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Abstract—Globally, heart disease is the leading cause of death 

for both men and women. One in every four people is afflicted 

with and dies of heart disease. Early and accurate diagnoses of 

heart disease thus are crucial in improving the chances of long-

term survival for patients and saving millions of lives. In this 

research, an advanced ensemble machine learning technology, 

utilizing an adaptive Boosting algorithm, is developed for 

accurate coronary heart disease diagnosis and outcome 

predictions. The developed ensemble learning classification and 

prediction models were applied to 4 different data sets for 

coronary heart disease diagnosis, including patients diagnosed 

with heart disease from Cleveland Clinic Foundation (CCF), 

Hungarian Institute of Cardiology (HIC), Long Beach Medical 

Center (LBMC), and Switzerland University Hospital (SUH). 

The testing results showed that the developed ensemble learning 

classification and prediction models achieved model accuracies of 

80.14% for CCF, 89.12% for HIC, 77.78% for LBMC, and 

96.72% for SUH, exceeding the accuracies of previously 

published research. Therefore, coronary heart disease diagnoses 

derived from the developed ensemble learning classification and 

prediction models are reliable and clinically useful, and can aid 

patients globally, especially those from developing countries and 

areas where there are few heart disease diagnostic specialists. 
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I. INTRODUCTION 

Globally, heart disease is the leading cause of death for 
both men and women [1], with more than half of the deaths 
occurring in men. One in every four people is afflicted with 
and dies of heart disease, and in the United States, over 
610,000 afflicted Americans lose their lives annually [2]. 

Heart disease encompasses several types of heart 
conditions. The most common type of heart condition is 
coronary heart disease [3], which can cause heart attacks that 
kill more than 370,000 people every year.  In the United States, 
for every 43 seconds, one person suffers a heart attack, and for 
every minute one person dies of heart disease [2]. As a result, 
the total annual cost of coronary heart disease, including health 
care services, medications, and lost productivity, is about 
$108.9 billion in the United States.  

Coronary heart disease occurs when plaque builds up in a 
patient’s arteries [4]. As plaque continues to accumulate, the 
patient's coronary arteries detrimentally narrow over time and 

reduce blood flow to the heart, thus increasing the risk of heart 
attack or stroke.  

High blood pressure, high cholesterol, and smoking are 
three key risk factors for heart disease. Several other medical 
conditions and lifestyle choices, including diabetes, obesity, 
poor diet, physical inactivity, and excessive alcohol use, can 
also place people at a higher risk for heart disease. 

Currently, there are four main methods that are utilized to 
diagnose the severity of heart disease in patients. They include 
chest X-rays, coronary angiograms, electrocardiograms, also 
known as ECG or EKG, and exercise stress tests [3]. In terms 
of diagnosing heart disease and saving the lives of patients, 
time and diagnostic accuracy at early stages are very crucial. 
Early detection of coronary heart disease aids physicians in 
determining the most appropriate treatment and enhances the 
chances of survival for patients. In many developing countries 
and areas, however, specialists are not widely available to 
perform these diagnostic tests. Additionally, for many cases, 
inaccurate diagnoses and erroneously conducted medical 
procedures could lead to compromises in the patients' health. 
Thus, early and accurate diagnoses of heart disease have 
become immensely important in improving the chances of 
long-term survival for patients. 

Diagnosing coronary heart disease is a challenging task, but 
computer-aided detection (CAD) have been developed to 
provide automated predictions for heart disease in patients. As 
one of the modern computer-aided detection methods, machine 
learning is an emerging technology for analyzing medical data 
and providing prognosis on early detection outcomes.  One 
research report used CAD approaches to diagnose heart disease 
patients based on a method of integrating multiple different 
types of decision trees [5]. In other research reports, methods 
include support vector machine (SVM) learning [6]-[8], 
principal component analysis (PCA)-based evolution classifier 
[9], rotation forest (RF) classifier [10], artificial neural network 
(ANN) and fuzzy neural network (FNN) [11], and particle 
swarm optimization [12]. These methods were developed using 
the medical data of patients to classify and predict heart disease 
outcomes. 

In this research, an alternative and enhanced machine 
learning approach is proposed for coronary heart disease 
prediction based on classification and prediction models 
utilizing an adaptive Boosting algorithm that combines a set of 
weak classifiers into a strong ensemble learning prediction 
model. The developed classification and prediction models 
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contain two components: an ensemble learning-based training 
model and a prediction model (also called a diagnosis model). 
The training model is based on the adaptive Boosting algorithm 
to form ensemble learning consisting of an optimally weighted 
majority vote on a number of individual classifiers. On the 
other hand, the diagnosis model is used to distinguish and 
classify the presence or absence of coronary heart disease for 
heart disease outcome predictions. The classification and 
prediction model for diagnosing coronary heart disease was 
evaluated using the model sensitivity (or recall), specificity, 
precision, F-score, probability of the model misclassification 
error and the model accuracy, receiver operating characteristic 
(ROC) curve, area under the ROC (AUC), and Kolmogorov-
Smirnov (K-S) measure. 

