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Abstract—One of the top challenging problems in data mining 
domain is the distributed data mining (DDM) and mining multi-
agent data. In distributed environment, classical techniques 
require that the distributed data be first collected in a data 
warehouse which is usually either ineffective or infeasible. Hence, 
mining over decentralized data sources can overcome such issues. 
Rule-based classifiers involve sharp cutoffs for continuous 
attributes. Fuzzy Logic System (FLS) has features that make it 
an adequate tool for addressing this shortcoming effectively and 
efficiently. In this paper, a framework for a Parallel Fuzzy-
Genetic Algorithm (PFGA) has been developed for classification 
and prediction over decentralized data sources. The model 
parameters are evolved using two nested genetic algorithms 
(GAs). The outer GA evolves the fuzzy sets whereas the inner GA 
evolves the fuzzy rules. During optimization, best rules are only 
distributed among agents to construct the overall optimized 
model. Several experiments have been conducted over many 
benchmark datasets. The experiment results show that the 
developed model has good accuracy and more efficient in 
performance and comprehensibility of linguistic rules compared 
to some models implemented in KEEL software tool. 

Keywords—Fuzzy Classification; Rule-Base; Fuzzy Logic 
System (FLS); Genetic Algorithm; Distributed Data Mining (DDM) 

I. INTRODUCTION 
Data mining, generally, can be described as the process of 

transforming knowledge from data format into some other 
human understandable format [1]. This knowledge discovery 
process has many domains and application areas such as in 
bioinformatics [2], business analytics [3], text analysis [4], 
web data analysis [5], health care [1] and many other domains 
where there is scope for hidden information retrieval. 

In literature, data mining systems can be categorized 
according to data type, data model, task/knowledge type, or 
exploration technique [1][6]. One form of data mining tasks 
and Machine Learning (ML) techniques is classification. 
Classification and prediction are forms of data analysis in 
order to construct models for describing important data classes 
or predicting future data trends [7][8]. A classifier model is 
constructed to predict categorical (discrete, unordered) labels 
while a predictor model is constructed to predict ordered or 
continuous valued function. These constructed models give 
better understanding of the data at large. For example, a 
marketing manager of a car agency may ask to construct a 
classifier model to predict to what degree a customer will 

accept buying a particular car, given the car profile. 

Data mining has some challenges. One of the top 
challenging problems in data mining domain is the distributed 
data mining (DDM) and mining multi-agent data [9]. In 
distributed environment, classical techniques require that the 
distributed data be first collected in a data warehouse [6]. This 
Collection of huge volume of data is usually either ineffective 
or infeasible for many reasons. For example, this may 
encounter problems belongs to privacy and sensitivity of data 
in addition to the costs in storage, communication, and 
computation. Hence, mining over decentralized data sources 
can overcome the above issues and help to reach all network-
related domains. For distributed environment, numerous 
techniques have been developed for data classification and 
prediction in order to discover knowledge from distributed 
data effectively and efficiently [10][11][12]. However, no 
single data mining technique has been proven appropriate for 
every domain and dataset [6]. 

Rules are one way for representing information or bits of 
knowledge. Rule-based classifiers use a set of IF-THEN rules 
for classification [13]. However, rule-based classification 
systems have the shortcoming that they involve sharp cutoffs 
for continuous attributes. Fuzzy Logic System (FLS) has 
attractive features that make it an alternative tool to tackle this 
issue in designing data mining systems performing rule-based 
classification effectively and efficiently [6]. 

In this paper, FLS features are explored in next section. In 
third section, Genetic Algorithms (GAs) are presented as an 
example of evolutionary computing algorithms (EAs) for 
evolving fuzzy rule-base. In fourth section, an optimized 
Parallel Fuzzy-Genetic Algorithm (PFGA) is developed for 
classification and prediction over decentralized data sources. 
In fifth section, results of conducted experiments are provided, 
analyzed and discussed compared with some classification 
models implemented in KEEL software tool. Finally, a 
conclusion is presented. 

II. FUZZY LOGIC SYSTEMS (FLSS) 
One highly successful theory in Computational 

Intelligence (CI) techniques is fuzzy set theory [14]. The 
design of FLS was one of the largest application areas derived 
from fuzzy set theory. FLS have demonstrated their superb 
ability as system identification tools and has enjoyed wide 
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popularity in computer science and engineering as an 
advanced Artificial Intelligence (AI) tool and control 
technique [15] [16]. The strength of FLS lies in its expressive 
power and flexibility to handle a complex system even if no 
precise mathematical model of the underlying processes is 
available [17]. The key issue resolves around designing the 
required input and output fuzzy sets that define the semantic 
of the domain. FLS domains are characterized by linguistic 
labels rather than by numbers. Hence, FLS is frequently 
considered as computing with words rather than numbers [17]. 
This descriptive approach, generally, are suitable for handling 
the issues related to understandability of patterns, incomplete 
or noisy data, and can provide approximate solutions faster 
[18]. 

