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Abstract—This article presents a percolation-based approach
for the analysis of risk propagation, using malware spreading as a
showcase example. Conventional risk management is often driven
by human (subjective) assessment of how one risk influences the
other, respectively, how security incidents can affect subsequent
problems in interconnected (sub)systems of an infrastructure.
Using percolation theory, a well-established methodology in the
fields of epidemiology and disease spreading, a simple simulation-
based method is described to assess risk propagation system-
atically. This simulation is formally analyzed using percolation
theory, to obtain closed form criteria that help predicting a
pandemic incident propagation (or a propagation with average-
case bounded implications). The method is designed as a security
decision support tool, e.g., to be used in security operation centers.
For that matter, a flexible visualization technique is devised, which
is naturally induced by the percolation model and the simulation
algorithm that derives from it. The main output of the model is
a graphical visualization of the infrastructure (physical or logical
topology). This representation uses color codes to indicate the
likelihood of problems to arise from a security incident that
initially occurs at a given point in the system. Large likelihoods
for problems thus indicate “hotspots”, where additional action
should be taken.

Keywords—security operation center; malware infection; perco-
lation; BYOD; risk propagation; visualization

I. INTRODUCTION

Risk is a notoriously fuzzy term that describes the pos-
sibility of suffering damage, based on expected occurrences
of certain incidents. Security risks add to the complexity of
(general) risks an element of rationality, as security commonly
assumes the existence of some hostile actor in the system.
This takes a security risk analysis beyond the scope of pure
probabilistic modeling, since events occur no longer at random,
but may partially follow unknown rationales and evolve over
time. Advanced persistent threats are one prominent example
of this.

A typical security assessment is composed from many
reports, traffic light scales or other rating systems or visu-
alizations. All of these ideas have a common ground, and
aggregate information for the sake of a simple or complex
visualization. Often, the effect is either information flooding
or information loss for the decision maker. Independently of
which risk assessment method or model is used, the results
should thus not be over-condensed into a single indicator (like

a “security traffic light” that turns red in case of trouble, yellow
to indicate problems ahead, and green if everything is okay),
and support a decision maker by providing an adjustable level
of granularity. Ideally, the representation allows to “zoom-in”
or “zoom-out” of the risk picture to get a solid understanding
of the situation, and to derive the proper actions thereof. This
visualization aspect is discussed further in section III.

In the following, let us consider an infrastructure as a
system of interconnected components, which in a simplified
view can be described as a graph (nodes being components,
edges being their connections). Most practical systems are het-
erogeneous, in the sense of interconnecting many subsystems
of quite different nature. For example, utility networks are usu-
ally a compound construct of a physical utility supply system
(e.g., water, electricity, etc.), which is controlled by an upper
layer for supervisory control and data acquisition (SCADA)
systems. Likewise, complex enterprise infrastructures may be
clustered into local area networks (LANs) that are themselves
interconnected by a wide area network (WAN) layer, which
may or may not be under the control of the enterprise (e.g.,
the physical communication services could be outsourced to
some external party).

Incident propagation in such a heterogeneous environment
is generally difficult to analyze, since an incident occurring at
one point may have (in)direct implications that depend on the
system dynamics, but also on how the problem’s origin node
is “connected” to other parts of the system. For example, if a
malware-infected sensor delivers incorrect measurements, the
resulting incorrect information may cause subsequent problems
in other parts of the system. However, the malware itself
may not be able to spread over the same link, if the sensor
connection is only for signalling and not for data transmission.
So, a problem may propagate differently over different links,
and the physical data item that causes the problems may
change along its way through the system.

A further example of exactly this kind of information
change is the distribution of information between agents in
social and market systems (cf. [1], [2]). This is yet another im-
portant aspect of risk management, especially when it comes to
a company’s reputation and public image. Spreading rumours
or negative information can have serious consequences for an
enterprise, and risk management must consider this. Although
these parts of risk management relate to psychology and
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sociology rather than technology, the techniques and results
presented in this work will (after obvious adaptations) apply
to such matters equally well.