II. MATERIALS AND METHODS 

In this section, the coronary heart disease data sets are 
introduced. The classification and prediction models for the 
coronary heart disease prediction based on the ensemble 
learning using the adaptive Boosting algorithm are presented. 
Lastly, the evaluation methods of the ensemble learning model 
are discussed in detail. 

A. Heart Disease Dataset 

The heart disease data sets, which were used in this 
research, were obtained from the Heart Disease Databases 
available in the UCI Machine Learning Repository [13]. These 
databases contain data information on heart disease clinical 
instances, contributed by the Cleveland Clinic Foundation 
(CCF), Hungarian Institute of Cardiology (HIC), Long Beach 
Medical Center (LBMC), and University Hospital in 
Switzerland (SUH), respectively. 

There are 4 different heart disease databases contributed by 
4 different medical institutions, including CCF, HIC, LBMC, 
and SUH. The databases contain 303 clinical instances, 294 
clinical instances, 200 clinical instances, and 123 clinical 
instances in each data set, respectively. This results in a total 
combination of 920 clinical instances. 

Each heart disease database has the same clinical instance 
format for each patient. Each clinical instance contains a total 
of 75 attributes and one target attribute. The target attribute 
refers to the status of the presence of heart disease in the 
patients. It is represented by an integer valued from “0” to “4,” 
where “0” signifies absence and the values (“1,” “2,” “3,” and 
“4”) signify the presence and severity of heart disease. In this 
research, the target attribute is reclassified into a binary value 
of “0” or “1,” indicating the diagnoses of absence or presence 
of coronary heart disease in the patients, respectively. 

B. Adaptive Boosting Algorithm and its Classifiers 

In this section, the diagnostic method for predicting and 
classifying the presence or absence of coronary heart disease is 
designed and developed based on ensemble learning 
classification and prediction models using an adaptive 
Boosting algorithm. The developed ensemble learning 
classification and prediction (or diagnostic) models, associated 
with their algorithms and methods, are presented in detail. 

The adaptive Boosting algorithm, also known as 
“AdaBoost,” is a machine learning meta-algorithm [14]. This 

algorithm is adaptive because it runs multiple iterations to 
generate a strong composite ensemble learning method by 
using an optimally weighted majority vote of a number of 
weak classifiers. While the individual weak classifiers are only 
slightly correlated to the true classifier, the adaptive Boosting 
algorithm creates a strong ensemble learning classifier, which 
is well-correlated with the resulting true classifier by iteratively 
adding the weak classifiers. 

Given M training data {(x1, y1),…, (xM ,yM)},  xi is a vector 
corresponding to an input sample data, associated with P input 
attributes, and yi is a target variable with a class label of either 
1 or -1. In this research, the P input attributes are represented 
by the 75 input attributes in the heart disease data sets that can 
be utilized to build classification and prediction models. 

The adaptive Boosting algorithm can be stated and 
described in the following [14]-[16]: 

Initialize weights 𝐷1[𝑖] =
1

𝑀
 for i = 1,…,M. 

For each iteration, t = 1,…,T: 

 Train a weak classifier using distribution Dt. 

 Select a weak classifier with low weighted error: 
ɛ𝑡 = 𝑃𝑟𝐷𝑡[ℎ𝑡[𝑥𝑖] ≠ 𝑦𝑖].                           (1) 

 Calculate a new component 𝛽𝑡 based on its error: 

𝛽𝑡 =
1

2
ln (

1−𝜀𝑡

𝜀𝑡
).                               (2) 

 Update distribution 𝐷𝑡[𝑖] for i = 1,…,M: 

𝐷𝑡+1[𝑖] =
𝐷𝑡[𝑖]𝑒

(−𝛽𝑡𝑦𝑖ℎ𝑡[𝑥𝑖])

𝑍𝑡
.                       (3) 

where Zt is a normalization constant such that the weights 
𝐷𝑡+1[𝑖] sum to one. 

After all of the boosting iterations, a final ensemble 
learning classifier, which has a weighted error that is better 
than chance, is obtained by combining all weak classifiers 
with an optimal weight,  

𝐻[𝒙] = 𝑠𝑖𝑔𝑛(∑ 𝛽𝑡ℎ𝑡[𝒙]
𝑇
𝑡=1 ).                    (4) 

Eq. (4) is guaranteed to have a lower exponential loss over the 
training samples. This is equivalent to say that the final 
classifier H[x] is computed as a weighted majority vote of the 
weak classifiers ht[x], where each classifier is assigned by 
weighting 𝛽𝑡 . 

