
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Unsupervised Morphological Relatedness

Ahmed Khorsi
Computer Science Department

Al-Imam Mohammad Ibn Saud Islamic University
Riyadh, Kingdom of Saudi Arabia

Abeer Alsheddi
Computer Science Department

Al-Imam Mohammad Ibn Saud Islamic University
Riyadh, Kingdom of Saudi Arabia

Abstract—Assessment of the similarities between texts has
been studied for decades from different perspectives and for
several purposes. One interesting perspective is the morphology.
This article reports the results on a study on the assessment of
the morphological relatedness between natural language words.
The main idea is to adapt a formal string alignment algorithm
namely Needleman-Wunsch’s to accommodate the statistical char-
acteristics of the words in order to approximate how similar
are the linguistic morphologies of the two words. The approach
is unsupervised from end to end and the experiments show an
nDCG reaching 87% and an r-precision reaching 81%.

Keywords—Arabic Language; Computational Linguistics; Mor-
phological Relatedness; Semitic Morphology; Unsupervised Learn-
ing

I. INTRODUCTION

Expanding a query word to its variants is one of the
challenges facing an Information Retrieval (IR) system in order
to achieve a decent recall.

Take the Arabic word "
At�" ([kitaAb]: book)1. An IR
system seeking information related to this word in a collection
of documents should pick all the documents in which occur the
word itself or any of its variants such as "	�A�" ([kaAtib]:
writer), "	t�" ([kutub]: books), "	yt�" ([kutayib]: small
book),...etc.

The purpose is to capture the documents in which also
occur words with meanings close to the query words. One
way to do this is to exploit the fact that two words derived
from the same morphological origin are likely to share the
same broad meaning.

Experience shows that such technique depends on the type
of the language morphology [2], [3]. In languages like English,
a word is generally a concatenation of prefixes, stem and
suffixes. For instance, the word "unbreakable" is composed of
"un", "break" and "able". While the principle of decomposition
can be applied to Arabic, words in Semitic languages, such
as Arabic, are actually derived by combining two entities;
each might be regarded as an origin: root and pattern [4].
For instance, the word "	�A�" ([kaAtib]: writer) is coined by
combining the root "
 � �" ([k t b]) and the pattern "??A?".

This means the normal form an IR system may reduce
the Arabic query word to one of three different types, each
expressing a different level of similarity.

1In this paper, Arabic is represented in some or all of three variants
according to context: "Arabic word" ([Buckwalter Arabic transliteration] [1]:
English translation).

• Stem: The extraction of the stem is simply the elimi-
nation of the prefixes and suffixes.

• Root: Specific to the Semitic languages, its extraction
is more complicated than the extraction of the stem
as it tries to identify the three, four or five core letters
among all letters of the words [5]. The words derived
from the same root have a common meaning broader
than the one shared by words having a common stem.

• Pattern: The extraction of the pattern is the identifica-
tion of the non-core letters and their positions among
the core ones. The authors are not aware of any IR
system that makes use of pattern as the normal form
of words.

For instance the word "	�Ak��" ([alkaAtib]: The writer)
might be reduced to its stem "	�A�", to its root "
 � �"
([k t b]) or to the pattern "??A?".

While the trend is to reduce the query words to the normal
form then to match them against the stored normal forms,
another approach [6] is to redesign the matching itself in such a
way that it identifies words morphologically close to the query
word by measuring the Morphological Relatedness (MR).

The present work is an attempt to enhance this approach
[6] in order to improve the effectiveness of morphology-
aware matching. Three major changes are introduced to the
computation of the MR:

1. The words are first processed by an unsupervised
morpho-segmenter which tries to remove the prefixes
and suffixes.

2. The frequency is involved earlier in the computation
of the Longest Common Subsequence (LCS). An
alignment algorithm is adapted to take into account
the frequencies of the letters in the computation of
the cost.

3. The comparison is extended to n-grams.

Section II reviews the principle of string alignment that will
be used to calculate the MR [7]. Section III overview works
related to the idea of computing the similarity among natural
words. Section IV introduces the proposed approach. Section
V details the test and discusses the results.