Basically, incident propagation can be treated like an
epidemic outbreak, where the infection depends on how the
individuals are connected to each other. In the technical context
here, possible connections could be for data transmissions,
while others may be only signalling, but some may also be
social, when people exchange information by email or orally.
Problems arising at one place may then propagate through
various kinds of connection and infect large parts of the
relevant infrastructure; and it is the risk management’s duty
to assess the potential impacts thereof. While the relevant
standards (cf. [3]–[5] among others) explicitly prescribe to
identify and analyze the system characteristics for an informed
risk assessment, none of these standards provides an explicit
method to do this. This article shall help in this regard.

In fact, while epidemics spreading has received much
attention (see below), its use to analyze risk management
is so far still limited. In practice, most risk assessments are
heuristic and based on expertise and experience, which makes
them inevitably subjective. This work is intended to aid risk
managers by providing simulation models and tools to easily
analyse and assess incident effects.

Before coming to the details, section I-A and section I-B
both discuss related work on epidemic spreading, in order to
illustrate the improvements/benefits offered by the model that
is described in section II.

A. Epidemic Models – A Critical Look

Roughly speaking, the vast amount of epidemic models
available in the literature (see, e.g., [6]–[14]) can be divided
into deterministic and stochastic approaches, which are dis-
cussed separately below.

A popular representative of the deterministic class is the
SIR model (see [15] for example), whose name encodes three
functions of time t, which are S(t) = number susceptible,
I(t) = number infectious, and R(t) = number recovered.
These functions are then described by differential equations,
whose numeric or algebraic solution can be used to predict
and control the outbreak of an infection. Depending on the
assumptions made (e.g., a uniform and constant rate of infec-
tion, recovery with immunity, etc.), various other models can
be obtained. The SIS model is one such particular instance,
and assumes recovery of individuals without immunity. Such
individuals can model technical components on which an in-
fection cannot ultimately be banned by applying a patch. More
importantly, any kind of immunity by security boundaries
(e.g., firewall, physical protection, etc.) can be circumvented
if users are allowed to connect their own devices that may be
infected with malware. In light of such BYOD (bring your own
device) events, which are inherently random, a deterministic
epidemic outbreak regime seems too restrictive. In turn, the
stochastic element induced by BYOD may also invalidate some
assumptions underneath deterministic models, such as constant
rates of infection.

Consequently, stochastic models of epidemic spreading ap-
pear to be an attractive alternative. Nevertheless, they also ship

with difficulties: essentially, statistical models are built from
(massive lots of) data (observations), which may be difficult
to obtain or even be unavailable at all. Especially in a security
context, companies are quite reluctant in releasing information
about incidents in order to not endanger their reputation. Thus,
a statistical approach should work with as little data as is there,
and should avoid further loss of information by aggregation (as
is common in risk assessment, say by taking the overall risk
as the maximum risk across all system components).

B. Malware Infections and Percolation Theory

The stochastic model of choice in this work uses perco-
lation theory [6], [16]–[19] to assess the cascading effects
of problems hitting some defined point in the system. Based
on simulations on which parts of the system (may) become
infected, the likelihood for an infection of a particular node
can then be expressed by color-encoding (heat map) of the
infrastructure graph. This creates an easily understandable
overview for a decision maker, which visualizes the current
situation and helps to decide on proper actions. Combining
the so-obtained incident indications (likelihoods) with stan-
dard risk aggregation (say, by the aforementioned maximum
principle [20]) helps to simplify or detail the infrastructure
picture, depending on what is relevant for the decision making.
This is the twofold benefit over most related work in this
area, as neither an oversimplification of results nor an over-
complication of the underlying model can render the risk
assessment useless.

Starting from a simple and intuitive simulation approach to
malware spreading (e.g., the aforementioned BYOD scenario),
percolations are a natural way of describing such simulations
formally. Percolation theory then delivers even closed form
criteria for whether or not an epidemic can (will) grow into
a pandemic. The particular the closed-form criterion that is
discussed in section II-C generalizes the work of [9], [21],
who assume a “homogenous outbreak”, in the sense that an
infection is equiprobable for any pair of entities in contact,
and in particular happens irrespectively of the nature of the
two entities. This is similar to the assumption of a constant
infection rate as found in many deterministic models. As
shown below, this restriction can be dropped by using different
infection rates for different kinds of connections (e.g., email
contact, wireless layer 2 connection, etc.).

