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Abstract—Particle swarm optimization (PSO) has shown to be 
a robust and efficient optimization algorithm therefore PSO has 
received increased attention in many research fields. This paper 
demonstrates the feasibility of applying the Dynamic Inertia 
Weight Particle Swarm Optimization to solve a Non-Polynomial 
(NP) Complete puzzle. This paper presents a new approach to 
solve the Nonograms Puzzle using Dynamic Inertia Weight 
Particle Swarm Optimization (DIW-PSO). We propose the DIW-
PSO to optimize a problem of finding a solution for Nonograms 
Puzzle. The experimental results demonstrate the suitability of 
DIW-PSO approach for solving Nonograms puzzles. The 
outcome results show that the proposed DIW-PSO approach is a 
good promising DIW-PSO for NP-Complete puzzles. 

Keywords—Non-Polynomial Complete problem; Nonograms 
puzzle; Swarm theory; Particle swarms; Optimization; Dynamic 
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I. INTRODUCTION 
Most of optimization problems including NP-complete 

problem, such as Nonograms puzzle, have complex 
characteristics with heavy constraints. Nonograms are 
deceptively simple logic puzzles, which is considered as an 
image reconstruction problem, starting with a blank N × M 
grid, Fig. 1.a shows an example for 5 x 5 Nonograms puzzle. 

The solution of the puzzle is an image grid that satisfies 
certain row and column constraints. The constraints take the 
form of series of numbers at the head of each line (row or 
column) indicating the size of blocks of contiguous filled cells 
found on that line. 

The puzzle solvers need to figure out which square will be 
left blank (white) and which will be colored (black), based on 
the numbers at the side of the grid. The resulting pattern of 
colored or left blank squares makes up a hidden picture, which 
is the solution to the puzzle. 

The resulting picture must obey all the following three 
conditions: 

1) Each picture cell must be either colored or blanked i.e. 
black or white. 

2) The s1, s2, . . . , sk   numbers at the side of the row or 
column: indicated that there are groups of s1, s2, and sk filled 
squares, with at least one blank square between consecutive 
groups. 

3) Between two consecutive black there must be at least 
one empty cell. 
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(a) 5 × 5 Nonograms puzzle 
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(b) 5 × 5 Nonograms solution 

Fig. 1. (a) 5 × 5 Nonograms puzzle (b) its solution 

For example, in the first row the "3" tells that, somewhere 
in the row, there are three sequential blocks filled in. Those 
will be the only blocks filled in, and the amount of space 
before/after them are not defined. The possible solution for the 
first row are: 
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The "1 2" in the second columns tells that, somewhere in 
the column, there is one block filled in, followed by 2 
sequential blocks filled in, and also those will be the only 
blocks filled in, and the amount of space before/after them are 
not defined. The possible solutions for the second column are: 
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A puzzle is complete when all rows and columns are filled, 
and meet their definitions, without any contradictions. Fig. 1 
shows an example of a Nonograms and its solution. 

Several algorithms have applied to find a solution for the 
Nonograms problem such as an evolutionary algorithm, a 
heuristic algorithm, and a reasoning framework [2, 3, 4, and 5]. 

In this paper, a Dynamic Inertia Weight Particle Swarm 
Optimization (DIW-PSO) algorithm is proposed for solving 
Nonograms puzzles. In this work, we demonstrate that DIW-
PSO can be specified to NP-Complete puzzle. 

II. DYNAMIC INERTIA WEIGHT PARTICLE SWARM 
OPTIMIZATION 

Particle swarm optimization (PSO) is a population based 
stochastic optimization method, which is an efficient and 
effective global optimizer in the discrete search domain [6]. 
PSO has been successfully applied to a wide variety of 
problems in mechanical engineering, communication, pattern 
recognition and diverse fields of science. 

In PSO, a multiple random candidate solutions, so-called 
particles, are maintain in the problem search space, where each 
particle represents a solution to an optimization problem. Each 
particle is assessed by fitness function to figure out whether a 
particle is the problem “best” solution or not. A particle then 
fly through the problem search space with a randomized 
velocity by combining the current and best potential solution 
locations. 

