
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Software Requirements Conflict Identification:
Review and Recommendations

Maysoon Aldekhail
College of Computer and

Information Sciences
King Saud University

Azzedine Chikh
College of Computer and

Information Sciences
King Saud University

Djamal Ziani
College of Computer and

Information Sciences
King Saud University

Abstract—Successful development of software systems re-
quires a set of complete, consistent and clear requirements. A
wide range of different stakeholders with various needs and
backgrounds participate in the requirements engineering process.
Accordingly, it is difficult to completely satisfy the requirements
of each and every stakeholder. It is the requirements engineer’s
job to trade-off stakeholders’ needs with the project resources
and constraints. Many studies assert that failure in understanding
and managing requirements in general, and requirement conflicts
in particular, are one of the main problems of exceeding cost and
allocated time which in turn results in project failure.
This paper aims at investigating the different reasons of re-
quirements conflicts and the different types of requirements
conflicts. It providing an overview of existing research works
on identifying conflicts; and discussing their limitations in order
to yield suggestions for improvement.
Objective: To provide an overview of existing research studies
on identifying software requirements conflict and identifying
limitations and areas for improvement.
Method: A comparative literature was conducted by assessing 20
studies dated from 2001 to 2014.

Keywords—software requirements; requirements engineering;
requirements conflicts

I. INTRODUCTION

In requirement engineering, the term conflict involves in-
terference, interdependency or inconsistency between require-
ments [1].

Different studies state that failure in managing requirement
conflicts is one of the main reasons for failure in software
projects which is caused by cost and lack of time [2]. It
is essential to detect and resolve conflicts in early phases
of the project lifecycle to prevent re-iterations of all phases
[3]. In recent research studies, a high number of conflicting
requirements is stated as in [4], n2 conflicts are reported in n
requirements, whereas [5] reported 40%-60% of requirements
were in conflict, In addition, the functional and nonfunctional
requirements were both found to be equal in the percentage of
conflicts.

Also, most research has shown the risks of working with
requirements that are in conflicts with other requirements.
These risks are overtime or over budget which can lead to
project failure. At the very least, it would result in extra effort
expended.

The remainder of the paper is organized as follows: sec-
tion II gives an overview about requirements conflict, the

different reasons for requirements conflict and the different
types of requirements conflict. Section III presents in de-
tails the existing techniques for requirements conflict and a
comparison between them. Then, section IV, discusses the
limitation and research gaps in previous works and gives
some recommendations should be taken into consideration
when working to find practical techniques for detecting conflict
between requirements. Finally, a conclusion of the review is
giving.

II. REQUIREMENTS CONFLICT

This section explains the meaning of requirements con-
flicts, the different reasons that may cause conflict between
requirements and the different types of requirements conflicts.

A. Definition of Requirements Conflict

Conflicting requirements is a problem that occurs when
a requirement is inconsistent with another requirement [7].
Consistency between requirements requires no two or more re-
quirements contradict each other [8]. In requirements engineer-
ing, the term conflict involves interference, interdependency or
inconsistency between requirements [1].

Kim et al. [9] gave a good definition of requirements
conflict as:

“The interactions and dependencies between requirements
that can lead to negative or undesired operation of the system”
An example of a conflict in nonfunctional requirements can
be the gap between performance and security; when the client
wants certain functionality to be satisfied in minimal time (e.g.
calculate something and display it on screen), as well as the use
of a secure protocol for data transferee and double password
access control.

B. Causes of Requirements Conflict

There are different reasons that cause conflicts between
stakeholders’ requirements. One good categorization for con-
flicts reasons is presented in [10]; it classifies the reasons into
technical reasons and social reasons. Technical reasons are
caused by the following difficulties:

• Massive quantity of requirements can lead to conflicts
between them.

• Changes in requirements during system development
phases. These changing may occur after the addition
of new requirements or the update of old ones [14].

www.ijacsa.thesai.org 326 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

• Complex system domain can lead to misunderstand-
ing of requirements, and therefore, conflicts between
them.

Whereas, the social difficulties that lead to requirements
conflicts are as follows:

• System has different stakeholders with diverse inter-
ests that usually interact with each other and causes
conflicts.

• Changes in the system’s stakeholders by adding new
stakeholders with different needs or by changing
stakeholders’ requests.

Therefore, there are different sources for inconsistencies
between requirements and these may cause problems in the
success of the software development. Researchers have been
working to find various solutions for this problem.

C. Types of Requirements Conflict

The literature review has shown that there are no predefined
classifications for conflicts in requirements. Each work pro-
vides a different classification for the conflicts after its found
based on the technique used to detect conflicts.

Poort and de With [15] grouped functional requirements
based on nonfunctional requirements; this means finding all
primary function requirements that share similar nonfunctional
requirements and grouping them together. Then two types
of conflicts are defined: grouping conflicts which caused by
differences in grouping of functions and in-group conflicts
that have conflicting requirements within one function group.
For example, there are three function groups called workflow,
data entry and analysis. For data entry and analysis, security
requirements are more restrictive than in the workflow group.
Whereas, modifiability for analysis are more stringent than
those for data entry and work flow.

Sadana and Liu [16] analyzed functional and nonfunctional
requirements and built functionality and quality attributed to
hierarchy. Then, two types of conflict in NFR are defined based
on comparison of all the lowest level NFRs, if there is still a
conflict detected among the NFR. These types are mutually
exclusive and partial conflicts. Mutually exclusive conflicts as
follows: NFRs A, B are mutually exclusive conflicts if all
the lowest level requirements in NFR A have a conflict with
the lowest level requirements in NFR B. Partial conflicts as
follows: NFRs A, B are in partial conflicts if some of the
lowest level requirements in NFR A have a conflict with the
lowest level requirements in NFR B.

