: After the enhancement process, we refer
to thresholding to segment the image into ROIs. Each image
element is classified according to its hue, saturation, and value.
A pixel color is considered as red or blue using the threshold
values shown in Table I. The hue obtained H is within the
interval [0, 360], the saturation S and intensity I is within [0,
255]. We further refer to the achromatic decomposition used
in [18] to segment white color. This achromatic decomposition
is defined as:

f(R,G,B) =
|R−G|+ |G−B|+ |B −R|

3D
(7)

The R, G and B represent the brightness of respective color.
D is degree of extracting an achromatic and it is empirically
set to D = 20 in [18]. An achromatic color is represented by
f(R,G,B) of less than 1, and an f(R,G,B) of greater than
1 represents chromatic colors.

After the segmentation stage, we obtain a binary image
with the pixels of interest being white and others black (see
Fig. 4(b)). Then, according to the size and the aspect ratio of
the blobs, we eliminated noise and blobs considered as non-
interest. The limits for both criteria, i.e., size and aspect ratio,
were empirically derived based on road images (see Fig. 4(c)).

B. Shape Classification

In this stage, we classify the blobs that were obtained
from the segmentation stage according to their shape. We
only consider triangular, circular and rectangular shapes. Thus,
Distance to Borders (DtBs) [18] are used as feature vectors for
the inputs of a random forest classifier. DtBs are the distances
from the external edge of the blob to its bounding box. These
features are widely used to classify shapes, and show its
performance in many traffic sign recognition works. Fig. 5
shows these distances for a triangular shape. After computing
these features, a random forest classifier is used to classify
the ROIs into appropriate shapes. A Random Forest is an
ensemble of classification trees, where each tree contributes
with a single vote for the assignment of the most frequent class
to the input data. It adds an additional layer of randomness
to bagging. In addition to constructing each tree using a
different bootstrap sample of the data, random forests change

Fig. 5: DtBs for a triangular shape.

how the classification or regression trees are constructed. In
standard trees, each node is split using the best split among
all variables. In a random forest, each node is split using the
best among a subset of predictors randomly chosen at that
node. This somewhat counter intuitive strategy turns out to
perform very well compared to many other classifiers, and is
robust against overfitting [28]. Random Forests have received
increasing interest because they can be more accurate and
robust to noise than single classifiers [20] [16].

The proposed method is invariant to translation, scale and
rotation. First, it is invariant to translation because it does not
matter where the candidate blob is. Second, the method is
invariant to scale due to the normalization of the DtB vectors
to the bounding-box dimensions. Finally, the detection process
is invariant to rotation because the most external pixels of each
blob are detected to determine the original orientation, and
after this, all blobs are oriented in a reference position. In
conclusion, samples of DtB vectors show a similar evolution
for each geometric shape.

C. Recognition

Once the candidate blobs are classified into a shape class,
the recognition process is initiated. The main objectives of this
stage to be based on a method with a high accuracy but at the
same time, the memory and the complexity of the algorithm
used have to be minimized.
In this work, we compare the Random Forests classifier, to
the state-of-the-art SVM classifier. As we will see in section
4, random forests performance is better than SVMs in both the
accuracy rate and the execution time.
For the feature extraction, inspired by the existing ones, we
try to introduce new ones using different combinations. HOG,
Gabor filters, LBP, and LSS are used in this work. The
performance and the execution time of these features as well
as the classifiers ones are shown in section 4.

1) Features extraction: We used in this work four kinds
of features namely, HOG, Gabor , LBP , and LSS.
The first feature used is HOG feature. It was proposed by
Navneet Dalal and Bill Triggs [22] for pedestrian detection.
The basic idea of HOG features is that the local object
appearance and shape can often be characterized rather
well by the distribution of the local intensity gradients or
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edge directions, even without precise knowledge of the
corresponding gradient or edge positions. The method is very
simple and fast so the histogram can be calculated quickly.
The second one is Gabor feature. Gabor filters have been
applied to many signal processing and pattern recognition
problems. They are able to explore the local spectrum
characteristics of image. A 2D Gabor filter is a band-pass
spatial filter with selectivity to both orientation and spatial
frequency [29].
The third one is LBP. It was proposed by T. Ojala [23], and
it is a popular texture descriptor. The concept of LBP feature
vector, in its simplest form, is similar to the HOGs. The
window is divided into cells. For each pixel in a cell, we
compare the center pixels value to each of its 8 neighbours,
and the pixels value is set to 1 if its value is greater than the
center pixels value, or set to 0 otherwise. Then compute the
histogram, over the cell, of the frequency of each ’number’
occurring, and normalize it to obtain histograms of all cells.
This gives the features vector for the window.
The last one is LSS feature. Generally in LSS, The selected
image is partitioned into smaller cells which, conveniently
compared with a patch located at the image center. The
resulting distance surface is normalized and projected into the
space intervals partitioned by the number of angle intervals
and radial intervals. The maximum value in an interval space
would be considered as the value of the feature.