Let 𝐷 be the size of the swarm, each particle 𝑖 is composed 
of the following D-dimensional vectors: (1) the current 
position 𝑥𝚤���⃗ ,  (2) velocity 𝑣𝚤���⃗ , and (3) best value  𝑝𝚤����⃗ . 

The PSO algorithm consists of adjusting the velocity and 
position of each particle toward new current best and global 
best locations. At each time step, current position 𝑥𝚤���⃗  is updated 
by velocity and evaluated as a problem solution, in case the 
particle finds a pattern that is better than any it has found 
previously, it is recorded in the vector  𝑝𝚤���⃗  . And also the best 
fitness result value is recorded in 𝑃𝑏𝑒𝑠𝑡𝑖 , for comparison on 
the next iterations. The PSO keeps finding better positions and 
updating both 𝑝𝚤���⃗  and pbest𝑖 . 

Position of individual particles 𝑥𝑖  at 𝑘 + 1  iteration is 
modified according to the following [7]: 

 𝑥𝑖𝑘+1 =  𝑥𝑖𝑘 + 𝑣𝑖𝑘+1𝑘+1  (1) 
The particle position is adjusted using the particle velocity 

which is calculated using the following equation [8, 9]: 

𝑣𝑖𝑘+1 =  𝑤 × 𝑣𝑖𝑘 + 𝑐1 × 𝑟1�𝑃𝑏𝑒𝑠𝑡𝑖𝑘 −  𝑥𝑖𝑘� + 𝑐2 ×
𝑟2�𝐺𝑏𝑒𝑠𝑡𝑘 −  𝑥𝑖𝑘�  (2) 

where, 

- 𝑖 = 1, 2,⋯ ,𝑛; 
- 𝑘 : iteration index, 
- 𝑣𝑖𝑘 , and 𝑥𝑖𝑘 :  velocity and position of particle 𝑖  at 

iteration 𝑘, 
- 𝑃𝑏𝑒𝑠𝑡𝑖𝑘 : best position of particle 𝑖 at iteration 𝑘 
- 𝐺𝑏𝑒𝑠𝑡𝑘: global best position in the whole swarm until 

iteration 𝑘, 

- 𝑐1: cognitive parameter coefficient, 
- 𝑐2: social parameter coefficient, 
- 𝑟1 and 𝑟2: predefined random values in rang [0, 1], 
- 𝜔 : inertia weight factor controlling the dynamics of 

flying, 
- 𝑛: number of particles in the group 
The inertia weight factor dynamically adjusts the velocity 

of particle and therefore it controls the exploration and 
exploitation of the search space. The nonlinearly decreasing 
inertia weight w is set as follow [10]: 

 𝜔 =  𝜔𝑚𝑖𝑛 + �𝑖𝑡𝑒𝑟𝑚𝑎𝑥−𝑖𝑡𝑒𝑟
𝐼𝑡𝑒𝑟𝑚𝑎𝑥

�
𝑛

 × (𝜔𝑚𝑎𝑥 − 𝜔𝑚𝑖𝑛) (3) 

where, 
- 𝜔𝑚𝑖𝑛, and 𝜔𝑚𝑎𝑥: lower and upper limit value of inertia 

weights, 

- 𝐼𝑡𝑒𝑟𝑚𝑎𝑥 : maximum number of iteration,  

- 𝐼𝑡𝑒𝑟 : current iteration, 

In each iteration, ω inertia weight will decrease nonlinearly 
from 𝜔𝑚𝑎𝑥  to 𝜔𝑚𝑖𝑛 and 𝑛 is the nonlinear modulation index. 

Fig. 2 illustrates PSO search mechanism according to “(1)” 
and “(2)”. 

 
Fig. 2. The search mechanism of the particle swarm optimization 

The process of PSO algorithm for solving Nonograms 
puzzles can be summarized as follows: 

1) Initialization a population with random positions and 
velocities of a group of particles in 𝑑  dimensional problem 
space while Nonograms puzzles constraints. 