Heng and Ming [17] defined three types of inconsistent re-
quirements based on multi-coordinated views on requirements.
This is common when one stakeholder has an incomplete
requirement while others have complete requirements. This
creates a situation where requirements overlap when one part
of processes in set A is overlapped with another but not fully
overlapped, as well as totally disjointed requirements when
two views on requirements are totally disjointed.

Butt et al. [2] defined different conflicts based on the
classification of the requirements to mandatory, essential and
optional. Mandatory requirements are a set of functional and

nonfunctional requirements. Essential requirements are the
constraints of the mandatory requirements. Whereas optional
requirements are the requirements that if they have conflicts,
this would not affect the acceptance of the system. For exam-
ple, in a hostel management system for a university:

• The system should allow the warden to assign student
a seat in his hostel (Mandatory requirement).

• The system should maintain a log of all allotments
and vacations in his hostel (Essential requirement).

• The system should allow the warden to shuffle multi-
ple students seats (Optional requirement).

Kim et al. [9] defined two types of requirement conflicts
depending on the cause of the conflict and the authoring
structure, which is action (verb) + object (object) + resource
(resource):

• Source conflict when two requirements use the same
resource.

For example, with cellular phones, when a phone call is
made from a number that should not answered , the automatic
response function will try to answer the phone call while the
reception refusal function will be forced not to answer the call.

• Activity conflict either by opposite verb (verb (dif-
ferent) +object (same)) or by different object (verb
(same) +object (different)).

For example, a fire control function is required with an
intrusion control function in the home integration system.
When those two functions are executed simultaneously, they
will try to send messages (fire message and intrusion message)
using the same resource (telephone service) at the same time,
which will lead to a resource conflict.

Moser et al. [13] [18] defined three types of conflicts
that could be detected: conflict between a requirement and
a constraint (CRC), conflict between a requirement and a
guideline (CRG), and conflict between requirements (CRR).
They also gave two classifications for conflicts based on
the number of requirements, simple conflicts (between two
requirements), and complex conflicts (between three or more).

Urbieta et al. [19] [20] defined three types of conflicts on
Web application:

• Structural conflicts: Which means the difference in the
data is expected to be presented on a Web page by
different stakeholders

• Navigational conflicts: This occurs when two Web
application requirements may contradict the way in
which links are traversed which in turn produces
navigational conflicts; that is, having two targets go
to a single source.

• Semantic conflicts: this happens when the same real-
world object is described using different terms.

Chentouf [21] defined seven types of conflicts:

1) Duplicated requirements: If two requirements are
exactly the same or one is included in the other.

www.ijacsa.thesai.org 327 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

2) Incompatible requirements: If two requirements are
either ambiguous, incompatible or contradictory.

a) Two operation frequencies: when the same
agent is required to perform the same opera-
tion on the same object, but at two different
frequencies.

b) Start-forbid: when the same event causes the
same operation to be performed and forbid-
den.

c) Forbid-stop: when the same operation is
stopped under a certain condition event and
at the same time, is unconditionally forbid-
den in another requirement.

d) Two condition events: when the same opera-
tion is being executed, stopped or forbidden
on two different events.

3) Assumption alteration: when the output of one re-
quirements’ operation is part of the inputs (assump-
tions) or outputs (results) of the other’s operation.

a) Input-output: When one of the requirements
performs its operation on an object (output)
that is an input in other requirements.

b) Out-put: This happens if one requirement
alters the result (output) or part of another
requirement.

Mairiza and Zowghi [21] explained the different categories
of conflicts in NFRs as:

• Absolute conflict: represents a pair of NFRs types that
are always in conflict.
For example, security and performance, availability
and privacy.

• Relative conflict: represents a pair of NFRs that are
claimed to be in conflict in some cases but not in all.
For example, usability and security, usability and
performance.

• Never conflict: represents a pair of NFRs types that
in the software projects are never inconflict. They
may contribute either positively through support or
cooperation, or may be indifferent to one another.
For example, accuracy and security, usability and
maintainability.

In general, we can give general classifications to require-
ments conflicts based on the types of requirements, functional
requirements and nonfunctional requirements. An example for
conflicts in nonfunctional requirements is security (privacy
metric) with usability (ease of function learning metric) so
there is a tradeoff between them. Then the developer must
choose a satisfactory solution to find the right balance of
attributes that work. Another example is:

• R1: After three continues failed login attempts, the
account would be locked by the system.

• R2: Once the account is locked, the system sends an
account lock notification email to the account’s owner.

• R3: Once an account is locked, the system would also
send a SMS message to the account’s owner to notify
him about the situation owner.

• R4: If a user has already received a notification via
email, he will not receive the same notification via
SMS.

• There is a conflict between R2, R3 and R4.

Another good classification for requirements conflicts is the
one illustrated in [21].

III. REQUIREMENT CONFLICT IDENTIFICATION
TECHNIQUES

Owing to the importance of accurate and complete require-
ments, researchers have tried to identify detection techniques
and proposed solutions for requirements conflicts.

This section discusses the different existing detection tech-
niques and their categorization. In the end, a comparison and
analysis of the techniques is summarized in a table.

The techniques proposed can have different classifications;
the easiest classification is the negotiation or automation tech-
niques. In negotiation techniques, stakeholders and software
engineers manually discuss and analyze requirements to de-
tect any conflicts [13]. Some call this approach an informal
technique that can be achieved by hiring experts to detect
inconsistencies using their experience [22]. This method has
some disadvantages because it may take a long time and much
effort to negotiate between different stakeholders. Additionally,
hiring experts can be very expensive and leave the process to
be prone to errors. While in automation approaches, software
engineers can use some tools to help with analyzing and
managing requirements [13].

In [6], three approaches are proposed to detect requirements
conflicts. The ontological approach which uses ontology to ex-
tract conflicts between terms and then, between requirements.
The methodological approach compares requirement represen-
tations to find conflicts and resolve them. The technological
approach provides a specific technique or automation to detect
potential conflicts.