2) Classifiers: Two classifiers were used in this work:
random forests and SVMs. The results of the comparison are
presented in section 4.
As mentioned in III-B, Random Forests have received increas-
ing interest because they can be more accurate and robust to
noise than single classifiers. Another advantage of Random
Forests is their ease of use in the sense that they have only
two parameters (the number of variables in the random subset
at each node and the number of trees in the forest), and is
usually not very sensitive to their values. The main idea of
random forests consists of an arbitrary number of simple trees,
where the final predicted class for a test object is the mode of
the predictions of all individual trees.
In the other hand, SVMs are used to extend our study of
classifiers for TSR. The algorithm attempts to separate the
positive examples of negative examples. The basic concept of
SVM is to transform the input vectors to a higher dimensional
space by a nonlinear transform, and then an optical hyperplane
that separates the data, can be found. This hyperplane should
have the best generalization capability. In many cases, the data
cannot be separated by a linear function. The use of a kernel
function becomes essential in these cases. SVM is designed to
solve a binary classification problem. However, for a road sign
inventory problem, which is a multiple classification problem,
classification is accomplished through combinations of binary
classification problems. There are two ways to do that: one-
vs.-one or one-vs.-all.

IV. EXPERIMENTAL RESULTS

This section presents the results obtained by the proposed
approach. Evaluation of the classifiers as well as the features
presented in III-C1 are presented to justify the choice of the
proposed system. All the tests were performed on the public
STS data set [30] using a 2.7 GHz Intel i5 processor.

A. Data Set

We implement our method on the Swedish Traffic Sign data
set (STSD). It is a public data set which contains sequences
videos and includes more than 20 000 images in which 20%
of the images are labeled. It contains 3488 traffic signs. The
images in STSD are obtained from highways and cities record
from more than 350 km of Swedish roads Fig. 6.

Fig. 6: Examples of STS Data Set images.

B. Traffic Sign Detection

The evaluation of the detection stage is performed based
on precision-recall curve, where the recall and precision values
are computed as follows:

recall =
Number of correctly detected signs

Number of truesigns
× 100 (8)

precision =
Number of correctly detected signs

Number of detected signs
× 100 (9)

The precision-recall curves of the proposed method when
applied to STS data set are depicted in Fig. 7. The best trade-
off between the recall and precision values as well as the Area
Under Curve (AUC) of the detection module are listed in Table
II. It can be seen that the method yields the best results with
recall of 93.41% at a precision of 95.12%. The AUC of the
precision-recall curve is 94.50%.

Fig. 8(a) shows an example among images used to test the
proposed detection approach. The corresponding segmentation
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Fig. 7: Precision-recall curve of the proposed detection approach
when applied STS data sets.
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TABLE II: The best trade-off between the recall and precision values
as well as the AUC obtained by the detection method on STS data
set in %.

Recall Precision AUC
On the STS Data set 93.41 95.12 94.50

Fig. 8: Example of test images (a) and (b), (c)segmentation phase’s
results.

Fig. 9: Final detection results by the proposed detection method.

results with and without using size and aspect ratio constraints
are illustrated in Fig. 8(b). Referred to these figures, some
regions are discarded as non-interest objects according to their
size and aspect ratio. Therefore, the detection process can be
reduced as the number of ROIs is reduced. The segmentation
method succeeds to detect the road sign present in Fig. 8(a)
among the extracted ROIs in Fig. 8(b). However, some ROIs
have been detected even they do not represent road signs.
The shape classification method has been applied to the ROIs
in Fig. 8(c). The DtBs of the extracted ROIs have been
computed and feed to random forest classifier. Fig. 9 shows
the final detection results by the proposed detection method.
Red bounding box represents detected region of traffic sign.

C. Traffic Sign Recognition

To evaluate the recognition stage, a comparison between
features and classifiers used in the system is performed.
To obtain optimal design parameters of each descriptor,
we run some cross-validation experiments on the training
dataset: divide the training images into a basic training
set and a validation set. By training classifier on the basic
training set and evaluate on the validation set, we selected
the setting of maximum validation accuracy and a setting of
lower-dimensionality. After that, the classifier is re-trained on
the whole training set with selected feature extraction settings.

