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Abstract—Deblurring from motion problem with or without 
noise is ill-posed inverse problem and almost all inverse problem 
require some sort of parameter selection. Quality of restored 
image in iterative motion deblurring is dependent on optimal 
stopping point or regularization parameter selection. At optimal 
point reconstructed image is best matched to original image and 
for other points either data mismatch occurs and over smoothing 
is resulted. The methods used for optimal parameter selection are 
formulated based on correct estimation of noise variance or with 
restrictive assumption on noise. Some methods involved heavy 
computation and produce delay in final output. In this paper we 
propose the method which calculate visual image quality of 
reconstructed image with the help of Second derivative like 
measure of enhancement (SDME) and helps to efficiently decide 
optimal stopping condition which has been checked for leading 
image deblurring algorithm. It do not require any estimation of 
noise variance or no heavy computation are needed. Simulation 
has been done for various images including standard images for 
different degradation and noise condition. For test leading 
deblurring algoritham of Blind and Semi-Blind deblurring of 
Natural Images using Alternate direction method of minimizer 
(ADMM) is considered. The obtained results for synthetically 
blurred images are good even under noisy condition with Δ ISNR 
average values 0.2914 dB. The proposed whiteness measures seek 
powerful solution to iterative deblurring algorithms in deciding 
automatic stopping criteria. 

Keywords—Image deblurring; stopping point; Point Spread 
Function; Second derivative like measure of enhancement 

I. INTRODUCTION 
Blind image deblurring is ill-posed inverse problem solved 

with iterative techniques using regularization methods with 
reduction of solution space. In regularization methods 
solutions accuracy and smoothness tradeoff is controlled by 
regularization parameter selection or by deciding optimal 
stopping condition. The reconstructed image quality is highly 
depended on the iteration number and above the optimal 
iteration point each extra iteration result in amplification of 
noise and computational cost. If the sharp image is available 
than one can compute full reference image metrics such as 
mean-squared error (MSE) , peak signal to noise ratio (PSNR) 
[1], or structural similarity (SSIM) [2] and can decide optimal 
stopping point when MSE is minimized or PSNR and SSIM is 
maximized. However, in most practical situations the sharp 
image is not available and this metrics cannot be used for 
decision of automatic stopping point determination. 

The most commonly used methods for choosing a 
regularization parameter or for decision of automatic stopping 
point are as follows. 

Visual Inspection: If the prior knowledge of the scene is 
available one can select the stopping point on the basis of 
visual inspection of the results. Clearly, as prior information 
about the scene is not obtainable all the time,  the method has 
very limited application. 

L-Curve Method: In any regularization method there are 
two terms, the data fidelity (residual) and prior information 
fidelity. The optimal stopping point is determined by plotting 
the data fidelity term against the prior fidelity term.  Graphical 
behaviour of these two terms forms L-Curve and the optimal 
stopping point (regularization parameter) is the corner of L-
Curve. It requires correct curvature evaluation and can be 
computationally expensive [3-7]. 

Discrepancy Principle: If the noise power is known, then 
the residual norm value can be matched to the noise variance 
value and on this basis optimal stopping point is selected. If 
correct noise power is not known it should be estimated and 
can lead to over smoothing in any inaccurate estimation [8-10]. 
Its improved versions are based on residual moments [11]. 

Generalized Cross-Validation (GCV) Method: GCV is an 
estimator that minimizes the predictive risk. The underlying 
idea is that the solution that is obtained using all but one 
observation should predict that left-out observation well if the 
regularization parameter is a good choice. The total error for a 
particular choice of the parameter is calculated by summing 
up the prediction errors over all observations. The optimal 
parameter value is the one that minimizes the total error. A 
search technique or an optimization method could be used to 
determine the optimal value. it does not require knowledge of 
noise variance and is known to yield regularization parameters 
for linear algorithms that asymptotically minimize the true 
MSE [12-14]. 