As graphically shown in Fig. 1, a general-purpose FLS 
consists of four generic components. It works by encoding an 
expert’s knowledge into a set of IF-THEN fuzzy rules, which 
are smoothly interpolated, and the resultant is defuzzified to 
give the desired behavior in terms of crisp output. Each fuzzy 
rule is specified as either a trapezoid, triangular, logistic, bell 
shape, or some other functions, and assigned to some range of 
input variable. Common sense can provide good estimates for 
fuzzy sets and membership functions to be associated with 
each linguistic input and output variables. However, it is the 
task of the human domain expert to define the function that 
captures the characteristics of the fuzzy set. Since it tolerate 
imprecision, FLS is an attractive technique for feature 
classification because a given feature may have partial 
membership in different classes. Recent work by data mining 
researchers has shown that the qualitative nature of FLS 
makes it a formal tool for constructing classifiers that deal 
with problems characterized by pervasive presence of 
uncertainty. For example, Fuzzy-based classifier has been 
applied successfully in data mining for Hepatitis [19], and data 
mining for intrusion detection [20]. Fuzzy-based classifier, 
generally, consists of a set of fuzzy linguistic rules as 
sentences rather than equations. These fuzzy linguistic rules 
are easier understood than systems of mathematical equations. 

A FLS, generally, is known as knowledge-based system. 
The Knowledge Base (KB) not only has the rule-base but it 
also has the fuzzy sets and membership functions of the fuzzy 
partitions associated to the linguistic input and output 
variables. Therefore, this specifies a clear distinction between 
the fuzzy model structure and parameters as defined in 
classical knowledge discovery techniques [21]. Although the 
above generic components are common features to all fuzzy-
based systems, many design options exist based on this 
structure[15]. 

 
Fig. 1. The structure of a Fuzzy Logic System (FLS) and its components 
interconnections 

Mamdani and Assilian produced the first FLS for control 

in 1975 [21]. This type of FLS forms the basis for all types of 
FLS. It is derived directly from available heuristic control 
strategies mimicking the control knowledge of a human 
expert. FLS is statically described by linguistic rules [14]. The 
output fuzzy sets utilized in Mamdani-type FLS are singletons 
or combinations of singletons, where the combinations are 
achieved through application of fuzzy set operators. However, 
FLS generally has the advantage of allowing two design 
approaches. The first design approach is applied for real-world 
applications where the human expert knows the appropriate 
system response, given particular input variable scenarios. In 
this case, the FLS parameters can be specified, and they are 
static (e.g., [22]). This contrasts with Artificial Neural 
Network (ANN) approaches, where the user is in no position 
to specify weights values, even if the appropriate system 
response is known. 

The second approach in FLS design is applied for real-
world applications where the system response is not known. In 
this case the FLS parameters can be optimized through 
learning using some CI techniques such as EAs or ANN 
strategies, until the overall FLS response matches the desired 
behavior [23]. Since it is the most natural approach, the use of 
EAs strategies in designing FLSs is currently a hot topic in 
classification area and has been largely extended in the last 
few years to face the tradeoff between interpretability and 
accuracy as both requirements are clearly in conflict [21]. The 
developed framework in this paper adopts the second 
approach in design and utilizes Pittsburgh approach in 
learning. However, a structure of nested GAs is developed for 
encoding the whole KB definition such that the performance 
of the optimized model proposed fits the desired efficiency 
and accuracy. 

III. EVOLUTIONARY ALGORITHMS (EAS) 
Optimization is a classical problem in several domain such 

as in Economy and Biology among others [24]. Analytical 
techniques were popularly used to solve optimization 
problems efficiently. However, alternative and competitive 
methods in CI techniques have appeared such as EAs. EAs 
have been applied to a wide range of problem areas such as 
control, function optimization, regression, classification and 
clustering [14]. One of the most common EAs strategies is the 
GA. GA generally combines adaptive heuristic search along 
with mathematical analysis to find approximate or even true 
solutions for optimization problems. The technique of GAs 
not only provides alternative methods for solving optimization 
problems, but it also consistently outperforms other classical 
methods in most of these problems [25]. 

The basic concepts in designing GAs follow the principle 
of survival of the fittest. This principle is inspired by natural 
selection and natural genetics which is first laid down by 
Charles Darwin. Although the steps of designing GAs are 
simple to understand and not difficult in coding, designing a 
suitable GA for a real-world task is a nontrivial exercise and 
almost an art [14][25]. However, design a GA has the 
exploration-exploitation tradeoff due to the interactions 
between the representation, selection, reproduction, mutation, 
and replacement operations. The high consumption of 
computational resources besides this tradeoff has been the 
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source of active research directions to discover alternative EA 
strategies [14]. 

From coding mechanism’s perspective, genetic rule-based 
algorithms in DM can be categorized into three approaches. 
The first approach is known as “Pittsburgh” approach where 
each individual encodes a rule set and the best individual in 
final population represent the rule-based classifier. The second 
approach is known as “Michigan” approach, where each 
individual encodes a single rule and the final population 
represents the rule-based classifier. The third approach is 
known as Iterative Rule Learning (IRL) approach, where each 
individual also encodes a single rule but each rule of the rule-
based classifier is obtained from each run [8]. The developed 
framework in this paper utilizes Pittsburgh approach in 
learning, as mentioned earlier. 