During the training, the adaptive Boosting iterations also 
decrease the classification error of the ensemble learning 
classifier over the training samples. In addition, the 
classification error must quickly decrease exponentially if the 
weighted errors of the component classifiers, 𝜀𝑡 , are better 
than chance, that is, 𝜀𝑡 < 0.5. The ensemble learning-based 
classification error is bound by  

𝑒𝑟𝑟(𝐻[𝒙]) ≤ ∏ 2√𝜀𝑡(1 − 𝜀𝑡)
𝑇
𝑖 .                  (5) 

Furthermore, the weighted error of each new component 
classifier, 𝜀𝑡 , in Eq. (5) can be expressed:  

𝜀𝑡 = 0.5 −
1

2
(∑ 𝐷𝑡[𝑖]𝑦𝑖

𝑀
𝑖 ℎ𝑡[𝑥𝑖]).                 (6) 

Eq. (6) shows that the weighted error of each new component 
classifier tends to increase in association with a function of 
adaptive Boosting iterations. 
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During each training round, a new weak classifier is added 
to the ensemble learning process, and a weighting vector is 
adjusted to focus on training samples that were misclassified 
in previous rounds. As a result, the final model H[x] is a 
classifier that has a higher accuracy than those of the weak 
classifiers. 

C. The Methods of Adaptive Boosting Model Evaluations 

In order to evaluate the performances of the adaptive 
Boosting algorithm-based ensemble learning classification and 
prediction models, one of the best methods is to analyze the 
model’s accuracy and misclassification error, sensitivity (also 
known as recall), specificity, precision, F-score, ROC, AUC, 
and K-S measure using the training and testing data sets. In this 
research, these analyses depend on the number of false positive 
and false negative instances of the heart disease data according 
to the references [17]-[21]. The diagnostic results, associated 
with the positive or negative results for distinguishing between 
presence and absence of coronary heart disease from the 
ensemble learning classification and prediction model, are 
shown in Table 1. 

TABLE I.  A MATRIX OF THE DEVELOPED ENSEMBLE LEARNING 

CLASSIFICATION AND PREDICTION MODELS' DIAGNOSTIC RESULTS FOR 

DISTINGUISHING BETWEEN PRESENCE AND ABSENCE OF CORONARY HEART 

DISEASE 

 Actual Heart 

Disease 

Actual No 

Heart Disease 

Total Number 

Predicted 

heart disease 
patients 

True Positive 

(TP) 

False Positive 

(FP) 

TP + FP 

Predicted no 

heart disease 

patients 

False 

Negative (FN) 

True Negative 

(TN) 

FN + TN 

Total Number TP + FN FP + TN TP + FP + FN + TN 

The sensitivity is defined as the probability of correctly 
identifying the presence of heart disease in patients given by 
[18], 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 .                          (7) 

The sensitivity is also referred to as the true positive rate or 
recall in the field of machine learning. 

The specificity is defined as the probability of correctly 
identifying the absence of heart disease in patients given by, 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 .                          (8) 

The specificity is sometimes called the true negative rate. The 
difference of (1 – specificity) is known as the false positive 
rate.  

The precision or the positive predictive value is defined as 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 .                             (9) 

Thus, the probability of the misclassification error (PME) is 
obtained by     

                  𝑃𝑀𝐸 =
𝐹𝑁+𝐹𝑃

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
 ,                         (10) 

and the model’s accuracy is defined by 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝐹𝑃+𝑇𝑁
  ,                     (11) 

where the model’s accuracy = (1 – PME). 

Notice that both the recall in Eq. (7) and precision in Eq. 
(9) are in a mutual relationship based on the understanding 
and measure of relevance. The recall is a measure of quantity, 
while the precision is a measure of quality. Thus, based on the 
harmonic mean of recall and precision, the relationship 
between the recall and precision definitions is given by a F-
score, which is defined as 

𝐹_𝑠𝑐𝑜𝑟𝑒 = 2 (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
) ,            (12) 

where a F-score of 1 would signify the best score in terms of 
accuracy of the classification and prediction model, and a F-
score of 0 would be the worst score. 

Thus, the F-score in Eq. (12) is used to measure the model 
performances and likewise can be used as a single measure of 
a model's accuracy during the testing. In addition, the F-score 
can also be interpreted as a weighted average of the recall and 
precision. 