Methodological approach is almost the same as the negoti-
ation approach since both are manual processes and depend on
human efforts. Additionally, technological approach is similar
to the automation technique since they both utilize tools to
solve problem of requirements conflicts.

Another classification of current detection approaches are
formalization-based approaches, model-based approaches and
stakeholder priority approaches [23]. The formalization-based
approaches use formal specifications for requirements to sup-
port seeking conflicts between them. The drawbacks of this
approach are the time and effort needed to formalize the
requirements and any mistake that could occur during the
formalization may lead to incorrect conflict detection. The
model-based approach structures the requirements into specific
models before conflict identification. If the approach uses a
model that is already used in the system then developing it
is fine; however, if it uses a different model, this will create
additional steps and therefore, extra time and effort. The third
approach depends on the stakeholders’ discussion and the
stakeholders preferences.

www.ijacsa.thesai.org 328 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

A. Existing Techniques

Literature shows that requirements engineering is one of
the most active research fields in the recent years. Researchers
are continuously working to improve requirements quality and
to resolve difficulties that may affect requirements whole-
ness or accuracy. One of the most common problems is
requirements conflicts, and because of the importance of this
topic as mentioned in section B, many works have presented
different techniques to detect and resolve conflicts between
requirements.

This section discusses these techniques, which can be
placed in three categories:

1) Manual techniques done manually by requirement
engineers.

2) Automatic techniques applied automatically using
software tools.

3) General framework, to detect conflicts without using
special techniques.

The different techniques are presented in ascending order
based on their dates.

1) Manual: Most of the proposed methods are performed
manually with software engineers and with help of stakehold-
ers. Heisel and Souquierers [3] presented a heuristic algorithm
to detect feature interactions in requirements. The algorithm
uses the schematic versions for formalized requirements and
consists of two parts, precondition interaction analysis to
determine any two requirements where both might be applied.
Then postcondition interaction analysis to determine the can-
didate incompatible requirements. As the algorithm is named
‘heuristic’, the candidates need to check with the software
engineers and stakeholders to determine if they are actual
conflicts or not.

Robinson [6] used a root requirements analysis to detect
requirements interactions. The technique is composed of three
procedures. First, rewrite the requirements in structure form.
Then, produce the root requirements hierarchies. Finally, an-
alyze the root requirements to determine the ordering of the
requirements according to their degree of expected conflict.
The case study result demonstrated that using root requirement
analysis is more accurate and detects more conflicts than
without using root analysis.

Poort and de With [15] presented a non-functional de-
composition (NFD) model that gives a new classification for
requirements. Primary functional requirements and supplemen-
tary requirements which is classified as secondary functional
requirements, quality attribute requirements and implementa-
tion requirements.

The technique defined two types of conflict: grouping
conflict caused by differences in grouping of functions and
in-group conflicts when conflict happen within one function
group. To solve in-group conflicts, requirements will be split
into different functions. The new functions will be included in
other function groups. This process will repeat until there is
no in-group conflict found.

Sadana and Liu [16] have proposed a framework to analyze
the conflicts among nonfunctional requirements using the inte-
grated analysis of functional and non-functional requirements.

The conflict detection is performed on the high level NFR
based on the relationship between quality attributes, constraints
and functionality. The FR and NFR hierarchy are built and
integrated to produce high level NFR.

The conflict detection in NFRs is based on relationship
among ISO 9126 quality attributes. Two types of conflict in
NFR are defined mutually exclusive and partial conflict.

Liu [13] utilized an ontological approach to analyze con-
flicts in the requirements specification of activity diagrams.
The requirements conflict process starts by building an action
state ontology and drawing the activity diagram for existing
requirements. Then, it detects the requirements conflict based
on seven proposed rules: shortcut conflict, initial state conflict,
final state conflict, sequence conflict, action state addition con-
flict, action state deletion conflict and process length conflict.

Heng and Ming [17] proposed a non-mathematical tech-
nique called multi-coordinated views that showing different
views of multiple stakeholders. The methods used for dis-
playing the different views are color and size. Three types of
inconsistent requirements can be found, when one stakeholder
has incomplete requirement while other stakeholder has more
complete requirement, fully overlapping requirements, and
totally disjointed requirements. The conflict resolving is done
through agent communication protocol like JADE with ACL.

Mairiza and Zowghi [5] proposed an ontological frame-
work (sureCM) to manage the conflicts between security and
usability requirements. The output of the system are lists of
conflicts, nature of the conflict based on the impact of the con-
flicts against different components in software development,
and conflict resolution strategy.

Butt et al. [2] proposed a Mandatory, Essential and Op-
tional (MEO-strategy) for requirement conflict resolution. The
strategy defined three types of requirements: mandatory re-
quirements, essential requirements and optional requirements.

The output of the framework is a requirement matrix
contains the conflicting requirements if any and the suggested
solution time. Prevention for mandatory, detection and removal
for essential and containment for optional requirements. A
case study result shows that the users’ acceptance test for
system performance, quality and conformity to user needs was
achieved successfully.

Mairiza et al. [11] applied an experimental approach to
design a framework that manage the relative conflicts among
NFRs. A suitable exterminate is designed to apply the metric
and measure of the NFRs with the functionality of the system
and how to implement the functionality (operationalization).
The result of the experiment is the satisfaction level of NFRs
in the system. A two dimensional conflict relationship graph
is created to determine if there is a conflict between the two
NFRs and the severity of any existing conflicts, means is it a
strong or weak conflicts depend on the shape of the graph.