SURE: Stein’s unbiased risk estimate (SURE) is MSE 
estimation based method and proved to be good alternative to 
GCV as almost all algorithm work by minimizing MSE 
criteria. For blind deconvolution it can’t be used as it requires 
knowledge of noise statics [15-16]. 

Statistical Approach: In reconstruction of sharp image 
using the statistical methods one can estimate regularization 
parameter or indirectly optimal stopping point.  The methods 
can be solved using the expectation maximization (EM) 
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technique [17] which alternately restores the image and a new 
estimate of the parameter is calculated [9]. 

Whiteness-based method: It measures the whiteness 
properties such as covariance and power spectral density of 
the residual image.  When residual image is spectrally white, 
residuals match to the noise having least structure content and 
it is considered as optimal stopping point [18]. 

TABLE I. COMPARISON OF DIFFERENT METHODS 

All the above summarized methods decide the optimal 
stopping point without concerning the visual appearance of the 
reconstructed images. They use the strategy of approximate 
computation of the metric MSE which is not the idea indicator 
of the visual quality. So the method is proposed in this paper, 
which uses SDME measure to decide the optimal stopping 
point. SDME measure is properly correlated with the noise 
level and intensity contrast (which indicates the “visibility” 
[19-21]) of the structured regions of an image. SDME measure 
is modified such that its value drops if the variance of noise 
rises or if the blur increases in the image. The contribution of 
the work lies in the Calculation of SDME measure at every 
iteration and deciding automatically stopping point. This 
measure exhibits a clear maximum point and helps to select 
iteration number. As per indication in Table I the proposed 
method do not require any input from user and no other 
parameter tuning is needed. It takes care of visual quality of 
image with no need of excessive computation. So it seeks 
powerful solution for determining optimal stopping point in 
regularized iterative algorithm. 

The rest of the paper is organized as follows: 
Mathematical preliminaries described in section II and the 
proposed technique is given in section III. Results and 
discussion are given in section IV. Conclusion is summed up 
in Section V. 

II. MATHEMATICAL PRELIMINARIES 

A. Linear and Shift-invariant (LSI) Motion Blur Model 
In almost all imaging application observed image is 

degraded version of original image as it is blurred by some 
function h which is known as blur or point spread function 
(PSF). Image deblurring means to solve an inverse problem 
with the aim of restoring an image which suffered a motion 
blur with additive white gaussian noise. The image deblurring 
methods can be divided into two groups: non-blind deblurring, 

where the degradation operator of an image is known, and 
blind deblurring, where the degradation operator is not known. 
Normally, Degradation process is nonlinear and space varying 
process but most of the problems can be addressed with a 
linear and shift-invariant (LSI) model [22]. Output of an LSI 
system is the convolution of the true image with the impulse 
response of the system and can be written as, 

𝑧(𝑥,𝑦) = ℎ(𝑥,𝑦)• 𝑔(𝑥,𝑦) + 𝑛(𝑥,𝑦)               (1) 
where 𝑔 (𝑥,𝑦)is the original image that we want to recover 

from the degraded measurement 𝑧(𝑥,𝑦),where (𝑥,𝑦) indicates 
special coordinates. Here, ‘• ’is the convolution operator and   
η is additive white Gaussian noise involved. 

B. Regularized Least Squares Estimation 
For any ill posed problem it is difficult to satisfy 

uniqueness, existence and stability criteria all together. The 
standard methodology to solve such a problem is to use least 
squares solution with regularization term. . The least squares 
estimator minimizes the sum of squared differences between 
the observed image    𝑧 (𝑥,𝑦)  and the predicted image 
ℎ(𝑥,𝑦) ∗ 𝑔(𝑥,𝑦)  [22]. Regularization term uses prior 
information about the true image and helps to obtain a solution 
with desired properties. The cost function to be minimized in 
regularized least square estimation can be formulated as: 

21( , ) || || [ ( )]
2

sC g h z h g r f gβ= − • +      (2) 