II. SEQUENCES ALIGNMENT

Sequence Alignment (SA) is the process of identifying the
minimal number of edit operations required to transform one
string of characters into another [8] [9]. In an edit operation,
a character may undergo one of the following changes:

www.ijacsa.thesai.org 348 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

• Indel: The character is simply deleted or a new char-
acter is inserted.

• Substitution: The character is substituted by another.

Other operations might be defined on the basis of these.
This study will limit this section to the simplest definitions
of the underlying concepts. Each edit operation is assigned a
cost.

Having two strings (words) at hand, the objective is first
to calculate the minimal cost of edit operations required to
transform the first string into the second one. Then, to identify
what and where are those edit operations. The algorithm which
will be focused on in this paper is due to Needleman, Saul
and Wunsch, Christian [7]. Algorithm 1 depicts the steps to
align two words A and B, where costs denotes the cost of a
substitution, costgd and costgi are a gap penalty pointing out
aligned with a null. First, a two-dimensional matrix is built
M [0 . . . n, 0 . . .m], where n is the size of A and m is the
size of B, and the rows are labeled with letters of A and
the columns are labeled with letters of B. The extra row and
column at index zero have been added to deal with the empty
string. Second, all cells are filled with the similarity values
starting from the top row and going to the bottom-right cell
from left to right. Each cell in this matrix holds the similarity
between two substrings of the two strings whose ends intersect
at a given cell; that is, the cell M [i, j] holds the similarity
between substrings A = a1 . . . ai and B = b1 . . . bj . Then the
last cell M [n,m] holds the similarity between strings A and
B.

Algorithm 1: Needleman-Wunsch similarity
Input : Two strings A = a1a2 . . . an and

B = b1b2 . . . bm
Output: The Needleman-Wunsch similarity between

two strings A and B
1 M : matrix[0 . . . n, 0 . . .m]
2 M [0, 0]← 0
3 for i← 1 to n do
4 M [i, 0]←M [i− 1, 0] + costgd
5 for j ← 1 to m do
6 M [0, j]←M [0, j − 1] + costgi

7 for i← 1 to n do
8 for j ← 1 to m do
9 M [i, j]← max(M [i− 1, j − 1] + costs,M [i−

1, j] + costgd ,M [i, j − 1] + costgi)

10 return M [n,m]

Example: Table 1 shows an example of applying Algo-
rithm 1 to find the similarity between two words, A= "winter"
and B= "write". costs was supposed to be equal to equal to
1 when the two letters match, and the other costs are equal
to -1. For instance, the value in the cell M [4, 4] indicates that
the similarity between "wint" and "writ" is 1.

M [4][4] = max(M [3, 3] + costs,M [3, 4] + costgd ,

M [4, 3] + costgi)

= max(0 + 1, 0− 1,−1− 1)

= 1

Table 1: Example of the Needleman-Wunsch similarity

w r i t e
0 -1 -2 -3 -4 -5

w -1 1 0 -1 -2 -3
i -2 0 0 1 0 -1
n -3 -1 -1 0 0 -1
t -4 -2 -2 -1 1 0
e -5 -3 -3 -2 0 2
r -6 -4 -2 -3 -1 1

So the value in the last cell M [6, 5] means that the similarity
between the words "write" and "winter" is 1.
M [6][5] = max(M [5, 4] + costs,M [5, 5] + costgd ,

M [6, 4] + costgi)

= max(0− 1, 2− 1,−1− 1)

= 1

III.RELATED WORKS

Beside [6], the authors are not aware of any published work
on the concept of the MR. This section overviews a number
of approaches that make use of the concepts of edit distance
in the context of Natural Language Processing (NLP).

Ghafour et al. [10] suggest to adapt the Levenshtein’s
distance [11] in the comparison of compare Arabic words. The
cost of the operation captures three levels of similarity: pho-
netic, character form and keyboard wise similarities. Gomaa &
Fahmy [12] proposed a system to automatically grade answers
to an essay question. They tested different similarity measures,
trying to achieve a maximum correlation value between the
proposed system and human experts grades. The Needleman-
Wunsch similarity [7] is one of the measures they tested. It
achieves 26.5% of the correlation score.