BYOD provides a particularly illustrative example: while
a virus can enter the system on a USB stick (“BYOD con-
nection”), it may spread by itself within the locally connected
network (email connection), and may later penetrate another
physical separation by another BYOD incident. One prominent
such case was reported for the Iranean nuclear power plants,
which got infected by the Stuxnet worm [22] via BYOD.
Although BYOD and protection against it has received consid-
erable attention in the literature [23]–[26], an epidemics-like
treatment of malware infections (e.g., caused by BYOD) for
risk management is not available so far. Existing proposals
in this area are usually restricted to specific topologies [6],
[18], [19] or are focused on factors that are specific for human
disease spreading [10], and thus do not directly apply to the
purely technical network infection scenario.
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II. THE SIMULATION AND PERCOLATION MODEL

Let the network infrastructure be modeled as a directed
graph G = (V,E). The set V contains all nodes, with their
interconnections being edges in E ⊆ V × V . Note that
w.l.o.g., G can be assumed as directed, since bidirectional
links are easily emulated by adding arrows in both directions.
Assume that all edges in E fall into different non-overlapping
“classes”, where each class has distinct characteristics in how a
problem propagates over the respective edges. Examples could
be email-communication (class 1), direct network links (class
2), BYOD links (class 3), and so on. Formally, E is partitioned
into m subsets of edge classes, each of which has different
properties related to incident propagation, and one edge is
assigned to exactly one edge class. Specifically, let each edge
class k be associated with a likelihood pk to transport the
problem. The way how to define and obtain pk is discussed
later in section II-B.

Note that a distinction between different connection types
is indeed common practice in critical infrastructure risk anal-
ysis [27]–[32], so it is reasonable to assume a concrete such
partitioning available (e.g., based on any of the cited precursor
references). The issue is revisited in section III, where hints
on how to identify the edge classes are given.

A. Simulation of Infections

Let λ > 0 denote a general infection rate parameter,
which equals the average number of events per time unit.
For example, if the daily email traffic in a network is known
to be (on average) N1 emails per hour, then λ is obtained
by scaling N1 down (or up) to the time unit used for the
simulation. Likewise, if the traffic on links of edge class 2 is
N2 packets per time unit, then λ2 = N2, etc. Let one such rate
parameter per edge class be given, calling them λ1, . . . , λm.
That is, a class-specific (and thus not constant) infection rate
is assumed. Estimates for each rate parameter can be obtained
from empirical analysis of the traffic in the infrastructure, e.g.,
by using packet sniffing, counting emails, asking people how
often they plug in USB devices on average, and so forth. For
the i-th edge class, the number of infection attempts (once a
problem occurred at some point), is Poisson(λi)-distributed.
The total number of infection attempts is therefore also Poisson
distributed with rate parameter λ = λ1 + λ2 + . . .+ λm, and
the pause between any two events is exponentially distributed
with parameter 1/λ.

The outbreak of an infection, i.e., the risk propagation, will
be simulated on the given directed network graph G = (V,E),
where each edge i→ j is assigned a likelihood pk specific for
each edge class and describing the probability of the problem
to jump from node i to node j in the infrastructure. The
simulation of an outbreak then boils down to graph coloring at
random. That is, let all nodes in G be colored green initially
(indicating that they are “healthy”). As input for the simulation,
take any node v0 ∈ V (the infection’s starting point), and color
v0 in red (indicating that it is “infected”). Then, the basic
simulation runs as follows (in pseudo-code):

1: while simulation is not finished
2: for each red node in V , set N(v)← {u ∈ V : (v, u) ∈ E}
3: for each neighboring node u ∈ N(v)
4: let k be the class in which the edge v → u falls into,