IV. PROPOSED PARALLEL FUZZY-GENETIC ALGORITHM 
(PFGA) FOR CLASSIFICATION AND PREDICTION 

A. Fuzzy Logic Classifier & Predictor 
The behavior of the FLS is determined by a number of 

parameters such as the fuzzy sets, the membership functions, 
and the structure and entries in the Fuzzy Associative Memory 
(FAM) matrix or fuzzy rules. In addition, some FLSs include 
parameters that assign a weight for each fuzzy rule to indicate 
its relative importance in the overall FLS behavior. All of 
these parameters are possible candidates for optimization 
using EA strategies, for example. However, it’s a daunting 
task for code developers to design a FLS that optimizes all of 
these parameters. In this research, the fuzzy sets and the fuzzy 
rule-base are both the candidates for optimization since they 
have the most influence in determining the FLS behavior. 

A classifier or predictor model is a decision rule that 
assign a class to every data point in attribute/feature space. 
Expert knowledge, in classification and prediction domain, 
can be effectively used to design a FLS as a set of flexible 
overlapping fuzzy rules that can be evolved in order to 
construct an adaptive model that approximate human 
reasoning in this domain. The fuzzy rules actually represent 
direct linguistic description of the particular relationships 
between the given attributes/features and their assigned class. 
Equation (1) represents the general form of a fuzzy rule: 

𝑅𝑖: 𝐼𝐹 (𝑥1 = 𝐴1)𝐴𝑁𝐷…  𝐴𝑁𝐷(𝑥𝑛 =  𝐴𝑛) 𝑇𝐻𝐸𝑁 (𝑦 =  𝐶) (1) 
Where:  Ri is fuzzy rule label number i in rule-base 

n is the number of attributes in dataset 

x1,…, xn are input linguistic variables  

y is the class linguistic variable  

A1,…, An are terms in input domains 

C is the assigned class term in output domain 

For example, one of the evolved fuzzy rules that predict 
the customer acceptability degree for buying a particular car, 
given the car profile, specify “IF (buying=MED) AND 
(safety=HIGH) THEN (acceptability=ACC)”. In this research, 
the input attributes/features of a dataset are assumed to be of 
equal importance and independent of one another. However, 
the types and the number of membership functions defining 

the fuzzy sets utilized for particular attribute is attribute 
dependent. For continuous attributes, triangular and trapezoid 
membership functions are selected with symmetry and initial 
overlap degree criteria of 25% [15] since they are 
computationally efficient in real-time FLS [6]. Moreover, a 
range of 3 fuzzy sets is utilized for input variables whereas a 
range of 5 output rules is utilized as this provides adequate 
resolution without excessive computational cost. For discrete 
variables, a singleton membership function is selected in 
representing discrete domains. 

Simplicity of design has been imposed, so the fuzzy rules 
are assumed to be of equal importance. Hence, all fuzzy rules 
in the rule-base are used with equal weighting. However, the 
size of the rule-base is controlled by the size of a dataset. For 
datasets having more than 1000 tuples, the rule-base is limited 
to minimum 10 fuzzy rules and maximum 25 fuzzy per agent. 
Otherwise, the rule-base is limited to minimum 5 fuzzy rules 
and maximum 15 fuzzy rules per agent. This control approach 
is necessary in order to avoid ignorance or explosion in case 
of too small rule-base size or too large rule-base size, 
respectively, which may results in undesired rules degrading 
both the accuracy and the interpretability. However, a rule-
base size for particular dataset can be computed as a function 
of its attributes and tuples sizes. 

For a low cost in storing fuzzy rules, virtual 
multidimensional FAM matrix approach is used in this 
research alternatively to multidimensional FAM matrix of 
fixed dimension. In this approach, higher-dimensional spaces 
are separated into two dimensions matrices and only the 
actually used entries are stored. Hence, no need to allocate the 
full multidimensional FAM matrix since a fuzzy rule is 
represented by index information that specifies its location in 
the virtual matrix. By using this approach, flexible FAM 
matrix structuring is allowed since rule entries are stored 
consecutively with variable number of inputs and the storing 
order becomes insignificant. In addition, huge benefits are also 
allowed when using this approach such as flexibility, 
implementation simplicity, ability to handle FAM matrices of 
arbitrary dimension, and ability to handle multiple lower-
dimensional FAM matrices simultaneously. Furthermore, this 
approach allows for a very compact implementation for the 
defuzzification process. The firing strength for a FAM entry is 
computed using the rule of minimum membership degree 
values as: 

𝑤𝑖 = 𝑚𝑖𝑛�𝜇𝐴1(𝑥1), … , 𝜇𝐴𝑛(𝑥𝑛)�   (2) 
Where:  n is the number of attributes in dataset 

x1,…, xn are input linguistic variables 

i is fuzzy rule number in rule-base 

µAi is the membership function of fuzzy set Ai 

wi is the firing strength of ith fuzzy rule 

However, if a membership function for each output fuzzy 
set is defined as: 