2) Position updating 
3) Memory updating 𝑃𝑏𝑒𝑠𝑡 and 𝐺𝑏𝑒𝑠𝑡. 
4) if stopping criteria is satisfied then stop PSO, else go to 

Step 2. 

III. DIW-PSO FOR SOLVING NONOGRAMS PUZZLES 
In this section, the DWI- PSO in solving Nonograms puzzle 

is described. The fitness function has a major role in the DWI-
PSO algorithm, since it is the only standard of judging whether 
a particle is “best” or not. The fitness function for Nonograms 
puzzles is calculated as follow: 

𝑓𝑘𝑖(xki ) = ∑ �𝑟𝑖,𝑝 − 𝑥𝑖𝑝� + ∑ �𝑐𝑝,𝑖 − 𝑥𝑝,𝑖�𝑚
𝑝=0

𝑛
𝑝=0  (4) 

where 
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- 𝜒𝑖,𝑟  is the total number of colored pixels at row r of 
individual 𝑖, 

- 𝑄𝑟  is the total number of colored pixels at row r of the 
puzzle, 

- 𝑌𝑖,𝑟 is the total number of colored pixels at column r of 
individual 𝑖, 

- P𝑟 is the total number of colored pixels at column r of 
the puzzle. 

The fitness value 𝑓𝑘𝑖(xki ) gives an indication how much the 
individual 𝜒𝑖,𝑛 far from the optimal solution. Compare current 
particles fitness value 𝑓(xki ) with best particles fitness value  
𝑓�𝑃𝑏𝑒𝑠𝑡𝑖𝑘� . If 𝑓(xki ) is better than 𝑓�𝑃𝑏𝑒𝑠𝑡𝑖𝑘�  then set fbesti  
value to 𝑓𝑘𝑖(xki )  and the 𝑃𝑏𝑒𝑠ki  location to the location 𝑥𝑘𝑖 .  
Then compare 𝑓(𝑥𝑘𝑖 )  with the population’s global best 
𝑓(𝐺𝑏𝑒𝑠𝑡𝑘) . If the 𝑓(xki ) is better than 𝑓(𝐺𝑏𝑒𝑠𝑡𝑘)  then reset 
 fbest
g  to the current particle 𝑓�𝑥𝑖𝑘�, and the 𝐺𝑏𝑒𝑠𝑡𝑘 location to 

the location xki  . To illustrate the fitness function, consider the 
figure 2. The fitness function for figure 2 (b), (c) and (d) is 
calculated as follow: 

𝑓(𝑃𝑏𝑒𝑠𝑡𝑖𝑘) = |2 − 2| + |2 − 2| + |1 − 1| + |2 − 1| + |3 − 2|
+ |0 − 2| = 4 

𝑓(𝑥𝑖𝑘) = |2 − 2| + |2 − 2| + |1 − 1| + |2 − 1| + |2 − 2|
+ |1 − 2| = 2 

𝑓(𝐺𝑏𝑒𝑠𝑡𝑘) = |2 − 2| + |2 − 2| + |1 − 1| + |3 − 1| + |2 − 2|
+ |2 − 0| = 4 

Since �𝑥𝑖𝑘� <  𝑓�𝑃𝑏𝑒𝑠𝑡𝑖𝑘� , the  current 𝑥𝑖𝑘  is better than 
𝑃𝑏𝑒𝑠𝑡𝑖𝑘 , then set  fbesti = 2, and 𝑃𝑏𝑒𝑠ki = xki . And also since 
the 𝑓�𝑥𝑖𝑘�  <  𝑓(𝐺𝑏𝑒𝑠𝑡𝑘) , which indicates that current 𝑥𝑖𝑘  is 
better than 𝐺𝑏𝑒𝑠𝑡𝑘, then set  fbest

g = 𝑓�𝑥𝑖𝑘�, and 𝐺𝑏𝑒𝑠𝑡𝑘 = xki . 
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(a) Nonograms 
puzzle 