Moreover, Mairiza et al. [24] proposed a novel idea of
utilizing TOPIS (Technique for Order of Preference by Simi-
larity to Ideal Solution) to resolve nonfunctional requirements
conflicts. TOPIS is a goal-based technique for finding the
alternative that is nearest to the ideal solution.

www.ijacsa.thesai.org 329 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

The framework takes a two-dimensional graph that shows
the relationship between two NFRs. Then, a decision matrix
is constructed based on the graph. The technique calculate
the distance to each alternative to the ideal solution and
choose the closed one, it is the solution that maximize both
NFRs. Alebrahim et al. [25] presented a structural method to
detect candidate requirements interaction between functional
requirements. The proposed method consists of three phases.
The first phase is to remove any conflicts after analyzing
problem diagrams. In the second phase, the set of candidates
conflict requirements are reduced using the information if
requirements have to be accomplished in parallel or not. In
last phase, the candidates conflict set are reduced by checking
if combination of their precondition is fulfilled. A real life
example was studied and the results show that the number
of possible interactions was decreased and thus, the time for
looking into requirements interactions decrease by 95%. The
precision was 33% and a perfect recall with 100%.

2) Automatic: The word ‘automatic’ intended using some
tools to analyze and detect the requirements conflicts instead
of doing that manually.

Egyed and Grunbacher [26] used an automated traceability
techniques to eliminate false conflicts and cooperation. The
approach automatically analyzing the requirements to identify
requirements that conflict based on their attributes, attributes
might be indifferent to one another, cooperative or conflicting.
Then, the trace analyzer automatically identifies the trace de-
pendencies among the requirements. Based on the knowledge
of trace dependencies, the system can determine to what extent
the requirements are overlapping. If two requirements overlap,
then the two requirement are conflicts. Whereas if there is no
overlap between them, they can’t be conflicts.

Kim et al. [9] presented a systematic process to detect and
manage requirement conflicts based on requirements partition
in natural language. A supporting tool (RECOMA) has been
built and two types of conflicts are defined, source conflict
and activity conflict. The requirement conflict detection is done
through two steps. First, a syntactic method automatically iden-
tifies the candidate conflict requirements. Then, the semantic
method is used to find the actual requirements conflicts through
questions list. By automated a syntactic analysis, the number
of requirements to be semantically comparison are reduced.
Two cases studies are presented and the results demonstrate
that comparison requirements dramatically reduced, and thus
the time and effort are decreased.

Kamalrudin et al. [8] explained how to use tractability
approach to manage the consistency between textual require-
ments, abstract interactions and Essential Use Cases (EUCs).
An automated tracing tool (Marama AI) is built to help
users extract abstract interaction from the textual requirements,
mapping the type of interaction and creating the EUC model.
It supports traceability and inconsistency checking between
the three forms. An experiment results show that 94% of the
participants were agree that it is useful and all were say it is
user friendly and easy to use.

Moser et al.[13], [18] proposed an automatic semantic
based approach for requirements conflict detection. The pro-
posed solution consists of two main phases. First step is to link
requirements written in natural language to semantic concepts

to build the project ontology. Then the requirements will
automatically and semantically analyzed to identify possible
conflicts using sets of assertions that should be true for all
existing facts.

They defined three types of conflicts that could be detected:
conflict between a requirement and a constraint (CRC), conflict
between a requirement and a guideline (CRG) and conflict
between requirements (CRR).The evaluation results show that
the prototype tool (OntRep) found all conflicts while manual
conflict analysis found 30% - 80% of the conflicts. Also, the
correctness of the proposed approach is 100% compared to
58.8 of false positive in manual analysis.

While Urbieta et al. [19], [20] proposed a model-driven
approach to detect requirement conflicts in Web applications
in early stage of software development. The approach starts
automatically listing the candidate structural and navigational
conflicts by structural analysis using the Navigational Devel-
opment Techniques (NDT) model. Then semantic analysis on
requirements is formalized using Domain Specific Language
(DSL) for candidate conflicts to avoid false positives which
are conflicts that are actually not in conflict.

Resolving conflicts will be done manually using the pro-
posed conciliation rules or by stakeholders’ negations. Com-
pared to manual approach, the evaluation shows that system
detects 100% of inconsistencies and the time is reduced by
78% which saves 44% of budget.

Nguyen et al. [27] proposed Knowledge Based Require-
ments Engineering (KBRE) framework. The domain knowl-
edge and semantics of requirements are centralized using
ontology and the requirements goal graph is used to detect
requirements inconsistencies and overlaps. The explanation for
each detected requirements is provided automatically. The case
study shows the performance of the system is satisfactory
by calculating the running time to detect inconsistencies and
precision of detecting inconsistent requirements.

Chentouf [21] presented a solution to OAM&P (Operation,
Administration, Management and Provisioning) requirements
conflicts.. The proposed method used an Extended Backus-
Naur Form (EBNF) as representation language for require-
ments. The system automatically validates each requirement
statement based on validation rules. Then it compares every
pair of requirement to detect conflicts according to the seven
conflict inference rules. Seven types of conflicts were defined
and a proposed solution for each type was presented. To test
the scalability, results show that the proposed solution gives an
acceptable computation time less than a minute for more than
10,1000 requirements. Also, it scales very well as the number
of requirements increase.

3) General Framework: Some works can’t be classified as
manual or automatic techniques. Thus, they are only consid-
ered as general frameworks to detect the conflicts between
requirements.

Shehatam et al. [22] proposed a three-level interaction de-
tection framework (DRI-3). Level-1 uses informal approaches
to detect accurate and domain known interaction with the help
of experts, Level-2 Identifies requirements interaction using
semi-formal, semi-formal means systematic steps without for-
malized methods. Level-3 applies formal approaches to detect

www.ijacsa.thesai.org 330 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

accurate interaction.

Additionally, the paper presented a set of guidelines de-
scribing which techniques from (DRI-3) can be used based
on the values of different attributes of project. A case study is
carried to evaluate the efficiency of using the model comparing
to experts without applying the model. The results show that
the number of comparison requirements is decreased by 18%.