A ROC curve for classification and prediction models is a 
graph plot, which is obtained by using a set of trade-off points 
between the sensitivity and the difference of (1 – specificity) 
for cases classified as presence of heart disease. The 
corresponding AUC under the ROC curve can be used to 
evaluate and rank the quality of the performance of 
classification and prediction models [18]. To estimate the 
AUC, a trapezoidal approximation formula is given by [18], 
[22],     

 ∫ 𝑓(𝑥)𝑑𝑥
1

0
≅ ∑ (

𝑦𝑖+𝑦𝑖+1

2
) (𝑥𝑖+1 − 𝑥𝑖)

𝑁
𝑖=0 ,          (13) 

where f(x) denoted the function of the ROC curve analysis, yi 

and xi represented the sensitivity and (1-specificity) at the ith 
(i = 0, 1, 2, …, M) point, respectively. An AUC of 1 
represents that the classification and prediction model is a 
perfect model in terms of diagnostic accuracy in 
distinguishing the presence of heart disease from absence of 
heart disease. On the other hand, an AUC of 0.5 indicates that 
the model is simply based on chance and is unmeaningful. 
Thus, the higher the AUC is, the better the classification and 
prediction model performs. 

The AUC under the ROC curve is one of the most 
important parameters to evaluate and rank the quality of the 
performance of classification and prediction models under a 
condition of balance samples; that is, the number of presence 
and the number of absence of heart disease cases are 
approximately equal in the training and testing data sets. 
However, if unbalanced samples are represented in the data 
set, the F-score in Eq. (12) is the most important parameter for 
quality evaluation of the classification and prediction models. 
In that case, the AUC would not be an effective method of 
ranking the quality of the performance of the classification 
and prediction models. 

In this research, the K-S measure [20], [21] will also be 
used to measure performance of the ensemble learning 
classification and prediction models. More accurately, in our 
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research, the K-S measure is used to determine the degree of 
separation between the distributions of the presence and 
absence of heart disease in patients. The K-S measure can 
achieve a value of 100% if the scores of the model partition 
the population into two separate groups, in which one group 
contains all clinical instances classified with presence of 
coronary heart disease and the other consists of all clinical 
instances classified with absence of heart disease. In other 
words, the K-S measure results in 100% if output probabilities 
(or model scores) of the developed ensemble learning 
classification and prediction model allow the results of the 
presence and absence of heart disease in patients to be 
perfectly separated. In an unusual case, the K-S measure 
would be 0 if the developed ensemble learning classification 
and prediction model cannot differentiate between presence 
and absence of coronary heart disease. However, in most cases 
for classification models, the K-S measure will fall in a range 
between 0% and 100%. Thus, the higher the K-S measure 
value is, the better the developed ensemble learning 
classification and prediction model is at diagnosing the 
presence or absence of coronary heart disease in patients. 

III. RESULTS 

In this paper, an advanced ensemble machine learning 
technology, utilizing an adaptive Boosting algorithm, is 
proposed for accurate heart disease diagnosis and outcome 
predictions. The proposed adaptive Boosting model is an 
ensemble machine learning meta-algorithm, which combines a 
set of outputs from other learning algorithms into a weighted 
sum, thereby converging multiple mathematical models into a 
strong and enhanced classification and prediction model. 

The proposed ensemble learning classification and 
prediction models were applied to 4 different data sets for 
coronary heart disease diagnosis. With data collected from four 
different medical institutions, these 4 data sets contain clinical 
instances of patients diagnosed with heart disease: 303 
instances from the CCF, 294 instances from the HIC, 200 
instances from the LBMC, and 123 instances from the SUH. 
Table 2 shows the details of the clinical instances in terms of 
the number of cases with the presence or absence of coronary 
heart disease in each of the 4 data sets, after the removal of 
clinical instances with missing values. 

As can be seen in Table 2, there are large differences in 
terms of the percentage of the presence of coronary heart 
disease in patients, with the lowest at 36.18% and the highest at 
93.44% in the data sets. 

In each data set, each clinical instance consists of 76 raw 
attributes. Among all of the raw attributes, only 29 of them 
were used for developing the ensemble learning classification 
and prediction models due to a large number of missing values. 
Table 3 lists the detailed 29 raw attributes, which had been 
used for the model development in this research. 