5: with likelihood pk, color u in red
6: endfor
7: endfor
8: endwhile

Now, to become specific on when to finish the simulation,
let a finite time horizon T be given. In each step of the
innermost for-loop, the algorithm can simply draw a random
quantity of exponential distribution (with parameter 1/λ as
defined above), and advance the current time until it exceeds
T . Thus, the full simulation algorithm is only a slight extension
of its previous version:

1: t← 0
2: while t < T
3: for each red node in V , set N(v)← {u ∈ V : (v, u) ∈ E}
4: for each neighboring node u ∈ N(v)
5: let k be the class in which the edge v → u falls into,
6: with likelihood pk, color u in red,
7: draw an exponentially random ∆t ∼ Exp(1/λ),
8: t← t+ ∆t.
9: endfor
10: endfor
11:endwhile

Generating exponentially distributed random numbers in
line 7 is a easy by using the inversion method; that is, given
a uniformly random value r ∈ [0, 1], an Exp(1/λ)-distributed
variate is obtained as ∆t = −λ · log r.

The output of the algorithm is a partially red-colored graph,
in which all red nodes are considered as “infected”. Note that
nothing is assumed about disinfections or healing of nodes,
so as to simulate a worst-case scenario (without any repair
attempts). The final rate of infection is simply the fraction
of red nodes relative to all nodes in G. In detail, calling |V |
the total number of nodes in the network and N the random
number of infected nodes, the result is the degree of infection
(measurable in %),

degree of infection =
N

|V |
.

Extending the simulation by assuming nodes to recover at
random then amounts to adding another random number M
to the output N , where M is the number of healed nodes, the
degree of infection changes into (N −M)/ |V |.

As demonstrated later, at least the distribution of N can
be found with the help of generating functions depending on
the class of edge that failed. The distribution of M cannot be
determined in general, as it depends on the particular recovery
processes (which are up to organizational regulations).

B. Dealing with Uncertainty

The quantity pk in the algorithm (used in line 5 of the
basic, and line 6 of the full simulation) is so far assumed as an
exact figure. Practically, experts may provide only vague and
possibly disagreeing estimates on the exact magnitude of the
likelihood for a problem to infect a related system. A standard
method to deal with this uncertainty is aggregation (e.g., taking
the maximum over all different estimates of the likelihoods,
or similar). Except for its simplicity, such an approach is
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pk = Pr(Xk > 0.5)
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Fig. 1: Treatment of Uncertain/Ambigious Expert Assessments

quite lossy in terms of information, so the proposed method
works somewhat different: let pk,1, . . . , pk,nk

be a set of nk
different estimates for the likelihood pk. If these estimates are
“qualitative”, in the sense that they are given on a ordinal scale
(e.g., “low”, “medium” or “high”), then assign arbitrary (but
for the application meaningful) values in [0, 1] that preserve the
ranks. For example, the scale (low < medium < high) would
be mapped to the representatives ( 1

6 < 1
2 < 5

6 ). The overall
probability pk for the problem to jump over an edge of class k
is then no longer a fixed number but actually a random variable
Xk that is distributed according to the expert’s opinions about
edges of class k.

However, the appeal of the simple simulation approach is
that the necessary change to incorporate this uncertainty in full
power is simply done by taking the decision in line 6 with the
likelihood

pk := Pr[Xk > 0.5] . (1)

Under this heuristic, the likelihood for the problem to jump
over an edge of class k is determined by how much mass
the experts put on the event of an infection. Continuing the
above example with the qualitative scale (low < medium
< high) for the likelihoods, this would mean that, e.g., a
“medium” assessment contributes no information, as it assigns
mass to the exact center, or equivalently, puts equal mass
on both events, to infect or not infect a node. This is (at
least intuitively) meaningful, as infections are more frequent
in the simulation if more experts consider an edge as being a
likely infection path. Conversely, if experts rate the chance
of an infection over an edge of class k rather low, then
the simulation adheres to this expected behavior. Figure 1
shows an abstract example of a distribution that is constructed
from several experts rating an edge of class k on a five part
scale “negligible/low/medium/high/major”. The values of the
grayish highlighted bars are merely summed up to give the
sought likelihood pk.