To compute the HOG feature vector, we normalize the
window detected in the previous stage to 40 × 40, and the
normalized image is divided into 8 × 8 overlapping blocks,
which gives us a total number of 49 blocks. Each one of
these blocks is divided to 2 × 2 cells, and each cell contains
a 5 × 5 pixels. In each cell, we obtain a gradient histogram
of 9 bins. For the Gabor feature, we used tow scales and
eight orientations. The window is partitioned into 16 × 16
blocks and sampling interval varies according to the block
sizes. For the LBP feature: we employ a basic LBP descriptor
to compute the LBP features. The normalized window is
partitioned into 6 × 6 non-overlapping blocks. Using the
uniform patterns method, we extract 59 features per block,
and finally form the LBP feature vector. The last feature is
LSS. It has four primary parameters: the size of image, the
radius of window, the interval radius of image patches and
angle interval. These parameters are closely associated with
each other. In our implementation, we used 3 × 3 patches,
correlated against a surrounding window with radius equal
to 10. Our log-polar coordinates was partitioned into 80 bins
(20 angles and 4 radial intervals).

After calculating the four different features individually, we
concatenate them to form new features. In Table III, different
compound features are listed to compare their performance
on the STS data set. As we can see from Table III among
the four single feature descriptors, the HOG feature has a
Correct Classification Rate (CCR) of 95.38%, higher than
the Gabor, LBP, and LSS features. According to the results,
combining two different features can improve classification
accuracy evidently. Particularly, the combination of HOG and
LSS features gives a CCR of 96.13%, significantly better than
the best single feature HOG or LSS. Each combination of
two features outperforms its constituent single features. This
confirms that the different features are complementary.

Table III gives also a comparison between the state-of-the-
art SVMs with radial basis function (RBF) kernel, C = 7 and G
= 0.09 and Random Forest with 600 trees and 100 variables, in
the terms of CCR and running time. It is obvious from the table
that the Random Forest classifier provides accurate results
with less running time when compared to the SVM classifier.
Thus, we have adopted in the proposed recognition method the
Random Forest classifier together with the HOG+LSS features.

Figs. 10, 11 and 12 illustrate examples of recognition
results when the proposed approach is applied to images
of various traffic environments. In Fig. 10, the traffic signs
contained in the images have been successfully detected and
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TABLE III: The CCR and the average running time of the classifiers and features used in this work.

Feature Random Forests SVMs
CCR(%) Execution Time(ms) CRR(%) Execution Time(ms)

HOG 95.38 20.82 94.52 37.36
Gabor 94.89 31.21 94.23 41.67
LBP 94.63 12.30 94.02 18.45
LSS 94.24 10.72 3.84 13.38

HOG+Gabor 95.59 38.51 95.15 58.96
HOG+LBP 95.94 25.23 95.46 43.48
HOG+LSS 96.13 22.18 95.68 42.81
Gabor+LBP 95.39 33.81 94.79 49.34
Gabor+LSS 95.42 33.47 94.47 49.52
LBP+LSS 95.29 13.90 94.44 20.91

Fig. 10: Detection and recognition results.

Fig. 11: Examples of recognition with misdetection.

Fig. 12: Examples of recognition with confused classification.

recognized. In Fig. 11, the system was not able to detect
traffic signs. Consequently, the ROIs corresponding to the signs
were not feed to the recognition stage. In Fig. 12, the traffic
signs contained in the images have been successfully detected.
However, the system could not recognize them due to the
motion blur in the signs.

V. CONCLUSION

In this paper, a fast system for Traffic Sign Detection and
Recognition was described. In the first stage, we refer to color
segmentation to reduce the search space. We used an enhance-
ment then a thresholding on the HSV color space. In the
second stage, the circular, rectangular and triangular signs are

detected using the Distance to Border feature and a Random
Forest classifier. The detected candidates are identified using
The Random forests classifier with a combination of HOG and
LSS features. The system achieves correct classification rate of
over 96% at a processing rate of 8–10 frames/s. In the future
work, we can use adaptive thresholds to overcome the color
segmentation problems. Temporal information could also be
integrated to track the detected traffic signs and reinforce the
decision making process. This would also allow us to restrict
the search space in the current image considering previous
detections information, which can accelerate the candidate
detection.
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