𝜇𝐶𝑖(𝑦𝑖) = 𝑜𝑢𝑡𝑝𝑢𝑡 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑠𝑒𝑡   (3) 
Where:  i is fuzzy rule number in rule-base 

yi is the class linguistic variable in ith fuzzy rule 
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µCi is the membership function of fuzzy set Ci 

Thereafter, the overall FLS response is computed from the 
defuzzification process for n output membership fuzzy sets as: 

𝑜𝑢𝑡𝑝𝑢𝑡 =
∑ �𝑤𝑖×𝜇𝐶𝑖(𝑦𝑖)�
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

   (4) 
Where:  n is the number of total current active rules 

�wi × µCi� is the height defuzzification 

The height defuzzification method is generally referred to 
as “clipped center of gravity”. This method is computationally 
efficient in real-time FLS compared to other methods such as 
the “center of gravity” or “centroid” defuzzification method, 
where the output is a combination of centroids for each 
overlapping fuzzy membership function. Moreover, it is 
highly recommended since it utilizes better use of the 
information in the output distribution and generates unique 
fuzzy centroid [26]. 

B. Evolved Fuzzy Logic Classifier & Predictor 
Normally, a FLS is not adaptive since it has no learning 

ability in itself. In addition, the design of FLS for certain real-
world application is considered as knowledge-intensive and 
time-consuming. This is due to the rapid increase in the 
possible combinations of FLS parameters in the KB such as 
the fuzzy rules, fuzzy rule structure, the number of input and 
output variable dimensions, fuzzy membership types, number 
of fuzzy sets per variable, and so on. Hence, FLS is a suitable 
domain to apply EA or ANN learning strategies to form a 
hybrid system in order to find an optimum set of fuzzy rules to 
finally get the desired behavior (e.g., [27]). The real-world 
application addressed in this research is how to automate the 
process of designing FLS parameters for a dataset 
classification and prediction algorithm in distributed 
environment. Therefore, a framework for a Parallel Fuzzy-
Genetic Algorithm (PFGA) has been developed in this paper 
to evolve the parameters of the FLS that is designed for 
classification and prediction over multi-agent dataset in 
decentralized data sources. 

The general structure for a FGA agent process is 
graphically shown briefly in Fig. 2. As shown, the main role 
for each FGA agent is to construct its local model from the 
input dataset. In order to construct its local model, the FGA 
agent uses 70% of the dataset tuples along with their 
associated class as training data while 30% of the dataset 
tuples are kept separately independent and used as testing data 
for validation. The k-fold cross-validation is not used since it 
has some limitations [28]. The local model parameters of the 
FGA agent are evolved using two nested GAs. The outer GA 
evolves the fuzzy sets whereas the inner GA evolves the fuzzy 
rules. Hence, the chromosome of the outer GA encodes the 
fuzzy sets whereas the chromosome of the inner GA encodes 
the fuzzy rules. The global collaborative objective to be solved 
by the FGA agents is to interact to get the best formation of 
fuzzy sets and fuzzy rules that best describe and classify the 
dataset in a more efficient manner than one single FGA agent 
could. Fig. 3 shows graphically the nested GAs architecture 
developed for a FGA agent. In this figure, outer GA has 
population of N1 chromosomes whereas inner GA has 

population of N2 chromosomes. Given a set of fuzzy rules 
Ri={R1,…,Rn}, a pseudo-code to design the inner GA is given 
below: 

1) Initialize population of N2 chromosomes.  
2) for i = 1 to maxGeneration do 

a) Evaluate fitness of all chromosomes 
b) Select N2/2 parents for reproduction using 

roulette te wheel selection 
c) Perform crossover operation on the selected 

pairs at some random point along each 
chromosome with probability Pc 

d) Perform mutation operation randomly with 
small probability Pm 

e) Replace the old population Pi with the new 
population Pi+1 using elitist strategy 

end for 

 
Fig. 2. The brief structure of a FGA agent constructing its local model from 
the dataset 

Since the inner GA evolves fuzzy rules, the inner GA 
chromosome is designed such that it encodes a rule-base. The 
encoding scheme here represents each fuzzy rule as an integer 
array of fixed length equal to size of dataset tuple along with 
its assigned class. The integer elements in this array represent 
key values indexing the fuzzy sets utilized in the fuzzy rule, in 
order. The integer representations of all fuzzy rules are then 
strung together to form a single and variable-length array of 
fuzzy rules indices that constitute the inner GA chromosome 
encoding the rule-base. However, the approach mentioned 
earlier for controlling the rule-base size has been imposed. 
Fig. 4 graphically illustrates an example for designing an inner 
GA chromosome for a dataset having 2 attributes along with 
its associated class. In this example, the inner GA 
chromosome is assumed encoding a rule-base having 3 fuzzy 
rules, with respect to fuzzy sets keys shown in figure. Each 
inner GA chromosome, or complete FAM matrix, is then 
evaluated against the fitness function and the normal 
operations of selection, crossover, mutation, and replacement 
are applied. 