The likelihood used for the simulation according to the
above formula is the mass located to the right of the center.
This rule offers the additional appeal of being somewhat robust
against outliers, which in case of risk expertise elicitation
would correspond to extreme risk aversion or extreme will-
ingness to take risks. Experts that fall into either of these
classes would not affect the 50%-quantile (that pk according
to equation (1) basically is).

An alternative yet most likely computationally infeasible
approach would be averaging over all different configurations
of edge likelihoods, which are available from the total set of
expert opinions. It is easy to imagine that – if a discrete scale

is used – the number of simulations grows like Ω(nm), where
m is the number of edge classes, and n is the minimal number
of different estimates for pk per class k. Aggregating all these
simulation outputs into a single weighted sum (with weights
determined by the relative fraction of how often a particular
configuration appears in the overall set) is also only feasible
under discrete estimates. If the assessment is on a continuous
scale (unlikely but possible in practice), then things become
even more involved and unclear in how to define them properly.

C. A Pandemic Criterion from Percolation Theory

The question of primary interest is whether or not an
infection stays local or evolves unboundedly across the net-
work, such that every part of the system is ultimately reached.
Running the simulation algorithm from section II-A multiple
times to see where the infection is leading to, takes a lot of
time and effort. Thus, a more direct answer to the question is
required.

Alas, a naive use of a shortest-path algorithm to compute
the most likely infection path from v0 to all other nodes in V ,
is flawed, since this would return only one among (in general
exponentially) many possible ways over which an infection can
hit a node. Thus, a more sophisticated model is needed, which
percolation theory provides.

Since the formal proofs are messy and involved (see [33]
for full details), the following description stays at an intuitive
and high level.

Existing percolation models for spread of failures or epi-
demics hardly take into account diversity among different
connections but assume uniform probability of failure [34] (an
approach that distinguishes at least directed from undirected
connections can be found in [8]). Based on the model as
described in section II, especially the different probabilities
pi for each edge class i, the structure of the infected part of
the network can be determined using probability generating
functions (see e.g. [35]). Intuitively, these help answering the
following question:

How big is the impact of an error, i.e., what is the
expected number of infected nodes due to failure of
a component?

The “size” of the impact is herein taken as the average
number of infected nodes (taken as the limit over a hypo-
thetical infinitude of independent simulations). A pandemic
outbreak is then nothing else than an unbounded average
number of infected nodes. The subsequently stated criterion
to predict this pandemic is based on this understanding:

Definition 2.1 (Pandemic Outbreak): A pandemic in a
graph G occurs if the expected number of affected nodes is
unbounded.

For both failure of a node as well as of an edge of class
i, a linear equation system in the expected number of infected
nodes can be obtained. The coefficient matrix is therein fully
determined by the graph topology (specifically the probability
qk for an edge of type k to exist in the network), and the
probability pk for an edge of type k to transport the problem.
The scope of the outbreak is governed by these probabilities,
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(a) Situation after 5 time units (b) Situation after 10 time units

Fig. 2: Bounded Epidemic (Condition (2) satisfied)

and whether or not a pandemic occurs can be decided upon
knowing these quantities.

If the network is described through an Erdős-Rényi model
[36], the equation system is directly solvable and yields a
particularly simple relation between the network properties and
a possible pandemic:

Theorem 2.1: Let a network of n nodes with m classes of
edges be described through a Erdős-Rényi model, in which an
edge of class i exists with probability qi. Furthermore, let each
class i have probability pi to let an error propagate over an
edge of this kind. If

1− np1q1 − . . .− npmqm > 0, (2)

then no pandemic (according to def. 2.1) will occur.