To evaluate the performances of the developed ensemble 
learning classification and prediction models based on the 
adaptive Boosting algorithm, the probabilities of the model 
misclassification error and the model accuracy were estimated 
using a nonparametric approach based on a holdout method 
[23]. The holdout method is also known as the  H method.  The 

TABLE II.  THE CLINICAL INSTANCES IN TERMS OF THE PRESENCE AND 

ABSENCE OF HEART DISEASE IN EACH DATA SET 

 Cases with 

Presence of 

Heart 

Disease 

Cases with 

Absence of 

Heart 

Disease 

Total 

Clinical 

Instance 

Cases 

Percentage of 

the Presence 

of Heart 

Disease in 

Data Set 

CCF 125 157 282 44.33% 

HIC 106 187 293 36.18% 

LBMC 113 32 145 77.93% 

SUH 114 8 122 93.44% 

TABLE III.  THE 29 RAW ATTRIBUTE NAMES AND THEIR DESCRIPTIONS 

Variable 

Name 

Descriptions Variable 

Name 

Descriptions 

Age Age in years Tpeakbps Peak exercise blood 
pressure (first of 2 

parts) 

Sex Sex (1 = male; 0 = 
female) 

Tpeakbpd Peak exercise blood 
pressure (second of 2 

parts) 

CP Chest pain type (1 = 

typical angina;  
2 = atypical angina; 3 = 

non-anginal pain;   

4 = asymptomatic) 

dummy Integer, from 94 to 200 

Htn Binary, 0 and 1 tresrbpd Resting blood pressure 

Chol Serum cholesterol in 

mg/dl 

exang Exercise induced 

angina (1 = yes; 0 = 
no) 

Restecg Resting 

electrocardiographic 

results (0 = normal; 1 = 
having ST-T wave 

abnormality where T 

wave inversions and/or 
ST elevation or 

depression of > 0.05 

mV; 2 = showing 

probable or definite left 

ventricular hypertrophy 

by Estes' criteria) 

xhypo (1 = yes; 0 = no) 

Ekgmo Month of exercise ECG 

reading 

oldpeak ST depression induced 

by exercise relative to 

rest 

Ekgday Day of exercise ECG 
reading 

cmo Month of cardiac cath 

Ekgyr Year of exercise ECG 

reading 

cday Day of cardiac cath 

Prop Beta blocker used 
during exercise ECG  

(1 = yes; 0 = no) 

cyr Year of cardiac cath 

Nitr Nitrates used during 
exercise ECG  

(1 = yes; 0 = no) 

Lvx3 Integer, from 0 to 8 

Pro Calcium channel 
blocker used during 

exercise ECG (1 = yes; 

0 = no) 

Lvx4 Integer, from 0 to 8 

Thaldur Duration of exercise 
test in minutes 

lvf Integer, from 1 to 4 

Thalach Maximum heart rate 

achieved 

num Diagnosis of heart 

disease (angiographic 
disease status)  

0 ( < 50% diameter 

narrowing)  
1 ( > 50% diameter 

narrowing) 

Thalrest Resting heart rate   
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pattern data {X,} are partitioned into two mutually exclusive 

data sets {X,}1 and {X,}2. For the holdout method, the 
ensemble learning classification and prediction models were 

trained using the training data {X,}1, and then the ensemble 
learning classification and prediction models were tested using 

the testing data {X,}2. 

Each data set was separated into equally sized training and 
testing data sets. The ensemble learning classification and 
prediction models were trained and tested by using the 
training and testing data sets, respectively. To train the 
classification  and  prediction  models,  the  adaptive  Boosting 

 

Fig. 1. The model classification error plot at each iteration, where the red 

curve represents the training error and the green curve represents the testing 
error by using the CCF training and testing data sets, respectively. 

 
Fig. 2. The model classification error plot at each iteration, where the red 

curve represents the training error and the green curve represents the testing 

error by using the HIC training and testing data sets, respectively. 

algorithm parameters were set to 100 iterations for the CCF, 
HIC, LBMC, and SUH.  

Fig. 1 displays the trained and tested classification error 

curves at each iteration using the CCF training and testing data 

sets. Fig. 2 also shows the trained and tested classification 

error curves at each iteration using the HIC training and 

testing data sets. For the LBMC, the trained and tested 

classification error curves at each iteration are shown in Fig. 3, 

using the LBMC training and testing data sets. Finally, the 

trained and tested classification error curves using the SUH 

training and testing data sets are shown in Fig. 4. 

 

Fig. 3. The model classification error plot at each iteration, where the red 

curve represents the training error and the green curve represents the testing 

error by using the LBMC training and testing data sets, respectively. 