Here, h is the PSF kernel to be found, β is the scaling 

factor and )]([ gfr is the regularization function where 
)(gf is the edge response. To test the problem we 

considered deblurring with modification in total variation 
based solution [23]. Most images have sparse leading edge 
structure and edges are less sparse for its blurred version as 
area of the blurred edge is larger. The preferred solution 
should have sparse edges representation. The scaling 
parameter is at first a large value and then decreased over 
iterations. The edge responses of the blurred image are defined 

by the function )(gf given by [23]: 

2( ) ( ) ; ( )f g q g q g d gφ φ φ
φ

= = •∑
     (3) 

Here 
dφ  is directional filter with φ  values of 0, 45, 90 

and 135 to find the edge response. The sparse prior, given the 

edge intensity for a pixel j represented by ( )jf g   is defined 
by: 

    
[ ( ) ][ ( )]

q
jk f g

jp f g eα − +∈

                             (4) 
k  adjusts for the scale of edge intensities and q controls 

the prior’s sparsity and ∈  is a small parameter. Taking the 
noise into consideration as Gaussian likelihood [23] is given 
by: 
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  (5) 
The log-likelihood maximization is similar to having the 

cost function minimized 

2
2

1( , | ) || || [ ( ) ]
2

q
j

j
L g h z z h g k f g

σ
= − − • − +∈∑

(6) 
Maximizing this likelihood is equivalent to minimizing the 

cost function [23] 

21( , ) || || [ ( ) ]
2

q
s j

j
C g h z h g f gλ= − • + +∈∑

  (7) 

Here, 
2kλ σ= The regularization parameter functions 

over the edge response and regularizer was chosen which 
favors the sharp edges or the priors are selected that reach 
sparser edge response. 

Algorithm for getting deblurred image: 

1. Initialization  
2.  Initially set PSF (h) to identity matrix keeping 

dimension of h bigger than that of the actual PSF 
matrix.  

3.  Initially set deblurred image (g ) equal to blurred 
image (z).  

4. Set λ ,q  and ∈  to initial values  
           Loop  

5.  Find x =argmin( ( , )sC g h  for given  , ,g z h  λ ,q  
and ∈   

6.  Find h =argmin( ( , )sC g h )for given , ,g z h  λ ,q  
and ∈ . Use the updated x, but keep other parameters 
constant.  

7. Update λ ,q, h  and ∈ .  
8. Repeat from step 4 to step 6  for each iteration and 

calculate SDME sum at each iteration 
Here g is the Deblurred image which has to be found, h is 

the PSF kernel which has to be found, z is the input 
normalized blurred image. λ  is the scaling parameter which 
changes over iterations. 

C. Second Derivative-like Measure of Enhancement 
Second-Derivative-like Measure of Enhancement (SDME) 

is a visibility operator [19]   and a metric for quantitatively 
assessing image quality [20-21]. This visibility operator can 
be viewed as a second derivative analogue of the Michelson 
contrast measure. 

Suppose the image I  is divided into 21 aa × blocks, and

ijB ,max, , ijB ,min, are the maximum and minimum values of 

the pixels in each block separately, and ijcenB ,,  is the 

intensity of the center pixel in each block, then SDME is 
defined by the equation: 

 

1 2
max, , , , min, ,

1 1 max, , , , min, ,

2
2

a a
j i cen j i j i

i j j i cen j i j i

B B B
SDME

B B B= =

− +
=

+ +∑∑
          (8) 

As per the definition SDME works as local contrast 
descriptor and it is strongly sensitive to the degradation. 
Intensity variations are resulted in neighboring pixels of sharp 
image when blurring takes place. Instead of using direct 
comparison between the center pixel and its neighborhood 
pixels, SDME uses order statistics such as Bmax and Bmin to 
show sufficient amount of variations.  For the digital second 
derivative spatial differentiation filters the weights are [1 -2 1] 
and replacement of this spatial weighting is done in the 
numerator of the SDME contrast with the weighting of order 
statistics and the central image pixel (1 for Bmax, -2 for Bcen, 
and 1 for Bmin) [25]. It is observed that the SDME is quite 
intimately related with the sharpness and contrast of the local 
region. 