However, in order to evaluate candidate solutions in inner 
GA, a chromosome from the outer GA must be utilized since it 
encodes the fuzzy sets definitions required in evaluating the 
rule-base encoded to obtain the accuracy of classification or 
prediction. In this case, the fitness function can be simply 
defined as the testing error: 

 
Fig. 3. The structure of nested GAs that evolves local model parameters of 
FGA agent 
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Fig. 4. Example of designing inner GA chromosome encoding rule-base of 3 
fuzzy rules 

𝑓 = 1
𝑒
      (5) 

Where:   e is the classification error 

However, in case of prediction, the testing error fitness 
function can be defined as: 

𝑓 = 1 − 𝐸      (6) 
Where:   E is the root mean squared error (%) 

For selecting potential inner GA chromosomes for 
reproduction, the strategy of roulette wheel technique is 
utilized due to its implementation simplicity [25]. In this 

strategy, the probability of selecting particular individual 
chromosome is proportional to its fitness. When selecting 
parents for reproduction, a single-point crossover operation is 
applied. In this operation, all fuzzy rules beyond that point in 
either individual chromosome are swapped. The crossover 
point on either individual is selected randomly and 
independently between encoded fuzzy rules borders. The 
resulting individuals are the offsprings. However, once upon 
again, the control approach for the size of a rule-base encoded 
in inner GA chromosome must be preserved for the reasons 
mentioned earlier.  Fig. 5 graphically shows an example of 
single-point crossover operation between two inner GA parent 
individuals P1 and P2 having chromosome sizes of 3 and 5 
fuzzy rules, respectively. In this example, the crossover point 
for parent P1 occurred between fuzzy rules R1 and R2 whereas 
the crossover point for parent P2 occurred between fuzzy rules 
R’2 and R’3. As shown in figure, the reproduction between P1 
and P2 results in two offsprings O1 and O2 having equal size of 
4 fuzzy rules. 

To preserve and introduce genetic diversity, mutation 
operation is applied through generations. In this operation, 
inner GA chromosome is modified per key entry with small 
probability. To maintain useful genetic diversity and to 
improve inner GA performance, elitist strategy for replacement 
is applied. In this strategy, the fittest individuals are selected to 
replace the old population. 

 
Fig. 5. Example of single-point crossover operation in inner GA where crossover points can be different positions 

Given a set of n attributes xi={x1,…, xn} along with its 
associated class attribute y of a particular dataset, a pseudo-
code to design the inner GA is very similar to the pseudo-code 
of inner GA mentioned above. However, the structure of outer 
GA chromosomes is dissimilar to the structure of inner GA 
chromosomes since outer GA evolves fuzzy sets whereas 
inner GA evolves fuzzy rules. Hence, outer GA chromosome 
is designed such that it encodes the fuzzy sets utilized in 
dataset attributes along with its associated class attribute. The 
encoding scheme here represents each attribute as an array of 
features defining the membership functions selected for the 
fuzzy sets utilized. Fig. 6 illustrates an example designing a 
structure encoding 3 fuzzy sets named “LOW” (L), 
“MEDIUM” (M) and “HIGH” (H) utilized for a continuous 
input attribute. In this example, triangular membership 
functions are selected to represent the fuzzy sets utilized, 

where fuzzy set L, M, and H are represented by left, regular, 
and right triangular membership functions, respectively. As 
shown in figure, the structure of the fuzzy sets utilized is 
represented as an array of the features defining their 
membership functions selected. These membership function 
representations for each attribute are then strung together to 
form a single and fixed-length array of features that constitute 
the outer GA chromosome encoding the overall fuzzy sets. 
Fig. 7 graphically shows the general structure of outer GA 
chromosome. However, fuzzy sets utilized are attributed 
dependent, as mentioned earlier. 

The difficulty with outer GA is how to evaluate the fitness 
of candidate solutions. The fitness of each outer GA 
chromosome cannot be computed in isolation from the inner 
GA chromosomes since fuzzy sets encoded in outer GA 
chromosome are contributing in the evaluation of the rule-base 
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encoded in inner GA chromosomes. A simple solution to this 
problem is to construct generational fitness regions in inner 
GA by arranging the fitness of all inner GA chromosomes in 
equal size regions each generation. The fitness function for an 
outer GA individual is then can be defined as the average 
fitness of the majority region. Hence, each outer GA 
chromosome is evaluated against the fitness function and the 
operations of selection, crossover, mutation, and replacement 
are typically applied. 