Mustafa & Al-Radaideh [13] who investigated for a n-
grams based comparison claim that the bigram based com-
parison is more effective than the trigram based compar-
ison, and that the use of pure n-grams technique alone
does not perform with Arabic words as well as it does
with English words. In [14] Mustafa suggests to ex-
tend the comparison to non contiguous letters. For in-
stance, the n-grams in the word W= w1w2 . . . wn might be
{w1.w2, w1.w3, . . . wn−2.wn, wn−1.wn}. Tested on 160,000
words, the author claims that this approach outperforms the
classical one when using a rule-based stemming. The approach
meets the balancing point of recall and precision at around
40%.

Reference [15] opted for the rule based approach to match
Arabic words. It identifies the common letters between two
words, compare their order and checks whether the uncommon
letters are valid affixes or not. If these two conditions apply, a
match is raised. This approach uses a predefined list of affixes.
The authors tested 1,500 distinct words and claim they have
achieved a 15% error rate at a 13% missing rate. The error rate
measures how many erroneous hits are found among all the
relevant variants. While the missing rate measures how many
relevant variants are missing among all actual relevant variants
in the dataset.

www.ijacsa.thesai.org 349 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

IV.A TWO STEPS MORPHOLOGICAL RELATEDNESS

To the best of the authors’ knowledge, the concept of
MR was introduced by Ahmed Khorsi [6] where he tried
to substitute the classical normalize-then-match approach in
the matching process used in the IR systems with a straight
comparison that takes into account the core letters intended
to carry the core meaning of the word and the non-core
ones which are meant to carry the variation in the meaning.
Basically, two challenges had to be addressed: 1. How to
distinguish the core letters from the non-core ones 2. How to
model the matching and mismatching, either within the core
letters or the non-core letters.

As the core letters in a word might not be contiguous,
the matching made use of the computation of the Longest
Common Subsequence (LCS) [16]. As its name suggests, it
extracts the longest sequence of letters, either contiguous or
not, but in same order shared by the two words. As the LCS
does not guarantee that the common letters are all core ones,
the formula to calculate the MR tries to exploit the fact that the
non-core letters are usually more frequently used than the core
ones. The words in a collection of documents found to have
the highest MRs with the word at hand were considered the
most morphologically related and the most probable to carry
a meaning very close to the meaning carried by the word at
hand as shown in Algorithm 2. The MR measure is:

Algorithm 2: Top five morphological relatedness
input : A word w
output: Five words have the highest MRs with w

1 foreach word wi in a corpus do
2 mri ← MR(w,wi)

3 MRall ← MRall ∪ {mri}
4 Wall ← Wall ∪ {wi}
5 MRtop ← top five values from MRall
6 return Wtop

MR(w1,w2) =

|LCS(w1,w2)|∑
i=1

log

(
1

freq(LCS(w1,w2)[i])

)

−
|LCS(w1,w2)|∑

i=1

log

(
1

freq(LCS(w1,w2)[i])

) (1)

Where w1 and w2 are two strings whose will be tested,
|w1| is the length of w1 and w1[i] is the ith letter in w1.
LCS(w1,w2) is the LCS between w1 and w2, and LCS(w1,w2)

is LCS’s complement (i.e., it contains all letters that are not
included in LCS(w1,w2)). freq(a) is the frequency (count) of
the letter a in a corpus.

Tested on more than 200,000 words, such simple approach
could achieve 82% nDCG and 78% R-precision when the five
(05) highest MRs are picked.

Based on the analysis of results and the lacks of identi-
fication in the original work [6], the present work introduces
three major changes to the concept of MR computation:

1. Stemming: To avoid the interference of (pre/suf)fix
letters in the computation of the MR, an unsupervised

morphological segmentation is applied beforehand to
extract the stems on which the actual computation of
the MR is applied.

2. Alignment cost: The LCS extraction in the original
approach does not make any distinction between
letters. In an attempt to involve the frequency factor
early in the process, the cost model of an alignment
is adapted to accommodate the frequencies.