 

Fig. 4. The model classification error plot at each iteration, where the red 

curve represents the training error and the green curve represents the testing 

error by using the SUH training and testing data sets, respectively. 
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TABLE IV.  TRAINING RESULTS OF THE MODEL PERFORMANCES FOR THE CCF, HIC, LBMC, AND SUH USING THE TRAINING DATA SETS 

 TP FP FN TN Total Sensitivity (Recall) Specificity Precision F-Score Error Accuracy 

CCF 60 1 3 77 141 95.24% 98.72% 98.36% 0.97 2.84% 97.16% 

HIC 54 0 2 90 146 96.43% 100% 100% 0.98 1.37% 98.63% 

LBMC 57 5 0 11 73 100% 68.75% 91.94% 0.96 6.85% 93.15% 

SUH 50 0 0 11 61 100% 100% 100% 1 0% 100% 

 

TABLE V.  TESTING RESULTS OF THE MODEL PERFORMANCES FOR THE CCF, HIC, LBMC, AND SUH USING THE TESTING DATA SETS 

 TP FP FN TN Total Sensitivity (Recall) Specificity Precision F-Score Error Accuracy 

CCF 44 10 18 69 141 70.97% 87.34% 81.48% 0.76 19.86% 80.14% 

HIC 40 6 10 91 147 80.00% 93.81% 86.96% 0.83 10.88% 89.12% 

LBMC 54 14 2 2 72 96.43% 12.50% 79.41% 0.87 22.22% 77.78% 

SUH 56 2 0 3 61 100% 60.00% 96.55% 0.98 3.28% 96.72% 

 

Table 4 displays the detailed training model performances 
of the developed ensemble learning classification and 
prediction models in predicting the presence and absence of 
coronary heart disease using the training data sets. The training 
results of the model accuracies of the developed ensemble 
learning classification and prediction models were the 
following: 97.16% for CCF, 98.63% for HIC, 93.15% for 
LBMC, and 100% for SUH. The corresponding F-score for the 
trained ensemble learning classification and prediction models 
were 0.97 for CCF, 0.98 for HIC, 0.96 for LBMC and 1 for 
SUH. 

Table 5 shows the detailed testing model performances of 
the developed ensemble learning classification and prediction 
models in predicting the presence and absence of coronary 
heart disease using the testing data sets. As shown, the testing 
results of the model accuracies of the developed ensemble 
learning classification and prediction models were the 
following: 80.14% for CCF, 89.12% for HIC, 77.78% for 
LBMC, and 96.72% for SUH. The corresponding F-scores for 

 

Fig. 5. An estimated AUC under the ROC curve of the developed ensemble 
learning classification and prediction model for cases classified as presence of 

heart disease and absence of heart disease in the CCF dataset, where the true 

positive rate is sensitivity on the y-axis and the false positive rate is the 
difference (1 – specificity) on the x-axis. 

 

the tested ensemble learning classification and prediction 
models were 0.76 for CCF, 0.83 for HIC, 0.87 for LBMC and 
0.98 for SUH. 

The ROC curve results of the developed ensemble learning 
classification and prediction models were produced by varying 
a set of trade-off points between the model sensitivity on the y-
axis and the difference value (1 – specificity) on the x-axis for 
CCF, HIC, LBMC, and SUH as shown in Figures 5, 6, 7, and 8, 
respectively. The corresponding estimated AUCs under the 
ROC curve for CCF, HIC, LBMC, and SUH were 0.8526, 
0.9212, 0.6864, and 0.6357, respectively. The estimated AUCs 
of the ROC curves based on CCF and HIC implied that the 
proposed ensemble learning classification and prediction 
models can provide a consistently high accuracy in diagnosing 
and classifying presence of heart disease and absence of heart 
disease for predicting coronary heart disease outcome. 
Additionally, because the samples are approximately balanced 
in terms of the presence and absence heart disease cases in both 
of the CCF and HIC data sets, the AUCs under the ROC curves 

 

Fig. 6. An estimated AUC under the ROC curve of the developed ensemble 

learning classification and prediction model for cases classified as presence of 
heart disease and absence of heart disease in the HIC dataset, where the true 

positive rate is sensitivity on the y-axis and the false positive rate is the 

difference (1 – specificity) on the x-axis. 
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Fig. 7. An estimated AUC under the ROC curve of the developed ensemble 
learning classification and prediction model for cases classified as presence of 

heart disease and absence of heart disease in the LBMC dataset, where the 

true positive rate is sensitivity on the y-axis and the false positive rate is the 
difference (1 – specificity) on the x-axis. 

 

can be used to evaluate and rank the quality of the 
performances of the ensemble learning classification and 
prediction models. 

The developed ensemble learning classification and 
prediction models also enabled the production of a set of model 
probabilities (also called the model scores), which were 
associated with the presence and absence of coronary heart 
disease in the cases crossing over the 4 datasets. By sorting the 
model scores, the K-S charts were generated according to the 
cumulative counts of instances of the presence and absence of 
coronary heart disease cases. 

As a result, Fig. 9 shows a K-S chart of the CCF with the 
highest K-S value of 58.66% at the 4

th
 decile population. Fig. 