Mairiza and Zowghi [28] demonstrated the results of the
investigation of research on NFRs conflicts that resulted in
a catalogue of conflicts among NFRs. The catalogue is a
two-dimensional matrix that represents the interrelationships
among twenty types of NFRs.

It shows three categories of relative conflicts between the
NFRs, absolute conflicts for NFRs that are always in conflict,
relative conflict for pair of NFRs that are sometimes conflicted
and not conflict for NFRs that never conflict in the literature
of NFRs conflict studies.

B. Comparing between Exciting Works

This section analyzes and summarizes the comparison
between different techniques to provide a general and quick
review on the works done in this area.

To offer better understanding and analysis of existing
techniques, they will be classified into different categories as
shown in figure 1, categorization is based as follows:

• The first classification is based on the conflict identi-
fication method, whether it is done manually by the
requirement engineers or automatically using software
tools. A class of general frameworks is added to
classify some works that detect conflicts without using
special techniques.

• The second classification is focused on the type of
requirements that the technique will be applied to:
functional or nonfunctional requirements.

• The third classification is to determine the scope
of the proposed approach to examine if it covers
the detection problem, detection and analysis of the
conflicts requirements to organize them into different
conflict types, and if the proposed approach offers a
resolving technique.

• The last classification is based on the representation
type for requirements used. If the detection technique
uses a specific formalization form, it structures the
requirements in a particular model, or it uses an
ontology.

Table I summarizes previous works listed by reference
number for the research, conflict analysis approach used
in identifying conflicts, and category of proposed methods
(manually, automatic or just a general framework). It also
states the type of requirements the technique is applied to
and what is the scope of the technique (i.e. identify, analyze,
resolve). It also determines what representation was used to
complete or facilitate the technique (formalization, structure
model or ontology). The last column indicates whether the
proposed technique was supported by evaluation or not. For
example, the first row corresponds to a manual technique that

Fig. 1. Categorization of existing techniques for requirements conflicts

Fig. 2. Analysis results based on identification method

uses a heuristic algorithm to detect functional requirements
conflicts and uses schematic versions as formalization form
for requirements representation.

The previous works that were studied include 20 papers;
these papers are the ones that have a close association with the
problem of requirement conflicts. They have proposed different
approaches for conflict analysis and detection. For automatic
techniques, the conflict analysis approach can be classified into
the following four groups: (1) semantic approach for technique
that use ontology like [13], [18]; (2) syntax approach when
a syntax analysis is done for requirement specification like
[9]; (3) graphical analysis when a specific model used like
[20], [19], [27]; and (4) tractability approach when tractability
technique is used like [26], [8].

The main classification shows that twelve of the works
(more than half of them) are manual techniques performed
by software engineers whereas only seven are automated tools
that help them to find conflicts in requirements, see figure 2.

The analysis of the works as shown in figure 3 demon-
strates that eleven of the twenty works work on functional
requirements and only six for nonfunctional requirements
while there are three works for both of them.

The scope of the proposed solutions was different. As
figure 4 shown, almost all research focus on the problem
of identifying conflicts, while thirteen of them analyze the
conflicts to give different classifications for the conflicts. Only
five research studies give guidelines and proposed resolving
approaches.

Most techniques used different representation for the re-
quirements to help in analysis and identification of conflicts.
Figure 5 indicates that the representation methods used can be
divided to three types: either using ontology if the technique
using semantic analysis for the requirements like [5], [27],

www.ijacsa.thesai.org 331 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

TABLE I. COMPARISON BETWEEN EXISTING WORKS IN REQUIREMENTS

Reference Conflict Analysis Approach Conflict
Identification
Method

Type of Require-
ments

Scope of the Approach Requirement Representation Evaluation

[3] Heuristic algorithm Manual Functional Identify Formalization (schematic ver-
sions)

[6] Root requirements analysis Manual Functional
Nonfunctional

Identify
Analyze(different degree of con-
flicts)

Formalization (structure re-
quirement)

4

[15] Nonfunctional decomposition
model(NFD)

Manual Nonfunctional Identify
Analyze(grouping conflicts, in-
group conflicts)
Resolve

[16] Integrated analysis of FRs and
NFRs

Manual Nonfunctional Identify
Analyze(mutually exclusive, par-
tial)

Formalization (two canonical
form are developed)

[29] Model based in UML activity
diagram

Manual Functional Identify
Analyze (7 types of conflicts)

Structure model (Activity Dia-
gram)

[17] Non-mathematical technique Manual Functional Identify
Analyze (3 types)
Resolve

Formalization (semi-formal on-
tology driven domain-special re-
quirement language)

[5] Ontological framework Manual Nonfunctional (se-
curity and usability)

Identify
Analyze (natural of conflict)
Resolve

Ontology

[2] MEO-strategy Manual Functional
Nonfunctional

Identify
Analyze (mandatory, essential, op-
tional)

4

[11] Experimental approach using
NFRs metrics and measures
as parameters

Manual Nonfunctional Identify
Analyze (strong, weak)

[24] A goal-based technique
(TOPIS)

Manual Nonfunctional Resolve

[30] Graphical method using prob-
lem diagram

Manual Functional Identify Structure model (problem dia-
gram)

4

[26] Traceability approach Automatic Functional
Nonfunctional

Identify

[9] Requirements partition in nat-
ural language

Automatic Functional Identify
Analyze (source conflicts, activity
conflict)

Formalization 4

[8] Tractability approach Automatic Functional Identify Structure model (EUC) 4
[13],[18] Semantic based approach Automatic Functional Identify

Analyze (CRC,CRG,CRR)
Ontology 4

[20],[19] Graphical method using NDT
meta model

Automatic Functional Identify
Analyze

Formalization(DSL)
Structure model(NDT require-
ment meta model)