3. N-grams: The investigation of this study is extended
to the effect of making the comparison unit n-grams
of letters rather than single letters.

The first step relies on a morphological segmentation of
words, which is also suggested in a separate work. The
following paragraphs summarize its main traits.

A. Morphological Segmentation

The objective of this section is to take a quick look at the
step introduced before the actual computation of the MR. This
step aims at identifying the prefix, stem and suffix of a word,
as experience has shown that an unsupervised morphological
segmentation is feasible and could reach acceptable perfor-
mance [17]–[28]. The following paragraphs describe how the
unsupervised learning and segmentation of natural words are
approached.

Let the word be "unbreakable", which is formed by con-
catenating the prefix "un", the stem "break" and the suffix
"able". The vocabulary suggests such segmentation should
contain other words with different combinations of prefixes,
stems and suffixes (e.g. "rebreakable", "unbreaking"...etc.),
which makes the occurrence of "un" have a weak dependence
on the occurrence of "break", whose occurrence is also rela-
tively independent from the occurrence of the suffix "able". On
the other hand, it is obvious, but worth mentioning, that each
morpheme is not separable, either from its first letter or its last
one. The proposed approach is all about exploiting this fact: a
morpheme depends on only the letters of which it is formed. To
address the challenge of how to assess the dependence among
the letters of a word, probabilistic dependence was employed
[29].

1) Segmentation Algorithm Algorithm 3 iterates over the
word, letter by letter, and, for every position, computes two
dependencies: 1. the dependency of the prefix on its last letter;
2. the dependency of the suffix on its first letter, where the
prefix starts (inclusive) at the current letter and the suffix ends
(inclusive) at it. The difference between the two values then
points to which of the two fragments (i.e. the prefix or the
suffix) is more attached to the current letter. The algorithm
keeps going until it encounters a change of the direction of the
highest dependency. If, in the immediately preceding position,
the prefix depends on the letter more than the suffix does and,
in the current position, the suffix depends on the letter more
than the prefix does, a cutting point is marked between the
previous and the current letter.

2) Computation of the Dependence By definition, the
concept of dependence that used is symmetric [29]. In this
context: "the string depends on the letter" means "the letter
depends on the string" and vice versa.

The dependency of a letter a on the prefix α: will be
called the forward dependency, and it is denoted fdep(u)

www.ijacsa.thesai.org 350 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

where u=αa is the prefix appended with the letter under
consideration a. The dependency of the letter a on the suffix
β: will be called the backward dependency, and it is denoted
bdep(v) where v=aβ is the suffix headed by the letter under
processing a. The beginning and the end of a word are marked
by respectively # and $. The forward dependency is then:

fdep(u) =
P (α→ a)

P (a)
(2)

and

bdep(u) =
P (a→ β)

P (a)
(3)

Where P (α→ a) is the conditional probability:

P (α→ a) =
Count(αa)

Count(α)
(4)

and P (a→ β) is the conditional probability:

P (a→ β) =
Count(aβ)

Count(β)
(5)

then

fdep(u) =
Count(αa)

Count(α)P (a)
(6)

and

bdep(u) =
Count(aβ)

Count(β)P (a)
(7)

Where the probability of a letter a: P(a) is approximated
by its normalized frequency in a corpus.

P (a) =
Count(a)∑
b∈A Count(b)

(8)

Where A is the alphabet. Count(α) expresses how often
an n-gram α occurs in the corpus.

Algorithm 3: Morphological Segmentation
input : A word w = a0a1 . . . an
output: Cutting Points

1 foreach ai where 0 < i 6 n do
2 if fdep(# . . . ai−1)-bdep(ai−1 . . . an$) > 0 and

fdep(#a0 . . . ai)-bdep(ai . . . an$) < 0 then
3 add i to the cutting points

Example: Table 2 is a simulation of Algorithm 3 on the
word "unbreakable". The second letter "n" depends on the
prefix "#u" more than it does on the suffix "breakable$", where
the third letter "b" depends on the suffix "reakable$" more than
it does on the prefix "#un". This change of the dependence
direction makes the point "un|breakable" a cutting point. The
same logic applies to the seventh letter "k" and the eighth letter
"a".