To decide the stopping condition we selected only those 
blocks which are having dominant orientation. The noisy and 
blurred patches are less structured and do not have dominant 
orientation so they are removed in calculating global SDME 
sum over the image. The patches to be selected are decided on 
the basis of singular value decomposition of gradient vector of 
the patch. SDME sum is modified in this proposed method 
and given by; 

1 2
max, , , , min, ,

1 1 max, , , , min, ,

2
( , )

2

a a
j i cen j i j i

i j j i cen j i j i

B B B
SDME m i j

B B B= =

− +
=

+ +∑∑
   (9) 

Where m(i,j) is given by; 

𝑚(𝑖, 𝑗) =  �
1       𝑟(𝑖, 𝑗) > 𝑇

0       𝑟(𝑖, 𝑗) < 𝑇
                   (10) 

And  r(i,j) is given by; 

𝑟(𝑖, 𝑗) =  �
𝑑𝑖𝑓𝑓 𝑜𝑓 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓  𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡   
𝑠𝑢𝑚 𝑜𝑓 𝑠𝑖𝑛𝑔𝑢𝑙𝑎𝑟 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡  

 (11)  

The threshold T is empirically selected as 0.3781 for the 
patch size of 5 and checked over multiple database images. 
The above expression contains maximization of sum of SDME 
value with dominantly oriented patches and provides a 
reasonable solution to the optimal stopping point problem. If 
X(t) represent reconstructed images over iterations than at the 
maximum of SDME(X(t)) the reconstructed image is best 
matched to original sharp image, hence further iterations will 
not enhance the image quality, but may add more noise. 

To verify the usefulness of SDME sum in the presence of 
blur and noise we applied motion blur with different length 
and theta parameter and recorded resultant SDME values. its 
performance is plotted in Fig. 1. Next, we take noise into 
account. As shown in the graph the visibility operator SDME 
sum decrease with increase in both blur and random noise. 
Same experiment is repeated for the image is corrupted by 
white Gaussian noise and results are noted for increasing 
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values of noise variance. As per the results obtained the metric 
has well-behaved characteristics in the presence of both noise 
and blur and SDME sum values decreases with noise and blur. 
Thus, SDME has the potential for quality assessment of the 
blurred image. 

 
(a) 

 
(b) 

Fig. 1. SDME sum Vs Noise deviation (b) SDME sum Vs degradation 

III. PROPOSED METHOD FOR AUTOMATIC STOPPING POINT 
DETECTION 

The proposed stopping criteria are based on measures of 
the fitness of the estimated data based on SDME .The blurred 
image was generated by convolution of the original image 
with a motion blur degradation function with different values 
of Length and theta and then corrupted by AWGN with 
different BSNR values dB. We applied the state of art iterative 
deburring method to restore the blurred version of the image 
[23]. Reconstructed image generated in all iteration is divided 
into 5*5 image patches. For each patch we computed 
horizontal and vertical gradients. Local gradient is used to 
give us structural information of the patch. In order to extract 
global information of contrast, the patches with dominant 
orientation is used .The patch is less structured  and will not 
have dominant orientation when it is more noisy so that 
patches are neglected in computing  global image metric. An 
accumulation of local contrast SDME information of 
structured patches of whole image is computed, which can be 
declared as SDME sum. Iteration are continued till SDME 

sum value become 40 and after SDME value reaches 40 at 
each  iteration SDME value is compared with its previous 
value and when it reaches maximum (before it start decreasing) 
we stop the iteration. Any impulsive value of SDME that is 
above than 300 is considered as outliers (empirically setted 
based on result of database) and SDME sum value is assigned 
previous value to remove outliers. The flow chart of the 
algorithm is given in Fig.2. 