4

[27] Graphical method using re-
quirement goal graph

Automatic Functional Identify
Analyze

Ontology
Formalization(OWL)
Structure model (goal graph)

4

[21] Validation rules Automatic Functional Identify
Analyze (7 types)
Resolving for each type

Formalization 4

[22] Three-level interaction detec-
tion framework

General frame-
work

Functional Identify 4

[28] Investigation of research on
NFRs and build a catalogue of
NFRs conflicts

General frame-
work

Nonfunctional Analyze (absolute, relative, no con-
flict)

Fig. 3. Analysis results based on type of requirements

[13], [18]; structural model if graphical analysis is used like
[20], [19], [8], [29]; or formalization methods which are

Fig. 4. Analysis results based on scope of the approach

different from schematic version in [3], structure requirements
in [6], two canonical forms in [16], semi-formal ontology
driven domain-special requirement language in [17], DSL in

www.ijacsa.thesai.org 332 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Fig. 5. Analysis results based on requirements representation used

Fig. 6. Analysis results based on type of tool used

Fig. 7. Analysis results based on if the work is evaluated or not

[20] and [19], OWL in [27], and EBNF in [21]. While some
proposed techniques used more than one type of representation
like [20], [19] which used ontology and DSL as formalization
method, [27] used ontology, OWL as formalization method
and goal graph as a structural model.

The tools used in the proposed approaches are either
prototype tools like [13], [18], [20], [19], [27]; or developed
tools like [26], [9], [8], [21]. [26], [9] developed tracing
analysis tools because the conflict analysis approach used is a
tractability approach. See figure 6.

Analysis on previous works illustrate that only half of the
works were evaluated to test the effectiveness of the proposed
method, as shown in figure 7.

According to the importance of evaluation, more analysis
was conducted on the evaluated works. Table II summarizes
the evaluated works listed by reference number. The second
column presents evaluation data that was used to test the

system. The literature illustrates that most works use case
studies to test the effectiveness of the proposed method;
except for when in two works, one uses a survey and the
second uses an experiment. The third column explains the goal
of the evaluation. The objectives were differed between the
following: assessment of the utility, measuring users’ satis-
faction, evaluation of the effectiveness, demonstration of the
tool feasibility, testing of the usefulness and ease of use, and
testing of the completeness and consistence of the proposed
method.

The fourth column explains the method used in the evalu-
ation. It is clear that almost all works used the comparison in
the number of detected conflicts, the validity of the detected
conflicts, and the cost when using the proposed method without
using any specific approach. Finally, the evaluation results are
presented in the last column.

IV. DISCUSSION

The previous sections have discussed in detail the existing
works for detection and managing requirements conflicts.
However, the topic is still active for researchers in the field
of requirements engineering.

The problem of requirements conflicts can be divided into
two main sections: identifying the conflicts in requirements;
and resolving them. This paper focused on identifying re-
quirements conflicts. The literature review demonstrated that
most techniques that are proposed to decrease risks caused
by requirements conflicts are manual techniques while the
automated approaches are tools based on human analysis. That
may incur costs to the project due to human error and wrong
decision making.

There are still many gaps in the previous works in identify-
ing requirements conflicts. Detecting conflicts manually takes
a long time and effort which may cause delays in the project.
In addition, it is fallible since it is done by human effort.
Some conflict techniques have tried to automate the detection
process by using or building specific tools. Applying some
automation to the process would decrease the human effort and
time. However, all the automation approaches are still based
on human analysis to detect and resolve conflicts. Also, most
techniques are proposed techniques that are not evaluated for
their efficiency in detecting and resolving conflicts.

There are some important issues that should be taken into
consideration when working to find practical techniques for
detecting conflict between requirements. First, define what
requirement conflict exactly means and what it includes to
find a suitable technique to catch the conflict. Then, determine
the type of requirements that the technique will work on and
which representation method for requirement specification is
the most suitable for use. Also, determine when the technique
can be applied and in which phase of software development.
As final step, determine how to measure the efficiency of the
proposed technique.

V. CONCLUSION

Requirements engineering is a critical part of software
development that plays an important role in the software
project success. However, there are different issues that may

www.ijacsa.thesai.org 333 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

TABLE II. COMPARISON BETWEEN EVALUATED WORKS

Reference Evaluation Data Evaluation Goal Evaluation Method Evaluation Results
[6] Case study: established require-

ments engineering problem case
(Distributed Meeting Scheduler).

Assess the utility. Compare the number of conflict detec-
tion using root analysis and without
using it.

Using root analysis technique detects 72 conflicts,
while without using it only 9 conflicts is detected.

[2] Case study: applied MEO-strategy
during build (Hostel Management
System) as part of university man-
agement system.

Measure users’ sat-
isfaction.

Conduct a feedback workshop to collect
user’s feedback.

Users’ acceptance test for system performance, quality
and conformity to user needs was achieved successfully.

[30] Case study: proposed approach was
used in real life example in domain
of (Smart Grids).

Validate the pro-
posed approach.

Compare the number of possible re-
quirements interaction using problem di-
agram and without using it to measure
the effort (time) need to detect the in-
teraction.
Measure the precision and the perfect
recall using problem domain approach.

The number of possible interactions was decreased and
thus, the time for looking into requirements interactions
decrease by 95%.
The precision was 33% and a perfect recall with 100%.

[9] Case study: The proposed approach
was applied in (Home Integration
System (HIS) and (Cellular phone
domain).

Demonstrate the
tool feasibility.

Compare the total number of compari-
son to find conflict using the proposed
automated tool with the manual ap-
proach by developers. Also, compare the
time and cost using the two approaches.

The number of comparison using manual approach in
His is 378 and in cellular phone case is 666. Comparing
to 79 and 100 using the automated proposed approach.
While the number of comparison is decrees, the time
and cost will decrees.