B. Morphological Relatedness

An MR assessment is expected to fulfil two assumptions.

• The longer the shared sequences are, the higher the
relatedness should be.

• Words sharing core letters are much more related
to each other than are words sharing only non-core
letters.

The following shows that an adaptation of a string align-
ment algorithm might be the answer.

1) Relatedness Algorithm Algorithm 4 is an adaptation of
the Algorithm 1, where a word A contains α n-grams and a
word B contains β n-grams. Instead of talking about a cost, the
term gain will be used which fits well with the aforementioned
assumptions.

Algorithm 4: Morphological Relatedness
Input : Two words A = a1a2 . . . aα and

B = b1b2 . . . bβ
Output: The Needleman-Wunsch similarity between

two words A and B
1 M : matrix[0 . . . α, 0 . . . β]
2 M [0, 0]← 0
3 for i← 1 to α do
4 M [i, 0]←M [i− 1, 0] + gaindel(ai)

5 for j ← 1 to β do
6 M [0, j]←M [0, j − 1] + gainins(bj)

7 for i← 1 to α do
8 for j ← 1 to β do
9 if ai = bj then

10 M [i, j]←
max(M [i−1, j−1]+gainmatch(ai),M [i−
1, j]+gaindel(ai),M [i, j−1]+gainins(ai))

11 else
12 M [i, j]←

max(M [i−1, j−1]+gainsubs(ai, bj),M [i−
1, j]+gaindel(ai),M [i, j−1]+gainins(bj))

13 return M [α, β]

2) Computation of the Relatedness The following de-
scribes how is the gain computed:

1. gainmatch(a) = + 1
freq(a) : When two letters match.

2. gainsubs(a, b) = - 1
freq(a) : In case of substitution, the

letter a is the one with the lowest frequency.
3. gaindel(a) = - 1

freq(a) : In case of deletion, the letter
a is the deleted letter.

4. gainins(a) = - 1
freq(a) : In case of insertion, the letter

a is the inserted letter.

where freq(a) is the normalized frequency of the letter a:

freq(a) =
Count(a)∑
Count(.)

(9)

where . denotes any letter of the alphabet.

www.ijacsa.thesai.org 351 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Table 2: Example of morphological segmentation

i u fdep(u) v bdep(v) Difference Direction
1 #u 0. 46 unbreakable$ 30.97 -30. 51 ↓
2 #un 6. 36 nbreakable$ 5. 84 0. 52 ↑
3 #unb 1. 35 breakable$ 46. 70 -45. 35 ↓
4 #unbr 1. 94 reakable$ 10. 45 -8. 51 ↓
5 #unbre 3. 11 eakable$ 5. 01 -1. 90 ↓
6 #unbrea 6. 79 akable$ 1. 68 5. 11 ↑
7 #unbreak 34. 71 kable$ 1. 50 33. 21 ↑
8 #unbreaka 5. 09 able$ 7. 38 -2. 29 ↓
9 #unbreakab 46. 70 ble$ 9. 89 36. 81 ↑
10 #unbreakabl 9. 72 le$ 2. 76 6. 96 ↑
11 #unbreakable 10. 02 e$ 1. 15 8. 87 ↑

Table 3: Example of the computation of morphological
relatedness

� � �

0 -38.450 -46.760 -62.036 -85.728
� -38.450 38.450 30.140 14.864 -8.828
� -53.727 23.173 23.174 45.417 21.725
� -62.036 14.864 31.483 37.107 21.725

 -85.728 -8.828 7.791 13.415 60.799

Example: The MR between two words A= "
At�" ([ki-
taAb]: book) and B= "	�A�" ([kaAtib]: writer) is calculated
as shown in Table 3, where the frequencies used in this
example are shown in Table 4. To fill each cell in the matrix,
the maximum value among adjacent cells plus the gain of
the underlying operation is picked. The three adjacent cells
are those on upper left corner side (M [i − 1, j − 1]), up side
(M [i−1, j]) and left side (M [i, j−1]). The resulting value at
the last cell M [4][4] indicates the MR between the two words
"
At�" and "	�A�".