10 is a K-S chart of the HIC with the highest K-S value of 
66.54% located at the 4

th
 decile population. Fig. 11 is the K-S 

chart of the LBMC with the highest K-S value of 41.96% at the 
5th decile population. For the SUH, the K-S chart is shown in 
Fig. 12 with the highest K-S value of 52.86% located at the 9

th
 

decile population. As shown in the charts from Fig. 9 to Fig. 12, 
the highest K-S values are consistently associated with the 
tested model accuracies as listed in Table 5. Likewise, the 
higher the highest K-S test value is, the better and more 
accurate the developed ensemble learning classification and 
prediction model is in distinguishing between the presence and 
absence of coronary heart disease in patients. 

Therefore, when applied to patients with chest pain 
syndromes and intermediate disease prevalence, the diagnostic 
results of coronary heart disease diagnoses derived from the 
ensemble learning classification and prediction models are 
reliable and clinically useful. The results can be used to aid 
patients, especially those in developing countries and areas 
where   there   are   few   heart   disease   diagnostic  specialists  

 

Fig. 8. An estimated AUC under the ROC curve of the developed ensemble 

learning classification and prediction model for cases classified as presence of 
heart disease and absence of heart disease in the SUH dataset, where the true 

positive rate is sensitivity on the y-axis and the false positive rate is the 

difference (1 – specificity) on the x-axis. 

 

available. 

IV. DISCUSSION 

In this research, the ensemble learning classification and 
prediction models were designed and developed based on an 
adaptive Boosting algorithm. The developed classification and 
prediction models were utilized to diagnose and classify the 
presence and absence of coronary heart disease in diagnostic 
outcome predictions. The developed ensemble learning 
classification and prediction models were applied to 4 different 
coronary heart disease databases, where data sets were 
collected from 4 different medical institutions at the CCF, HIC, 
LBMC, and SUH. The performances of the developed 
ensemble learning classification and prediction models were 
tested and measured by using the training and testing data sets. 
Based on these testing results, the developed ensemble learning 
classification and prediction models were further evaluated by 
using the model accuracy and misclassification error, 
sensitivity (or recall), precision, specificity, F-score, ROC 
curve, AUC, and the K-S measure.  

As shown in Table 5, the tested model accuracies of the 
developed ensemble learning classification and prediction 
models, utilizing the 28 input attributes, were the following: 
80.14% for the CCF, 89.12% for the HIC, 77.78% for the 
LBMC, and 96.72% for the SUH using the testing data sets. 
Furthermore, the F-scores of the developed ensemble learning 
classification and prediction models were 0.76 for the CCF, 
0.83 for the HIC, 0.87 for the LBMC, and 0.98 for the SUH. 
The corresponding AUCs under the ROC curves were 0.8526 
for the CCF, 0.9212 for the HIC, 0.6864 for the LBMC, and 
0.6357 for the SUH. In addition, the highest K-S values of the 
developed ensemble learning classification and prediction 
model were 58.66% for the CCF, 66.54% for the HIC, 41.96% 
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Fig. 9. The K-S chart for the CCF was generated by using the model output 

probabilities. The highest K-S value is 58.66%, located at the 4th decile 

population. 

 

 

 

Fig. 10.   The K-S chart for the HIC was generated by using the model output 

probabilities. The highest K-S value is 66.54%, located at the 4th decile 

population. 

 

for the LBMC, and 52.86% for the SUH. Thus, based on the 
testing results, the average diagnostic accuracy of the 
developed ensemble learning classification and prediction 
model would be 85.27% accurate in distinguishing between 
presence and absence of coronary heart disease in a new 
patient with clinical heart disease data, crossing over the 4 
different locations in the CCF, HIC, LBMC, and SUH overall. 
Additionally, the average developed model sensitivity (or 
recall) was 86.61%; the average specificity was 83.76%; the 
average model precision was 85.84%; the average model F-
score 0.86;  and  the average  highest  K-S  value  was  55.01%. 

 

 

 

Fig. 11.   The K-S chart for the LBMC was generated by using the model 

output probabilities. The highest K-S value is 41.96%, located at the 5th decile 

population. 

 

 

 

Fig. 12.   The K-S chart for the SUH was generated by using the model output 

probabilities. The highest K-S value is 52.86%, located at the 9th decile 

population. 

 

Thus,  the  developed   ensemble   learning   classification  and 
prediction models were able to achieve a consistently high 
accuracy in diagnosing the presence and absence of coronary 
heart disease for heart disease patient outcome predictions. 