 
Fig. 6. Example of designing a structure encoding 3 fuzzy sets defined by 
triangular membership functions utilized for continuous input attribute 

 
Fig. 7. The general structure of outer GA chromosome encoding fuzzy sets 
utilized in all dataset attributes along with its class attribute y 

Similarly to inner GA, the outer GA utilizes the strategy of 
roulette wheel technique in selecting potential chromosomes 
for reproduction. In addition, outer GA applies single-point 
crossover operation in reproduction. However, in contrast to 
inner GA, the randomly selected crossover point in outer GA, 
on either individual, must have identical position between 
encoded attributes borders to preserve encoded fuzzy sets 
from being distorted. Fig. 8 graphically shows the single-point 
crossover operation in outer GA between two parent 
individuals P1 and P2 having fixed chromosome size of n 
attributes along with its associated class attribute. In this 
figure, the encoded fuzzy sets FSi={FS1,…, FSn+1} define the 
corresponding n input attributes along with the associated 
class attribute, respectively. As shown in figure, the crossover 
points for parents P1 and P2 have identical position and the 
reproduction results in two offsprings O1 and O2 having 
permanently identical size to their parents. Moreover, 
similarly to inner GA, the outer GA applies mutation and 
replacement operations through generations. Hence, outer GA 
chromosome is modified per feature entry with small 
probability and old population is replaced using elitist 
strategy. However, limits of fuzzy sets in domain must be 
preserved during mutation operation. 

 
Fig. 8. Single-point crossover operation in outer GA where crossover points must have identical position 

Fig. 9 graphically illustrates the detailed structure of a 
FGA agent showing its components and the interconnections 
between these components. As shown in figure, the FGA 
agent consists of two components namely, FLS and nested 
GAs. In this figure, the FLS uses the nested GAs in learning 
its KB to get the desired response. As can be seen, the FGA 
agent uses the structure developed to evolve best parameters 
in constructing its local model that best describe and classify 
the local input dataset. However, for a dataset distributed over 
decentralized sources, a Parallel Fuzzy-Genetic Algorithm 
(PFGA) framework has been developed. In this framework, all 
FGA agents are contributing and cooperating in parallel for 
constructing the final model that best describe and classify the 

overall distributed dataset. Fig. 10 graphically shows the 
structure of PFGA. As can be seen, all FGA agents are first 
allowed to construct their local models, as mentioned above. 
During the construction of local models, all FGA agents are 
allowed to exchange only their best fuzzy rules evolved each 
particular number of inner GA generations. For simplicity, the 
distribution strategy for fuzzy rules among FGA agents is 
applied sequentially and anticlockwise. By using this simple 
coordination strategy, changes to FGA agents are not only 
driven through genetic recombination and mutation but also 
driven through learning from FGA agent peers. In addition, 
the search process is not only guided by the fitness function 
but also guided by the interaction among peers. 
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Fig. 9. The detailed structure of a FGA agent constructing its local model 
from the dataset 

As can be also seen, local models of all FGA agents are 
finally aggregated in order to construct the final model. The 
adopted aggregation strategy keeps the most common fuzzy 
rules evolved in local models that give best accuracy and 
performance whereas eliminates redundant, conflicting and 
badly-defined fuzzy rules that perturbs the accuracy and 
performance. To summarize sequence of operations required 
for these tasks, a pseudo- code for the PFGA is given below: 

1) Initialize nested GAs environments in all FGA agents 
2) In parallel, build local model per FGA agent: 

a) Run through outer & inner GAs populations of N1 & 
N2 individuals respectively and assign each pair of inner-outer 
GAs individuals to a FAM representing candidate solution. 

b) Input a FAM matrix to classify or predict the training 
dataset. 

c) Evaluate current individual of N2 but evaluate current 
individual of N1 each complete generation of N2. 

d) Each particular number of inner GA generations, 
exchange best fuzzy rules evolved among FGA agents. 

e)  If a prespecified termination condition is satisfied, 
stop algorithm execution. Otherwise, apply genetic operations 
to inner & outer GAs individuals, respectively, then return to 
step (2-a). In experiments conducted, total number of inner GA 
generations (Ng) is used as a termination condition. 

3) Aggregate most common and good fuzzy rules evolved 
in all FGA agents to construct the final model. 

 
Fig. 10. The structure of PFGA that accepts a datasets distributed  over decentralized data sources and construct the final model from these cooperative local 
models of FGA agents 

By using the developed framework, storage cost exists in 
classical knowledge discovery techniques is avoided since 
distributed datasets are not required to be collected in a data 
warehouse. In addition, since fuzzy rules are the only thing 
allowed to be exchanged, many issues such as communication 
cost, privacy and sensitivity of data are tackled effectively and 
efficiently. Furthermore, the parallelism and cooperation exist 
in this framework allows FGA agents to construct the final 
model in a more efficient manner than one single FGA agent 
could. 

V. EXPERIMENTAL RESULTS AND DISCUSSION 
The following results were obtained from a series of 

experiments conducted using the developed PFGA framework 
described above, to evolve a model that best describe and 
classify a distributed datasets. The series of trial runs were 
performed on i5-3.2 GHz ( × 4) system running 32-bit 
Windows 7 ultimate and having 4.00 GB ram.  The 

performance of the proposed algorithm is measured using two 
different population sizes, two different numbers of FGA 
agents and three different policies for best fuzzy rules 
exchange among these agents. Five different benchmark 
datasets, listed in Table1, were employed in trial runs which 
were available from the dataset repository of Knowledge 
Extraction based on Evolutionary Learning (KEEL) [29]. The 
trial runs involve using the proposed algorithm against two 
evolutionary fuzzy rule learning algorithms  implemented in 
KEEL software tool version 3.0 with Pc=0.5 and Pm=0.1 [30]. 
In classification, the proposed algorithm is used against the 
Fuzzy Hybrid Genetics-Based Machine Learning (FH-GBML) 
algorithm [31]. In prediction, the proposed algorithm is used 
against the Genetic-Base Fuzzy Rule Base Construction and 
Membership Function Tuning (GFS-RB-MF) algorithm [32]. 