[8] Survey: with 8 software engineer-
ing post-graduate students.

Test the usefulness
and ease of use.

Use Likert scale with five part scale to
evaluate the usefulness and ease of use
of the proposed approach.

Results show that 94% of the participants were agree
that it is useful and all were say it is user friendly and
easy to use.

[13],[18] Case study: real-world industrial
case study with 6 project managers
and requirement expert.

Evaluate the effec-
tiveness

Compare the number of conflicts de-
tected using the proposed method with
the manual approach. Also, compare the
percentage of correctness in the two
approaches.

The prototype tool (OntRep) found all conflicts while
manual conflict analysis found 30% - 80% of the con-
flicts. Also, the correctness of the proposed approach
is 100% compared to 58.8 of false positive in manual
analysis.

[20],[19] Experiment: simulation in real en-
vironment of Mosaico.

Measure the effi-
ciency and effec-
tiveness.

Calculate the number of inconsistencies
detected and the time and the cost is
compared to manual approach.

The evaluation shows that system detects 100% of
inconsistencies and the time is reduced by 78% which
saves 44% of budget.

[27] Case study: on traveler social net-
working system.

Evaluate the effec-
tiveness.

Measure the performance of the system
in the number and the precision of de-
tecting inconsistencies.

The performance of the system is satisfactory by cal-
culating the running time to detect inconsistencies and
precision of detecting inconsistent requirements.

[21] Proof-of-concept example , simula-
tion test

Test the
completeness
and consistence
To test the scalabil-
ity,

Use proof-of-concept
Compute the computational time for dif-
ferent number of scalability.

The acceptable computation time less than a minute for
more than 10,1000 requirements. Also, it scales very
well as the number of requirements increase.

[22] A case study : smart homes domain Evaluate the effi-
ciency

Compare the number of comparison
done by expert if applying the approach
without applying it.

The number of comparison requirements is decreased
by 18%.

be caused by giving incorrect requirements and therefore, this
results in project failure, which is one of the problems in
requirements conflict.

The paper provided a literature review on requirements
conflict research and analyzed them to show the limitations
and gap in previous works. Also, a more detailed analysis was
conducted on the works that were evaluated to illustrate the
evaluation methods and data used in the previous works. The
literature review demonstrated that most techniques that are
proposed to decrease the risks and detect requirements conflicts
are manual techniques while the automated approaches are
tools based on human analysis. That may incur costs to
the project due to human error and wrong decision making.
Moreover, most of the proposed approaches were not evaluated
to measure their efficiency. At the end, important issues were
given as general recommendations when proposing require-
ments conflicts technique.

REFERENCES

[1] D. Mairiza, D. Zowghi, and N. Nurmuliani, Managing conflicts among
non-functional requirements, University of Technology, Sydney, 2009.

[2] W. H. Butt, S. Amjad, and F. Azam, Requirement Conflicts Resolution:
Using Requirement Filtering and Analysis in Computational Science and
Its Applications - ICCSA 2011, B. Murgante, O. Gervasi, A. Iglesias, D.
Taniar, and B. O. Apduhan, Eds. Springer Berlin Heidelberg, 2011, pp.
383-397.

[3] M. Heisel and J. Souquires, A Heuristic Algorithm to Detect Feature
Interactions in Requirements in Language Constructs for Describing
Features, S. G. Bs. (Hons) and M. R. B. MA, Eds. Springer London,
2001, pp. 143-162.

[4] M. Ramzan, Intelligent Requirement Prioritization using Fuzzy Logic,
Ph.D., National University of Computer and Emerging sciences, Pakistan,
2010.

[5] D. Mairiza and D. Zowghi, An ontological framework to manage the
relative conflicts between security and usability requirements in 2010
Third International Workshop on Managing Requirements Knowledge
(MARK), 2010, pp. 1-6.

[6] W. N. Robinson, Surfacing Requirements Interactions in Perspectives
on Software Requirements, J. C. S. do P. Leite and J. H. Doorn, Eds.
Springer US, 2004, pp. 69-90.

[7] B. Schr, Requirements Engineering Process HERMES 5 and SCRUM,
University of Applied Sciences and Arts, Northwestern Switzerland,
2015.

[8] M. Kamalrudin, J. Grundy, and J. Hosking, Managing Consistency
between Textual Requirements, Abstract Interactions and Essential Use
Cases in Computer Software and Applications Conference (COMPSAC),
2010 IEEE 34th Annual, 2010, pp. 327-336.

[9] M. Kim, S. Park, V. Sugumaran, and H. Yang, Managing requirements
conflicts in software product lines: A goal and scenario based approach,
Data Knowl. Eng., vol. 61, no. 3, pp. 417-432, Jun. 2007.

[10] W. N. Robinson, S. D. Pawlowski, and V. Volkov, Requirements
Interaction Management, ACM Comput Surv, vol. 35, no. 2, pp. 132-190,
Jun. 2003.

[11] D. Mairiza, D. Zowghi, and V. Gervasi, Conflict characterization and
Analysis of Non Functional Requirements: An experimental approach,
in 2013 IEEE 12th International Conference on Intelligent Software
Methodologies, Tools and Techniques (SoMeT), 2013, pp. 83-91.

www.ijacsa.thesai.org 334 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

[12] Hausmann, Jan Hendrik and Heckel, Reiko and Taentzer, Gabi, Detec-
tion of conflicting functional requirements in a use case-driven approach:
a static analysis technique based on graph transformation in Proceedings
of the 24th international conference on software engineering, ACM,
2002, pp. 105-115.

[13] T. Moser, D. Winkler, M. Heindl, and S. Biffl, Requirements Man-
agement with Semantic Technology: An Empirical Study on Automated
Requirements Categorization and Conflict Analysis in Advanced Informa-
tion Systems Engineering, H. Mouratidis and C. Rolland, Eds. Springer
Berlin Heidelberg, 2011, pp. 3-17.