Start

Input Blurred Image

No

Remove Any Of The Outliers Due To Noise

End

yes

No

Deblur The Image
Based On Edge Response And Image Priors

Compute Singular Values For X And Y Gradient 
Vectors  Of Patches

 R=difference Of Singular Values/sum Of Singular 
Values

Divide The Reconstructed Image In To 5* 5 Patches
And Compute  Gradient Of Patches

Compute Sum Of SDME Values For The All The  
Patches As SDME(i) For  Iteration

SDME(i)<=SDME(i-1)

Decide Dominant Structured Patches If  R>T

 
Fig. 2. Block Diagram of the Proposed Technique 

Fig. 3 Shows that initially SDME sum value is increasing, 
reaches to maximum and then decreases because of noise.The 
results of ISNR graph, sum of SDME graph and MSE curves 
are plotted for the robot image of size (240 × 240) are shown 
in Fig. 3. It can be noted that the quality of the estimated 
image improves as the iteration increases in the beginning, and 
corresponding to the change of the estimated images, the 
SDME sum value become higher, too. Then the distortion 
caused by noise amplification becomes much stronger, and 
both the estimated images and the SDME values are affected 
by random noise. SDME sum graph follows ISNR graph and 
optimal stopping point is the point with maximal value of 
SDME sum.  Maximum ISNR obtained is for iteration number 
22 which is shown in graph of ISNR Vs iteration and iteration 
number selected on the basis of proposed criteria is 21 as 
shown. 
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Fig. 3. Performance of Various Measures Vs Iteration 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A. Dataset Description, Experimental Set Up and Evaluation 
Metrics 
The dataset consists of various standard images such as 

Cameraman and other images obtained from public databases. 
The proposed stopping criteria is tested on a wide dataset of 
grayscale and color images. Table II gives the sample images. 
We tested a wide range of white Gaussian noise with noise 
levels BSNR=25, 30 or 35dB was added to the blurred images. 
The PSF is a motion blur with different values of length and 
theta. 

For the purpose of comparison of stopping criteria we used 
state-of-the-art discrepancy principle (DP) method. DP 
method requires knowledge of the noise variance so its two 
types DPσ and DPMAD [24] are considered. DPσ uses the true 
value of the added noise and DPMAD which estimate noise 
variance by MAD (Median absolute derivative) rule.  DPσ is 
considered to be ideal as the true value of the noise variance is 
unavailable in practice. Numbers of experiments are 
conducted on numerous test images to validate the use of the 
proposed algorithm for deciding stopping condition. 

The proposed technique is implemented in MATLAB on a 
system having 8 GB RAM and 2.5 GHz Intel i-7 processor.  
The evaluation metrics used are: (1) Δ Improve signal-to-noise 
ratio (ΔISNR) –the difference of best ISNR and ISNR 
achieved by manual stopping (low value means good quality 
reconstruction),(2) Structural Similarity (SSIM) index [2] (lies 
between 0 and 1,closer to 0 means poor quality and closer to 1 
means good quality),(3) ΔMSE is used (low value means good 
quality reconstruction). Performance of the proposed method 
is compared with the state-of-the-art methods qualitatively 
(visual aspects) as well as quantitatively using this metrics. 