The value in the cell M [2][2] is the relatedness between
the two substrings "�" and "A�". It corresponds to a
substitution of the letter "�" ([A]: 1st Arabic letter) with "�"
([t]: 3rd Arabic letter). The gain gainsubs("�","�") used to
evaluate the cell M [2][2] value is the inverse of the frequency
of the letter "�", which is higher than the inverse of the
frequency of the letter "�". The gain gaindel("�") uses the
frequency of the deleted letter "�". The last gain gainins("�")
is the inverse of the frequency of the inserted letter "�". The
value of the cell M [2][2] is calculated as follows:

M [2][2] = max(M [1, 1] + gainsubs("�", "�"),M [1, 2]

+ gaindel("�"),M [2, 1] + gainins("�"))
= max(38.45− 15.27, 30.14− 15.27, 23.17− 8.31)

= 23.17

As the cell corresponds to a match the gain is a positive
used to evaluate the value of M [2][3] is the inverse of the
frequency of the matched letter "�" ([t]: 3rd Arabic letter) for
the three operations: matched, deletion and insertion. Because
the cell M [2][3] corresponds to the letter "�" at both M [2]
and M [3]. M [2][3] is calculated as follows:

M [2][3] = max(M [1, 2] + gainmatch("�"),M [1, 3]

+ gaindel("�"),M [2, 2] + gainins("�"))
= max(30.14 + 15.27, 23.17− 15.27, 14.86− 15.27)

= 45.41

Table 4: A sample of frequencies of Arabic letters

Letter Count Frequency 1/Frequency∑
. 3,546,432 - -

� 426,784 0.120 8.309

 149,688 0.042 23.692
� 232,146 0.065 15.276
� 92,234 0.026 38.450

V. TESTS AND RESULTS

This section firsts describes the test settings then discusses
the results.

A. Test Dataset

The morphological segmentation is fed with a corpus of
plain classical Arabic texts2. It contains around 1M distinct
(122M in total) words with an average size of 6.22 letters per
word. The morphological segmentation step produced 596,356
distinct (1,116,919 in total) stems with an average size of 5.94
letters per stem. The resulting stems were then used to feed
the computation morphological relatedness.

B. Performance Metrics

1) Morphological Segmentation Three samples of 100
words each are randomly picked out of the whole segmented
corpus. The results of these approaches are evaluated manually
by using three metrics: recall, precision and F-measure of the
cutting points:

• Recall measures how many correct points are found
among all the existing correct points.

Recall =
correct points in the result

all correct points in the dataset
(10)

• Precision measures how many points are actually
correct among all the points the algorithm found.

Precision =
correct points in the result

all found points in the result
(11)

• F-measure measures the average of the recall and the
precision.

F −measure = 2 ∗ Recall ∗ Precision
Recall + Precision

(12)

2https://sourceforge.net/projects/classical-arabic-corpus

www.ijacsa.thesai.org 352 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

2) MR Computation Evaluation The MR computation is
ran over the whole set of stems resulting from the previous
phase. For every stem, the ten others stems with the highest
MRs are picked. Then two metrics are used to assess the
performance of the MR computation.

• Normalized Discounted Cumulative Gain (nDCG)
measures the number of related stems returned in
the results and their order among all existing related
stems. The higher is the nDCG, the more related and
the better ordered are the results. Related stem means
a stem which is derived from the same root. For this
purpose, the binary value rel(s, si) is defined, which
is set to 1 when s and si are derived from the same
root (relevant to each other) [6] and set to 0 otherwise.

nDCG(s) =
DCG(s)

IDCG
(13)

where:

DCG(s) = rel(s, s1) +

k∑
i=2

rel(s, si)

log2(i)
(14)

IDCG(s) = 1 +

k∑
i=2

1

log2(i)
(15)

• R-precision measures the number of related stems
among all stems that appear at the kth position of
the returned stems. The higher is the R-precision, the
better the performance is. This study supposes k is
equal to 10.