The theorem can be illustrated using the simulation algo-
rithm of section II-A: Assume the network to consist of 20
nodes with 3 different classes of connections, shown in red,
green and black (cf. Fig. 2 and Fig. 3). Let the probabilities
for an edge to exist in each class be q = (0.1, 0.1, 0.1)
and let the error propagate over each class with likelihoods
p = (0.1, 0.2, 0.05). Then, the hypothesis of 2.1 is satisfied
and a rather limited fraction of nodes is expected to fail.
Indeed, the simulation results shown in Figure 2 display only
one infection (node colored red) having occurred after ten
time units after the initial incident. On the contrary, if the
probabilities for existence of a link are q = (0.1, 0.4, 0.25)
and those for an error propagation are p = (0.1, 0.3, 0.25), then
the “anti-pandemic” condition in theorem 2.1 is violated, and
a pandemic is expected. The simulation indeed confirms this
behavior, as Figure 2 shows only 3 of the 20 nodes remaining
healthy 10 time steps after the outbreak (the other 17 nodes
are all red).

III. VISUALIZATION BY HEAT-MAPS AND
GEO-REFERENCES

In its plain form, the simulation delivers a concrete scenario
of infections, and the percolation epidemics criterion judges
the (un)boundedness of the average number of infections. Both
pieces of information can be made much more comprehensi-
ble by a visualization technique, which adds the geographic
location to each node, and – using color codes – indicates
the likelihood of a node becoming infected as the relative
frequency of its red-coloring over many simulations of the
outbreak. Speaking percolation language, a pandemic outbreak

(a) Situation after 5 time units (b) Situation after 10 time units

Fig. 3: Pandemic Outbreak (Condition (2) violated)

will then become visible by a giant red component in the
infrastructure, while a locally bounded epidemic will appear
as a smaller bounded cluster in the network infrastructure.

For the general problem of incident propagation, it is useful
to consider the way in which infrastructures can be modeled
beyond pure physical connections. This is a standard step to
gain an understanding of the infrastructure, and it can have
a second use in identifying the proper edge classes to set up
the percolation model as described in section II. Usually, such
modeling is aided by a good visualization, which also can have
a double use, namely, to set up the model and to visualize the
results.

To get started with the model, [32] proposes a modularized
approach that can be adopted here too: This process starts with
an identification of physical components and applications, and
interdependencies therein. Figure 4a displays an example of
such a dependency model, in which an application A depends
on several subcomponents, e.g., an application server (AS1),
a data warehouse (DW), which itself relies on (two) databases
DB1, DB2, and components are virtualized (represented by
virtual machine nodes VM1, . . . , VM5, which in turn run on
physical servers, etc.

Figure 4b represents a higher-level view that is restricted
basically to interdependencies between applications. Thus, in
distinguishing dependencies between components from those
between applications, two edge classes for the percolation anal-
ysis have already been identified. The resulting infrastructure
model is nothing else than a weighted directed graph that
captures dependencies of physical components and/or applica-
tions on one another. More precisely, nodes are components or
applications and edges are relationships between components,
each of which falls into a specific edge class (determined
by the type of dependency), and has a specific behavior in
error propagation. In this logical view, model components-
to-components relations, as well as components-to-application
and applications-to-application-relationships, by defining the
respective edge classes. The graph representation is in no way
restricted in its visual elements, so the model itself can use
boxes and circles to distinguish components from applications,
while both are being abstracted to simple “nodes” in the graph
model G for the percolation.

On the so-obtained graphical dependency model, the pan-
demic criterion (theorem 2.1) can be invoked to obtain a first
(initial) risk estimate. For a more detailed picture, the proposed
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Fig. 4: Dependency Model – Example

simulation can be executed, with its results fed back into the
visualization technique of [32], to get the sought “zoomable”
information and visualization system. The visualization is
nothing else than the initial dependency model, only being aug-
mented by color codes to indicate neuralgic spots. A decision
maker can then coarsen or refine the graph by clustering nodes
or dissolving cluster-nodes to display more or less details. For
example, one can (un)hide the physical dependencies below
application A from the higher-level application dependency
graph in Figure 4b. Also it is easy to augment nodes with meta
information, such as the node type, the geographical location,
the likelihood of an infection, and whatever else is relevant.
This is the typical case for visualizations as being used in a
security operation center, as they are used by governments or
agencies to supervise the security situation in IT infrastructures
(e.g., a local intranet, a critical infrastructure, etc.).