[14] M. Shehata, A. Eberlein, and A. Fapojuwo, IRIS: a semi-formal
approach for detecting requirements interactions in Engineering of
Computer-Based Systems, 2004. Proceedings. 11th IEEE International
Conference and Workshop on the, 2004, pp. 273-281.

[15] E. R. Poort and P. H. N. de With, Resolving requirement conflicts
through non-functional decomposition in Fourth Working IEEE/IFIP
Conference on Software Architecture, 2004. WICSA 2004. Proceedings,
2004, pp. 145-154.

[16] V. Sadana and X. F. Liu, Analysis of Conflicts among Non-Functional
Requirements Using Integrated Analysis of Functional and Non-
Functional Requirements in Computer Software and Applications Con-
ference, 2007. COMPSAC 2007. 31st Annual International, 2007, vol.
1, pp. 215-218.

[17] T. L. Heng and L. T. Ming, Using multi-coordinated views with agent
communication protocol to detect and resolve inconsistent requirements
to improve accuracy in Information Technology (ITSim), 2010 Interna-
tional Symposium in, 2010, vol. 2, pp. 1041-1044.

[18] T. Moser, D. Winkler, M. Heindl, and S. Biffl, Automating the detection
of complex semantic conflicts between software requirements in The
23rd International Conference on Software Engineering and Knowledge
Engineering, Miami, 2011.

[19] M. J. Escalona, M. Urbieta, G. Rossi, J. A. Garcia-Garcia, and E. R.
Luna, Detecting Web requirements conflicts and inconsistencies under a
model-based perspective, J. Syst. Softw., vol. 86, no. 12, pp. 3024-3038,
Dec. 2013.

[20] M. Urbieta, M. J. Escalona, E. R. Luna, and G. Rossi, Detecting
Conflicts and Inconsistencies in Web Application Requirements in Current
Trends in Web Engineering, A. Harth and N. Koch, Eds. Springer Berlin
Heidelberg, 2012, pp. 278-288.

[21] Z. Chentouf, Managing OAM&P requirement conflicts, J. King Saud
Univ. - Comput. Inf. Sci., vol. 26, no. 3, pp. 296-307, Sep. 2014.

[22] M. Shehata, L. Jiang, and A. Eberlein, A requirements interaction detec-
tion process guide in Canadian Conference on Electrical and Computer
Engineering, 2004, 2004, vol. 3, pp. 1753-1756 Vol.3.

[23] A. Sardinha, R. Chitchyan, J. Arajo, A. Moreira, and A. Rashid, Con-
flict Identification with EA-Analyzer in Aspect-Oriented Requirements
Engineering, A. Moreira, R. Chitchyan, J. Arajo, and A. Rashid, Eds.
Springer Berlin Heidelberg, 2013, pp. 209-224.

[24] D. Mairiza, D. Zowghi, and V. Gervasi, Utilizing TOPSIS: A Multi
Criteria Decision Analysis Technique for Non-Functional Requirements
Conflicts in Requirements Engineering, D. Zowghi and Z. Jin, Eds.
Springer Berlin Heidelberg, 2014, pp. 31-44.

[25] Alebrahim, Azadeh and Faßbender, Stephan and Heisel, Maritta and
Meis, Rene, Problem-based requirements interaction analysis.

[26] A. Egyed and P. Grunbacher, Identifying requirements conflicts and
cooperation: how quality attributes and automated traceability can help,
IEEE Softw., vol. 21, no. 6, pp. 50-58, Nov. 2004.

[27] T. H. Nguyen, B. Q. Vo, M. Lumpe, and J. Grundy, KBRE: a framework
for knowledge-based requirements engineering, Softw. Qual. J., vol. 22,
no. 1, pp. 87-119, Apr. 2013.

[28] D. Mairiza and D. Zowghi, Constructing a Catalogue of Conflicts
among Non-functional Requirements in Evaluation of Novel Approaches
to Software Engineering, L. A. Maciaszek and P. Loucopoulos, Eds.
Springer Berlin Heidelberg, 2011, pp. 31-44.

[29] C.-L. Liu, Ontology-Based Requirements Conflicts Analysis in Activity
Diagrams in Computational Science and Its Applications - ICCSA 2009,
O. Gervasi, D. Taniar, B. Murgante, A. Lagan, Y. Mun, and M. L.
Gavrilova, Eds. Springer Berlin Heidelberg, 2009, pp. 1-12.

[30] A. Alebrahim, S. Fabender, M. Heisel, and R. Meis, Problem-Based
Requirements Interaction Analysis in Requirements Engineering: Foun-

dation for Software Quality, C. Salinesi and I. van de Weerd, Eds.
Springer International Publishing, 2014, pp. 200-215.

[31] How to Deal with Stakeholders Conflicts in
Requirements Gathering?, [Online]. Available:
https://www.researchgate.net/post/How to deal with stakeholders

conflicts in requirements gathering2. [Accessed: 20-Apr-2016].
[32] Scope - How Do You Manage Conflicting Stakeholder De-

mands? - Project Management Stack Exchange. [Online]. Avail-
able: http://pm.stackexchange.com/questions/1399/how-do-you-manage-
conflicting-stakeholder-demands. [Accessed: 20-Apr-2016].

[33] I Have Two Business Stakeholders Who Have Conflicting
Requirements - Projectconnections.com. [Online]. Avail-
able: http://www.projectconnections.com/knowhow/burning-
questions/resolving-conflicting-stakeholder-requirements.html.
[Accessed: 20-Apr-2016].

[34] Conflicting Requirements. [Online]. Available:
http://c2.com/cgi/wiki?ConflictingRequirements. [Accessed: 20-Apr-
2016]

www.ijacsa.thesai.org 335 | P a g e