R− precision =

∑k
i=1 rel(s, si)

k
(16)

C. N-grams vs Letters

The generalization of the approach to make the unit of
comparison n-grams rather than letters is investigated. Three
cases are tested: unigram (one letter as the original version),
bigram (The unit of comparison is two letters) and trigram
(three letter).

D. Noise

Typos are known to be a source of errors and a single kind
of typo may influence the performance of the whole system.
The study seeks to go deeper and investigate the extent of the
influence of the misspellings on the performance of the MR
computation. The study first runs the computation on a test
set without any filtration (normal), then runs it on a test set
with simple normalization rules that eliminate the effect of a
number of common mistakes (Typos-free):

1. "º" ([́]) confused with "�" ([A]).
2. "«" ([Y]) confused with "©" ([y]).
3. "þ¡" ([h]) confused with "" ([p]).

Table 5: Morphological segmentation results

Raw Nonempty affix Thresholded
Precision 81.21±2.76 78.73±4.97 89.36±5.18

Recall 48.11±1.32 74.96±2.44 78.69±2.30
F-measure 60.62±1.47 76.80±2.54 83.69±3.49

E. Test Process

1) Morphological Segmentation The three metrics are
recorded on each of the three sampling settings:

• Raw: Results sample is picked randomly with no
restriction.

• Nonempty affix: Samples are picked randomly only
among words for which morphological segmentation
has carried out at least one cutting point. For a number
of words, the segmentation simply did not identify any
cutting point. For most of these cases, it was because
of the scarcity of the stem or stem.affix remaining
combination. The study then tries to assess the impact
of such cases on the performance of the segmentation
and the accuracy of the identified cutting.

• Thresholded: An additional filter is applied to the
nonempty affix sample, where a segmentation is picked
only if the affix reappears in more than 1,000 other
segmentations.

The results of the raw sample are the lowest on Table
5. The two obvious causes might be the irregularities in
Arabic morphology and the typos in the test set. The latter
is confirmed by results obtained when the sample is restricted
to the words with a relatively high frequency (thresholded) as
shown on Fig. 1.

Another reason which affects the performance is the lack
of a dataset. The proposed approach works wholly with
the unsupervised method and depends only on the count of
words in the corpus. However, it is difficult to include all
possible derivatives in the corpus. For example, the derivative
"�A�A��³�" ([Al◦<ij◦HaAfaAt])the prejudices appears one
time in the dataset; that is, there is no other derivative that
appears in the dataset without the prefix "��", for instance.
Indeed, the word "�A�A���" would be more dependent on the
prefix "��" and the proposed algorithm does not learn that the
prefix "��" can be cut off from the word "�A�A��³�". This
problem will be removed if the word "�A�A���" is added into
the dataset. The approach then finds the segmentation position
"�A�A���"|"��".

Running the morphological segmentation over the whole
corpus resulted in around 1,805,231 morphemes and 596,358
distinct morphemes with an average size of 5.94 letters per
morpheme.

It is worth noting that the objective of the study is to
address the classical Arabic (CA) words. To the best of the
authors’ knowledge, there is no suitable gold standard for CA.
The study should build itself a set of words and then proceed
to the manual segmentation of three different randomly picked
samples for each setting.

www.ijacsa.thesai.org 353 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Figure 1: Results of morphological segmentation

Table 6: Morphological relatedness results

Unigram Bigram Trigram

Normal nDCG 80.38±1.86 84.26±1.11 81.06±1.02
R-precision 79.33±1.10 81.03 ±0.75 77.90±0.60

Typos-free nDCG 86.59 ±0.94 87.47 ±0.66 83.01 ±0.15
R-precision 83.43±1.11 81.63 ±1.25 79.03 ±1.53

Figure 2: Results of morphological relatedness

2) Morphological Relatedness Obviously, checking the
whole test set manually is impractical. Thus, the study opts for
a sampling approach to approximate the performance. Three
samples of 100 words each are randomly picked out of the
whole corpus. Along with the nDGCG and r-precision com-
puted for every sample, the average and the standard deviation
are recorded. This process is repeated for the different settings
explained earlier.