 In the first set of experiments, a population size N1=N2=20 
is used. In the second set of experiments, a population size 
N1=N2=40 is used. For each population size, six experiments 
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are conducted per dataset then repeated five times to study how 
the population size (N1, N2), number of agents (Na), and the 
exchange policy for best fuzzy rules among these agents affect 
the system behavior. 

 In each of these six experiments, the system is allowed to 
run first for Ng=500 then for Ng=1000. For each of these inner 
GA generations numbers (Ng), computational experiments are 
performed to examine various specifications of FGA agents 
numbers (Na) along with different exchange policies for best 
fuzzy rules among these agents in different intervals of Ng. 
More specifically, the examined numbers of FGA agents Na= 
5, 10 whereas the examined exchange policies for best fuzzy 
rules among these agents are: “No Exchange” (Pol1), 
“Exchange each 5 generations” (Pol2), and “Exchange each 10 
generations” (Pol3). The best fitness parameter is recorded for 
each generation. The average of best fitness parameter is then 
computed for the total of twelve experiments conducted per 
dataset, resulting in 500 and 1000 values when using Ng=500 
and Ng=1000, respectively. A time series of this averaged 
parameter is then plotted using the number of inner GA 
generations (Ng) for time axis. Specifically, the average fitness 
is computed for the twelve experiments conducted using the 
PFGA framework and the average fitness is computed for the 
experiments conducted using the FH-GBML and GFS-RB-MF 
algorithms. 

TABLE I. LIST OF DATASETS EMPLOYED IN EXPERIMENTS 

Name of 
Dataset 

Number of 
instances 

Number of attributes 
(Real, Integer, Nominal) 

Number 
of classes 

Banana 5300 2 (2/0/0) 2 
haberman 306 3 (0/3/0) 2 
saheart 462 9 (5/3/1) 2 
car 1728 6 (0/0/6) 4 
plastic 1650 2 (2/0/0) - 

Fig. 11 shows the results when a population size 
N1=N2=20 is used in classifying “banana” dataset for Ng=500 
and Na=5. As can be seen, the best fitness almost reached the 
same level when using the three exchange policies for best 
fuzzy rules in PFGA framework. However, it can be also seen 
that Pol2 policy outperforms other exchange policies for best 
fuzzy rules in short run. The reason is that the FGA agents do 
more exploitation for best fuzzy rules in short interval of 
times. Moreover, the same figure shows that the convergence 
time for PFGA framework is slower than the FH-GBML 
algorithm. This is due to the slow exploration in real 
attributes.  On the other hand, Fig. 12 shows the results when 
a population size N1=N2=40 is used in classifying “banana” 
dataset for Ng=1000 and Na=5. As can be seen, the Pol2 policy 
performs better in long run and almost reached best fitness 
value of 0.78. The reason is that using larger population size 
increases the diversity and, consequently, the exploration for 
better solutions by FGA agents that exploit best fuzzy rules in 
short interval of times. 

Fig. 13 shows the results when a population size 
N1=N2=20 is used in classifying “haberman” dataset for Ng= 
and Na=10. As can be seen, the best fitness almost reached a 
value of 0.74 after 20 generations in PFGA framework when 
using policies that exchange best fuzzy rules among FGA 
agents whereas it reached a same value after 80 generations in 

a policy that doesn’t exchange best fuzzy rules among FGA 
agents. This highlights the importance of exchanging best 
fuzzy rules among FGA agents. As can be seen in Fig. 14, the 
best fitness using PFGA framework almost reached the same 
best fitness value of 0.78 using FH-GBML algorithm when 
classifying “haberman” dataset using N1=N2=40 for Ng=1000 
and Na=10.  The reason is that the exploration in integer 
attributes is faster than in exploration in real attributes which 
results in fast fuzzy rules evolving. 

 
Fig. 11. Example of best fitness data for N1=N2=20 using “banana” dataset 
for Ng=500 and Na=5 

 
Fig. 12. Example of best fitness data for N1=N2=40 using “banana” dataset 
for Ng=1000 and Na=5 

 
Fig. 13. Example of best fitness data for N1=N2=20 using “haberman” dataset 
for Ng=500 and Na=10 
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Fig. 14. Example of best fitness data for N1=N2=40 using “haberman” dataset 
for Ng=1000 and Na=10 

Fig. 15 shows the results when a population size 
N1=N2=40 is used in classifying “saheart” dataset for Ng=1000 
and Na=10. As can be seen, the best fitness curve when using 
Pol2 policy converges faster than other policies in PFGA 
framework. However, using the same configuration in Fig. 15, 
Fig. 16 shows that the FH-GBML algorithm outperforms the 
PFGA framework. The reason is that the exploration takes 
longer time when increasing number of attributes in dataset 
especially when it has real attributes. 