(b) 𝐺𝑏𝑒𝑠𝑡𝑘 (c)𝑃𝑏𝑒𝑠𝑡𝑖𝑘 (d) 𝑥𝑖𝑘 

Fig. 3. An example to illustrate the Nonograms fitness function 

At each iteration step, velocities of all particles are 
modified using “(2)”, so the velocity of particle 𝑖 at iteration 𝑘 
( Fig. 3) according to “(1)” is: 

𝑣𝑖𝑘+1 = ⌈ 1 × 0 +  2 × 0.2 × (0) + 2 × 0.8 × (4)⌉ 𝑚𝑜𝑑 𝑉𝑚𝑎𝑥
= ⌈6.4⌉ 𝑚𝑜𝑑 3 = 7 𝑚𝑜𝑑𝑒 3 = 1 

where = 1 , 𝑐1 = 𝑐2 = 2, 𝑣𝑖𝑘 = 0, 𝑟1 = 0.2, 𝑉𝑚𝑎𝑥 = 3, and 
𝑟2 = 0.8 

After calculating the velocity, and between successive 
iterations, the modification of the particle position is controlled 
by the new calculated velocity. The modified position of 𝑥𝑖𝑘 is 

done by adding the 𝑣𝑖𝑘+1 to the 𝑥𝑖𝑘, as defined in “(2)”: 

𝑥𝑖𝑘+1 = 𝑥𝑖𝑘 + 1 

The result of the above equation means that the current 
particle 𝑥𝑖𝑘 must be shifted one cell to right. Fig. 4 illustrates 
the result of shifting 𝑥𝑖𝑘. 
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(a) 𝑥𝑖𝑘   (b)  𝑥𝑖𝑘+1 

Fig. 4. Particle Position modification 

Generally, the procedure for the proposed algorithm 
consists of the following steps: 

Step 1: Initialization 

1.1. Constant variables  𝑐1, 𝑐2 and 𝑘𝑚𝑎𝑥. 

1.2. Positions of a group of particles  𝑥𝑖𝑘. 

1.3. Velocities of a group of particles 𝑣𝑖𝑘 . 

Step 2: Optimization 

2.1. For each particle, evaluate fitness fki  using (4). 

2.2. Compare the fitness of each individual with each 
𝑃𝑏𝑒𝑠𝑡i.  

If 𝑓𝑘𝑖  ≤  𝑓𝑏𝑒𝑠𝑡𝑖 , then the new position of 𝑖𝑡ℎ particle is 
better than 𝑃𝑏𝑒𝑠𝑡𝑖 , then set  𝑓𝑏𝑒𝑠𝑡𝑖 = 𝑓𝑘𝑖, 𝑃𝑏𝑒𝑠𝑘𝑖 = 𝑥𝑘𝑖  

2.3. Compare the fitness of each individual with 𝐺𝑏𝑒𝑠𝑡𝑘. 

If 𝑓𝑘𝑖  ≤  𝑓𝑏𝑒𝑠𝑡
𝑔 , the new position of 𝑖𝑡ℎ particle is better 

than 𝐺𝑏𝑒𝑠𝑡𝑘, then set  fbest
g = fki , 𝐺𝑏𝑒𝑠𝑡𝑘 = xki  

2.4. Calculate the inertia weight using (3). 

2.5. Update all particle velocities according to (2). 

2.6. Update all particle positions according to (1). 

2.7. Increment k. 

2.8. repeat steps 2.1 – 2.4 until a sufficient good fitness or 
a maximum number of iterations are reached. 