TABLE II. SAMPLE IMAGES FROM DATABASE 

   
Img1 Img2 Img3 

   
Img4 Img5 Img6 

   
Cameraman boat landscape 

B. Simulation Results 
Experiment 1- This experiment is conducted on all 

images in Table II keeping blurring parameters constant. The 
image is blurred with PSF parameters, L = 12 pixels and θ = 
230◦ with BSNR of 30 dB. This blurred image is given as an 
input to algorithms and the stopping point is decided. The 
ΔISNR, difference between best ISNR value (with minimum 
MSE) and ISNR at the iteration where the algorithm stops 
automatically are recorded. Table III shows iteration stopped 
with each of automatic criteria and best iteration number with 
minimum MSE for Length=12, theta=230, BSNR=30 dB and 
Length=8, theta=120, BSNR=35 dB. As shown in Table VII 
and Table IV, the reconstructed image quality of proposed 
method outperforms other algorithms in terms of both visual 
quality and quantitative evaluation and is close to the best 
restored image which can be obtained by using minimum 
mean square error criteria. Table VII shows the simulation 
results obtained for the proposed technique for three images 
(robot, cameraman, boat) with degradation parameters length-
12, theta-230, noise level-30 dB. All latent images, their 
blurred versions and final restored image for different 
automatic stopping criteria are given in Table VII. It is clear 
that we got better results compared to the state-of-the-art 
methods.  
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TABLE III. TERATION NUMBER SELECTED FOR DIFFERENT METHODS

Images 

Length=12,  theta=230, BSNR=30 dB Length=8,  theta=120, BSNR=35 dB 

SDME 

sum 

Iteration 

DPσ 

Iterati

on 

DP(MAD) 

Iteration 

Best 

Iteration 

number 

SDME 

sum 

Iteration 

DPσ 

Iteration 

DP(MAD) 

Iteration 

Best 

Iteration 

number 
Img 1 20 20 26 21 19 21 27 22 
Img 2 21 23 28 23 23 24 28 25 
Img 3 20 22 28 22 21 26 29 22 
Img 4 22 17 26 21 20 20 26 23 
Img 5 21 21 27 21 22 24 27 23 

Img 6 21 20 28 23 22 21 29 22 

Cameraman 21 21 29 22 23 22 30 25 
Boats 21 21 27 22 22 22 27 23 
landscape 22 23 30 22 21 24 30 23 

TABLE IV. EXPERIMENTAL RESULTS (IN DECIBEL FOR TWO DIFFERENT DEGRADATION PARAMETERS). FIRST COLUMN: BEST ISNR OBTAINED DURING 
THE ITERATIONS. SECOND, THIRD, AND FOURTH COLUMNS: Δ ISNR FOR SDME SUM , DPSIGMA AND DP(MAD)

Images 
Length=12,  theta=230, BSNR=30 dB Length=8,  theta=120, BSNR=35 dB 
Best ISNR 

SDME 
sum 

Δ ISNR 
DPσ 
Δ ISNR 

DP(MAD) 
Δ ISNR Best ISNR 

SDME 
sum 

Δ ISNR 
DPσ 
Δ ISNR 

DP(MAD) 
Δ ISNR 

Img 1 5.858006 0.2153101 0.2153101 3.800858 4.860949 1.1518  0.1679  3.3567 
Img 2 2.537914 0.2485170 0 0.9734740 2.689214     0.1281     0.0284     0.1593 
Img 3 3.838959 0.8291039 0 3.668936 2.620799     0.4087     1.6394     3.2842 
Img 4 2.964814 0.5373099 1.320347 7.218732 2.591957     0.4002     0.4002     2.8891 
Img 5 1.093660 0 0 4.98 -1.466839     0.0860     0.0474     1.1400 
Img 6 5.353606 0.3252711 0.8387041 2.287483 2.008620          0     0.0978     0.9491 
Cameraman 5.098494 0.2495799 0.2495799 4.680250 6.072667     0.3565     1.4478     4.3235 
Boats 3.343654 0.2175529 0.2175529 4.21 3.541060     0.2816     0.2816     2.1739 
landscape 1.258956 0 0.0983 0.6815 1.997543     0.1512     0.0502     0.3108 
Average   0.2914 0.3266 3.6112   0.3293 0.4623 2.0652 

The same experiment is repeated with PSF parameters, L = 
8 pixels and θ = 120◦ with BSNR of 35 dB and results are 
recorded. Table IV summarizes the results obtained using the 
global SDME sum stopping criteria and which are on average, 
only slightly worse (0.29dB, 0.32dB) than the best ISNR 
achieved by manual stopping with minimum MSE. Table V 

and Table VIII shows MSE values and SSIM values. Table VI 
gives graphical comparison of all the methods in terms of Δ 
ISNR and Δ MSE. As per the graph SDME sum is best suited 
to decide the optimal stopping point. 
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TABLE V. EXPERIMENTAL RESULTS (FOR TWO DIFFERENT DEGRADATION PARAMETERS). FIRST COLUMN: BEST MSE OBTAINED DURING THE 