An important part of the meta-information is directly ob-
tained from the percolation simulation, and meta-information
about the infrastructure as a whole can be gathered from the
pandemic criterion as given in section II-C. For example, imag-
ine that a number of independent simulations are done, then the
outcome of each one (specific infection or error propagation
scenario) may be different per run. Simply counting the relative
number of times that application A has been infected by the
simulated incident, approximates the likelihood for A to be
eventually in trouble. This likelihood can be displayed using
a color indicator, as shown in Figure 5. That is, instead of
coloring a node green or red as in the simulation, the analysis
would now assign any color between purple (high likelihood
of a problem) until green (low likelihood of a problem),
to graphically visualize which parts of an infrastructure are
critical, vulnerable, etc.

The resulting picture is called a heat-map, and could look
like figure 5. In this image, the circles represent applications
(only), and the color codes indicate the vulnerability of an
application to running into trouble. In the simplified picture
shown in figure 5, application A as being infected by malware
may also infect C with some likelihood, but D remains
somewhat secure, although E is affected with high probability
again. This simplified view does not explain this effect, which,
however, may be due to the error propagating from A to E over
some edges that belong to a class that is hidden in this view.

In general, by displaying different edge classes, different
pictures arise, and explanations for vulnerabilities can be found
from the graphical model almost directly.

A

C

D

B F

E

Fig. 5: Heatmap example

In a second step of the visualization, the risk manager
can look at the meta-information attached to the nodes in the
heatmap, so as to change the heatmap according to what the
decision maker are currently interested in. For example:

• Layers of security: these determine the depth of in-
formation details. In the first layer, applications and
their relations are presented (as one edge class). In
a second layer, components that applications depend
on can be represented (another edge class), and so
on. Thus, the security layers may directly correspond
to edge classes. Depending on what edge classes are
being displayed, the picture may change (see figure
6).

Fig. 6: Showing different layers

• Protective target: the simulation/percolation may refer
to different security targets, which amounts to assign-
ing different probabilities to the existing edge classes.
For example, if the security goal is integrity, then
inconsistencies in the data delivered by application A
may cause subsequent errors in application B as well
(as A delivers data to B). If the protective target is
availability, then an outage of application A may cause
much less troubles with application B. The respective
heatmaps may look very different, and – combined
with geographical data – directly point to the most
likely problems (see figure 7).

• Different filters can be used to omit parts/details from
the picture if they are not relevant. These filters could
concern the infection grade (to show only highly
vulnerable spots) or to restrict the view on a specific
country or subsidiary of an enterprise. For example,
an important filter concerns the connectivity of a node,
to see which nodes are easy to isolate or repair. Such
filters are useful to define remediation plans, if an
epidemic (or pandemic) is indicated.
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Fig. 7: Showing different protective targets

IV. CONCLUSION

Percolation offers a simple, intuitive and powerful model
of epidemics spreading in networks, which is particularly
applicable to risk propagation. A current limitation of this
model is its ignorance of recovery or healing effects, which
may take place in long run simulations or even when advanced
persistent threats (APTs) are being mounted (when malware
that has not yet become active is removed by coincidence or
upon detection).

For a decision maker and security expert, both not con-
cerned with the details of the theory but how to apply its
results in practice, the method offers several appealing features:
first, it can easily deal with uncertainty and ambiguity in the
model parameters. Although the model’s outcome is only as
good as its input, the full variety of methods to deal with
uncertainty is available to aggregate diverging opinions into a
justified model parameter. In this context, equation (1) is robust
against outliers, i.e., unusual/uninformed risk assessments, but
a Bayesian estimate would be equally possible. Second, the
theory as such provides a direct answer to a frequent direct
question, i.e., “whether or not the system is going to be
in trouble”. If the answer to the latter is positive, then the
visualization technique (as sketched in section III) allows
to dig into the simulation data (as obtained by the simple
algorithm in section II-A), to let a decision maker “zoom-into”
the picture to see different scenarios of incident propagation,
to manually and informedly refine her/his opinion about what
needs to be done.
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