Step 3: Terminate 

DWI-PSO parameters are as in Table 1. To solve the 
Nonograms puzzle we set the population size equal to the  
number of rows times number of columns in the Nonograms 
puzzle,  maximum Number of iterations are considered as 10, 
20, 50,100 and 1000, respectively,  𝑐1 =  𝑐2 =  2 , and 
𝑉𝑎𝑟𝑚𝑎𝑥and 𝑉𝑎𝑟𝑚𝑖𝑛 are equal to the length of the search space 
[6, 11]. In addition, the inertia weight starts with 1.4 and 
decreases nonlinearly to 0.4 [12]. 
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TABLE I. PARAMETERS FOR DWI-PSO 

Population Size (Swarm Size) nPop  
Maximum Number of Iterations 𝑖𝑡𝑒𝑟𝑚𝑎𝑥 10, 20, 50, and 100 
Intertia Coefficient 𝜔 1.0 
Intertia Coefficient maximum value 𝜔𝑚𝑎𝑥 1.4 
Intertia Coefficient minimum value 𝜔𝑚𝑖𝑛 0.4 
Personal Acceleration Coefficient 𝑐1 2 
Social Acceleration Coefficient 𝑐2 2 
Decision Variables maximum value 𝑉𝑎𝑟𝑚𝑎𝑥 1 
Decision Variables minimum value 𝑉𝑎𝑟𝑚𝑖𝑛 0 

IV. EXPERIMENTAL RESULTS 
To clarify the efficiency of the DIW-PSO algorithm on 

Nonograms puzzle, several experiments as carried out. The 
experiment involved three puzzles of each of the following 
difficulties: “ 5 × 5 ”, “ 10 × 10 ”, “ 15 × 15 ”, “ 20 × 20 ”, 
“25 × 25”, “30 × 30”, “35 × 35”, “40 × 40”, and 45 × 45. 
All puzzles were selected from http://www.nonograms.org. 

Table 2 shows the success DIW-PSO in solving 
Nonograms puzzle. Success rate represents the number of runs 
out of the maximum number of iterations. 

TABLE II. SUCCESS RATE OF VARIOUS METHODS 

Problem size number of runs / maximum number of iterations 
 Puzzle 1 Puzzle 2 Puzzle 3 
5 × 5 5/10 6/10 8/10 
10 × 10 45/50 40/50 30/50 
15 × 15 44/50 32/50 34/50 
20 × 20 89/100 70/100 77/100 
25 × 25 85/100 87/100 94/100 
30 × 30 200/1000 205/1000 194/1000 
35 × 35 195/1000 222/1000 275/1000 
40 × 40 215/1000 245/1000 320/1000 
45 × 45 200/1000 250/1000 310/1000 

V. CONCLUSION 
In this paper, we presented a new algorithm for solving 

Nonograms. The process of PSO algorithm in finding optimal 
values follows the social behavior of bird flocks and fish 
schools which has no leader. Particle swarm optimization 
consists of a swarm of particles, where particle represent a 
potential solution. Particle will move through a 
multidimensional search space to find the best position in that 
space. Particle swarm optimization (PSO) is a promising 
scheme for solving NP-complete problems due to its fast 
convergence, fewer parameter settings and ability to fit 
dynamic environmental characteristics. 

The Nonograms problem is known to be NP-hard. The 
challenge is to fill a grid with black and white pixels in such a 
way that a given description for each row and column, 

indicating the lengths of consecutive segments of black pixels, 
is adhered to. 

Firstly, this paper investigates the principles Nonograms 
puzzle and the general procedure for finding the puzzle 
solution. Moreover, the principles and optimization steps of 
Dynamic Inertia Weight Particle Swarm Optimization DWI-
PSO and the influence of different parameters on algorithm 
optimization has been introduced in details. 

In this paper, DWI-PSO has been applied for solving 
Nonograms puzzle.  A dynamic inertia weight introduced to 
increase the convergence speed and accuracy of the PSO while 
searching for the best solution from Nonograms puzzle. The 
excremental results demonstrate the effectiveness, efficiency 
and robustness of the proposed algorithms for solving large 
size Nonograms puzzles. 

In summary, we presented a DWI -PSO algorithm that has 
been successfully applied to NP-Complete puzzles. For future 
work, we will consider DWI-PSO for more challenging NP-
Complete puzzles such as the Cross Sum, Cryptarithms, and 
Corral Puzzle. 
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