ITERATIONS. SECOND, THIRD, AND FOURTH COLUMNS: Δ MSE FOR SDME SUM , DPSIGMA  AND DP(MAD)

Images 

Length=12,  theta=230, BSNR=30 dB Length=8,  theta=120, BSNR=35 dB 

Best MSE 
SDME 

sum 
Δ MSE 

DPσ 
Δ MSE 

DP(MAD) 
Δ MSE Best MSE 

SDME 
sum 

Δ MSE 

DPσ 
Δ MSE 

DP(MAD) 
Δ MSE 

Img 1 0.002884 -0.000147 -0.000147 -0.004036 0.001633 -0.000494 0 -0.001903 
Img 2 0.004846 -0.000286 0 -0.001218 0.003374 0 0 -0.000126 
Img 3 0.002617 -0.000551 0 -0.003474 0.002131 -0.000210 -0.000978 -0.002409 

Img 4 0.002025 -0.000266 -0.000719 -0.008647 0.001393 -0.000135 -0.000135 -0.001317 

Img 5 0.002329 0 0 -0.005016 0.002498 0 0 -0.000750 
Img 6 0.003608 -0.000281 -0.000769 -0.002502 0.004825 0 -0.000109 -0.001178 
Cameraman 0.002351 -0.00014 -0.000139 -0.004557 0.0013 -0.000111 -0.00051 -0.002217 
Boats 0.003221 -0.000166 -0.000166 -0.005287 0.002189 -0.000147 -0.000147 -0.001422 
landscape 0.017454 0 -0.000399 -0.0030 0.012264 -0.000434 -0.000142 -0.000910 

Average  -0.000204 -.0002598 -0.0042  -.0001868 -.0002375 -0.0014 

TABLE VI. (A) Δ ISNR LENGTH=12,  THETA=230, BSNR=30 DB (B)  Δ ISNR LENGTH=8,  THETA=120, BSNR=35 DB (C)  Δ MSE LENGTH=12,  
THETA=230, BSNR=30 DB (D) Δ MSE LENGTH=8,  THETA=120, BSNR=35 DB 
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TABLE VII. SIMULATION RESULTS 

Input 
Image 

   
Blurred 

Image 

   
SDME 

sum 

   
DPσ 
 

   

DP(MAD) 

   
Fig.4 gives comparison of all the methods for various 

degradation applied to all the images in the table. As per the 
chart, one can see that iteration number selected with SDME 

sum method is matched to best ISNR iteration in majority 
cases.  DPσ    method also seems to be matched with best 
iteration but the method is based on true value of variance 
which is unavailable in practice. 

 g
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TABLE VIII. SSIM VALUES FOR DIFFERENT METHODS 

SSIM 

Length=12,  theta=230, BSNR=30 db Length=8,  theta=120, BSNR=35 db 

SDME 

sum 
DPσ DP(MAD) 

SDME 

sum 
DPσ DP(MAD) 

Img 1 0.9997400 0.9997960 0.9995880 0.9996170 0.9996170 0.9991770 

Img 2 0.9995530 0.9995620 0.9995490 0.9993590 0.9993940 0.9992460 
Img 3 0.9997030 0.9996200 0.9994550 0.9995890 0.9996670 0.9992730 
Img 4 0.9997880 0.9997880 0.9996620 0.9996580 0.9995810 0.9985820 
Img 5 0.9996390 0.9996410 0.9995530 0.9996610 0.9996610 0.9990140 
Img 6 0.9992830 0.9992700 0.9991470 0.9994640 0.9993980 0.9992320 

Cameraman 0.9998360 0.9997900 0.9995990 0.9996760 0.9996760 0.9991850 

Boats 0.9997130 0.9997130 0.9995750 0.9995710 0.9995710 0.9989630 
landscape 0.9985110 0.9985660 0.9985010 0.9979270 0.9978840 0.9975340 

Fig. 4. Comparison of all the methods 

Experiment 2 – The proposed technique is evaluated 
using evaluation metrics employed such as ISNR, MSE, and 
SSIM for stopping point detection for robot image by varying 
degradation parameters. Proposed method performs much 
satisfactorily in this case also. 