 
Fig. 15. Example of best fitness data for N1=N2=40 using “saheart” dataset 
for Ng=1000 and Na=10 

 
Fig. 16. Example of best fitness data for N1=N2=40 using “saheart” dataset 
for Ng=1000 and Na=10 

Fig. 17 shows the results when a population size 

N1=N2=40 is used in classifying “car” dataset for Ng=1000 
and Na=5. As can be seen, the best fitness curve when using 
Pol2 policy converges slower than Pol3 policy in PFGA 
framework whereas it converges faster in Fig. 18. The reason 
is that using short interval of times for exchanging best fuzzy 
rules among small number of FGA agents increases the 
exploitation whereas using larger number of FGA agents 
increases the exploration. Comparing with results from 
“saheart” dataset, it can be also seen in Fig. 18 that PFGA 
framework performs better when number of attributes 
decreases where it reached almost to fitness value of 0.716 
instead of 0.656. 

 
Fig. 17. Example of best fitness data for N1=N2=40 using “car” dataset for 
Ng=1000 and Na=5 

 
Fig. 18. Example of best fitness data for N1=N2=40 using “car” dataset for 
Ng=1000 and Na=10 

Fig. 19 shows the results when a population size 
N1=N2=40 is used in predicting “plastic” dataset for Ng=1000 
and Na=10. As can be seen, the GFS-RB-MF algorithm 
outperforms the PFGA framework. The reason is that 
predicting continuous valued function takes longer time than 
predicting categorical labels in FLSs. Table 2 shows the 
summarized average results for the experiments conducted 
when a population size N1=N2=40 is used for Ng=1000 and 
Na=10. As shown in the last column, the average computation 
time were long for some dataset compared with other 
algorithms (e.g., more than 40 minutes for plastic dataset). 
However, the first column shows that the average number of 
fuzzy rules evolved for some dataset has less size along with 
good accuracy compared with other algorithms (e.g., around 6 
fuzzy rules for “haberman” dataset). 
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Fig. 19. Example of best fitness data for N1=N2=40 using “plastic” dataset for 
Ng=1000 and Na=10 

VI. CONCLUSION 
A new framework for classification and prediction is 

proposed as a main contribution to the scientific community. 
The developed Parallel Fuzzy-Genetic Algorithm (PFGA) 
framework provides flexible mechanism for processing 
distributed data and offers significant advantage over classical 
techniques which help to reach all network-related business. 
Several experiment have been conducted with various 
specification  of population sizes, numbers of FGA agents 
along with different exchange policies for best fuzzy rules 
among these agents in different intervals of generations. Small 
population size does not provide sufficient diversity in 
individuals for the optimum fuzzy rules to be evolved. Using 
small interval of times when exchanging best fuzzy rules 
among FGA agents incorporates more exploitation over 
exploration whereas using larger number of FGA agents 
compromises between them. However, using the developed 
framework with decreasing number of attributes has been 
shown that it has good accuracy and more efficient in 
performance and comprehensibility of linguistic rules 
compared to FH-GBML and GFS-RB-MF models 
implemented in KEEL software tool. 

TABLE II. RESULTS OF PFGA FRAMEWORK VERSUS FH-GBML AND GF-
RB-MF ALGORITHMS WHEN N1=N2=40, NG=1000, AND NA=10 

Name of 
Dataset Algorithm 

Number 
of fuzzy 
rules  

Accuracy in 
testing (%) 

Time 
(minutes) 

banana 

PFGA-Pol1 7.2 75.69 83.25 
PFGA-Pol2 10.6 77.85 85.5 
PFGA-Pol3 10.1 76.86 77.5 
FH-GBML 30 85.83 47 

haberman 

PFGA-Pol1 6.2 74.14 9.5 
PFGA-Pol2 5.6 74.18 10.75 
PFGA-Pol3 7.1 74.15 10 
FH-GBML 27 77.54 3 

saheart 

PFGA-Pol1 3.8 65.61 18.5 
PFGA-Pol2 5 65.65 18 
PFGA-Pol3 3.5 65.63 17.5 
FH-GBML 27 76.41 7 

car 

PFGA-Pol1 6.7 71.41 32.5 
PFGA-Pol2 7.4 71.59 32.5 
PFGA-Pol3 7.3 71.59 32.75 
FH-GBML 29 76.27 8.15 

plastic 

PFGA-Pol1 17.7 39.58 41.75 
PFGA-Pol2 19.3 40.93 43.75 
PFGA-Pol3 20.4 41.24 42.5 
GFS-RB-MF 9 75.49 1.5 

This work can be extended in several directions. For 
example, part of the dataset can be exchanged along with best 
fuzzy rules. Furthermore, other exchange policy schemes can 
be employed in addition to parallelizing data level along with 
algorithm level per data source such that FLS to evolve to 
dynamic optimum number of fuzzy rules. 
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