In comparison to related papers, there were several different 
methods developed using the same heart disease data sets. 
However, the methods associated with these developed models 
only considered 13 input attributes and in most cases were 
developed to classify and predict heart disease outcomes using 
only one of the 4 data sets. In general, these previous methods 
showed different performances in terms of the model 
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accuracies within a range of approximately 77% to 85%. The 
previous model accuracies of using a new probability 
algorithm [24] showed 77% for the HIC, 79% for the LBMC, 
and 81% for the SUH. The classification accuracy was 77% for 
the CCF based on the instance-based prediction model [25]. 
The conceptual clustering model [26] achieved 78.9% accuracy 
on the CCF data set. A decision tree (J4.8) was 78.9% accuracy 
and a Bagging algorithm [27] achieved 81.41% accuracy in 
diagnosing heart disease for the CCF data set. Recently, the 
data mining approaches [28], including Naïve Bayes, J48 
decision tree, and Bagging algorithm, achieved the model 
accuracies of 82.31%, 84.35%, and 85.03% for the HIC data, 
respectively. 

On the other hand, in this research, the developed ensemble 
learning classification and prediction models based on the 28 
input attributes were not only applied to the CCF data set but 
also applied to the HIC, LBMC, and SUH data sets. The testing 
results, as shown in Table 5 and Figures from 5 to 12, also 
indicate that the model accuracy of the developed ensemble 
learning classification and prediction models is comparably 
higher than most of those of the previously published methods. 
In addition, the developed ensemble learning classification and 
prediction models had more flexibility due to its use of the 
adaptive Boosting algorithm, regardless of whether or not there 
were overlapping data (or clusters) between the presence and 
absence of heart disease cases. The developed ensemble 
learning classification and prediction models moreover 
provided a more reliable and greater percentage of accuracy in 
distinguishing between the presence and absence of coronary 
heart disease in the patient outcome predictions.  

Therefore, the proposed ensemble learning classification 
and prediction models achieve significant potential in reducing 
the number of unnecessary, inaccurate diagnoses and 
erroneously conducted medical procedures that have 
compromised patients’ health. The proposed ensemble learning 
classification and prediction models enable early and accurate 
heart disease diagnose and thus help improve chances of long-
term survival for heart disease patients and save millions of 
lives. 

V. CONCLUSION AND FUTURE WORK 

In this paper, ensemble learning classification and 
prediction models have been developed to diagnose and 
classify the presence and absence of coronary heart disease in 
patient outcome predictions; additionally, the model 
accuracies, sensitivities (or recalls), precisions, specificities, F-
scores, ROC curves, AUCs, and K-S measures have been 
evaluated. The developed classification and prediction models, 
based on the adaptive Boosting algorithm, were ensemble 
learning classifiers that had high flexibility in adjusting a 
weighting vector to generate a strong, single composite 
ensemble learning classification and prediction model by using 
an optimally weighted majority vote of a number of weak 
classifiers. 

The developed ensemble learning classification and 
prediction models were trained and tested using the holdout 
method based on 4 different data sets from 4 different medical 
institutions. The testing results showed that the developed 
ensemble learning classification and prediction models had an 

average sensitivity (or recall) of 86.61% in diagnosing the 
presence of heart disease, an average specificity of 83.76% in 
diagnosing the absence of coronary heart disease, an average 
model precision of 85.84%, an average model F-score of 0.86, 
and an average model accuracy of 85.27% in diagnosing both 
the presence and absence of coronary heart disease. In each 
data set, the accuracies of the testing results of the ensemble 
machine learning models were the following: 80.14% for CCF, 
89.12% for HIC, 77.78% for LBMC, and 96.72% for SUH. 
Therefore, the developed ensemble learning classification and 
prediction models using the 28 input attributes can provide 
highly accurate and consistent diagnoses for coronary heart 
disease patient outcome predictions, thereby allowing patients 
to bypass unnecessary, inaccurate diagnoses and erroneously 
conducted medical procedures. 

From Fig. 1 to Fig. 4, the classification errors based on the 
testing data sets are higher than the classification errors based 
on the training data sets at the 100th iterations, where data sets 
were collected from the 4 different medical institutions. This 
phenomenon involving the differences of the classification 
errors between the model training and testing processes is an 
expected encounter, known as an over-fitting problem in the 
field of machine learning during model development. 
Minimizing training error will often result in the over-fitting 
problem during each iteration in the adaptive Boosting 
algorithm since the Boosting algorithm is sensitive to noise 
and/or outlier samples. Thus, in future research, other enhanced 
methods that prevent and/or reduce the over-fitting problem 
associated with the adaptive Boosting algorithm during a 
training process would be investigated, thereby further 
enhancing the performances of the ensemble learning 
classification and prediction model and coronary heart disease 
diagnosis. 
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