TABLE IX. ITERATION NUMBER FOR ROBOT IMAGE BY VARYING 
PARAMETERS 

Iteration 
number 

Best 
Iteration 
number 

SDME sum 
Iteration 
number 

DPσ 
Iteration 
number 

DP(MAD) 
Iteration 
number 

L=8,Theta=120 
Noise=35dB 22 22 21 29 

L=10,Theta=190 
Noise=40dB 23 22 27 29 

L=12,Theta=230 
Noise=25dB 21 19 18 30 

L=5,Theta=45 
Noise=30dB 22 20 19 28 

Results obtained shows nearer or superior results obtained 
compare to DPσ method which is based on true value of noise 
variance which is unavailable for blind image deblurring 
problems. 

TABLE X. SSIM VALUES FOR ROBOT IMAGE BY VARYING 
PARAMETERS 

Degradation 
parameters 

SSIM 
SDME sum DPσ DP(MAD) 

L=8,Theta=120 
Noise=35dB 0.9995 0.9993 0.9992 

L=10,Theta=190 
Noise=40dB 0.9989 0.9990 0.9989 

L=12,Theta=230 
Noise=25dB 0.99934 0.9991 0.9978 

L=5,Theta=45 
Noise=30dB 0.99958 0.9995 0.9994 
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TABLE XI. ISNR VALUES FOR ROBOT IMAGE BY VARYING 

PARAMETERS 

Inferences from tables 3-12: 

• The Tables give the performance evaluation of the 
proposed technique. Table IV gives the Δ ISNR values 
Table V gives the MSE values and Table VII gives 
SSIM values. The values are obtained for nine images. 
Table 8 shows  that visual quality of the reconstructed 
images for the proposed technique is best compared to 
other methods. 

• The Δ ISNR average values came about 0.2914 dB and 
0.32 dB losses with respect to best ISNR. The obtained 
evaluation matric values confirm the effectiveness of 
the proposed technique. 

• Table IX, X, and XI gives the performance analysis by 
varying the length, theta and noise level. For robot 
image the Δ ISNR average values came about 0.3850 
dB. 

V. CONCLUSION 
In this work visibility operator SDME sum is effectively 

used to decide the optimal stopping point in regularized 
iterative reconstruction methods which involves intensity 
contrast of the structured regions of an image. The results are 
obtained for different images degraded with uniform motion 
blur. The method calculates the stopping point with less loss 
of ISNR (0.29dB, 0.32dB) compare to state of art methods  
and the maximum of SDME sum is located close to the best 
restored image where MSE is minimum. A large number of 
experiments are carried out to prove that the SDME measure 
is highly correlated with noise and contrast of image. The 
proposed approach is quite general and does not require 
knowledge about the noise variance. It does not involve any 
extra parameter tuning and do not allow any visual quality 
degradation of image. So it seeks powerful solution for 
determining optimal stopping point in iterative IBD problems. 
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ISNR Best 
ISNR 

SDME sum 
Δ ISNR 

DPσ 
Δ ISNR 

DP(MAD) 
Δ ISNR 

L=8,Theta=120 
Noise=35dB 2.0086 0 0.0978 0.9491 

L=10,Theta=190 
Noise=40dB 1.8336 0.5511 0.2275 0.4789 

L=12,Theta=230 
Noise=25dB 4.6923 0.5474 1.413 6.26 

L=5,Theta=45 
Noise=30dB 1.4334 0.4417 0.9449 2.52 

Average  0.3850 0.6708 2.54 
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