Values in Table 6 and Fig. 2 clearly indicate a high
performance of around 80% in all cases. The highest value
of nDCG occurs with bigrams in the typos-free case. This
confirms the utility of such simple typos handling. This also
suggests that the performance might be enhanced further if a
heavier typos filtration is applied.

The combination of letters in bigrams and trigrams shows
positive and negative effects. The positive effect is the lowering
of the frequencies, which increases the influence of the core
(root) letters and widens the differences between the frequen-
cies of the n-grams formed of core letters and the frequencies
of the n-grams formed of non-core letters n-grams. A good
distinction is then made between the two classes of letters.
The negative effect occurs when the combination becomes less
common and fails to capture the distinct classes. Instead, it may

mix up letters from both core and non-core letters. The results
show that the bigram is a good compromise. The standard
deviation is a good indication that the results are reliable.

The changes introduced to the original version [6] were
fruitful and the performance increased considerably. It is worth
mentioning that the evaluation reported in [6] was on the five
top results. The proposed approach is in the top ten and the
values are still higher. Of course, one of the factors that boosted
the performance is the stemming. However, given that the
stemming was also totally unsupervised, this is another proof
that an end to end unsupervised method can handle a complex
morphology language such as Arabic.

VI.CONCLUSION AND FUTURE WORK

The concept of the Morphological Relatedness seems
promising in the area of the unsupervised processing of
languages. Even more, it shows a good handling of a complex
language, such as classical Arabic. The purpose of the work
reported in this article was to enhance the computation of
the MR originally suggested in [6] without falling into the
trap of human supervision. The study is able to overcome the
problem of the long prefixes and suffixes by introducing an
unsupervised morpho-segmentation. The study also handles the
unclear boundaries between the frequencies by extending the
comparison to bigrams.

The study commits itself to keep any processing human
independent and as generic as possible. The open issues are
diverse, and the explorable are numerous. A few of them are
listed:

• Does the morphological relatedness perform well
when generalized to upper levels such as the mor-
phology of partially structured texts?

• Can the computation of the MR be sped up by using
an index?

• Can MR(w1, w2) be derived from MR(w1, w3) and
MR(w2, w3)?

ACKNOWLEDGEMENT

This work was supported by King Abdulaziz City for
Science and Technology (KACST) Project number AT-200-34.

REFERENCES

[1] N. Habash, A. Soudi, and T. Buckwalter, “On Arabic transliteration,”
in Arabic Computational Morphology, ser. Text, Speech and Language
Technology, A. Soudi, A. v. d. Bosch, and G. Neumann, Eds. Springer
Netherlands, 2007, no. 38, pp. 15–22.

[2] I. Al-Sughaiyer and I. Al-Kharashi, “Arabic morphological analysis
techniques: A comprehensive survey,” Journal of the American Society
for Information Science and Technology, vol. 55, no. 3, pp. 189–213,
Feb. 2004.

[3] M. Popovie and P. Willett, “The effectiveness of stemming for natural-
language access to Slovene textual data,” Journal of the American
Society for Information Science, vol. 43, no. 5, pp. 384–390, Jun. 1992.

[4] S. Wintner, “Morphological processing of semitic languages,” in Natu-
ral Language Processing of Semitic Languages, I. Zitouni, Ed. Berlin,
Germany: Springer Berlin Heidelberg, 2014, pp. 43-66.

[5] P. Nugues, An Introduction to Language Processing with Perl and
Prolog. Berlin, Germany: Springer-Verlag Berlin Heidelberg, 2006,
pp. 1, 7, 23, 112, 123-129.

www.ijacsa.thesai.org 354 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

[6] A. Khorsi, “On morphological relatedness,” Natural Language Engi-
neering, vol. 19, no. 4, pp. 537–555, Oct. 2013.

[7] S. Needleman and C. Wunsch, “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,”
Journal of Molecular Biology, vol. 48, no. 3, pp. 443–453, Mar. 1970.

[8] C. Manning, P. Raghavan, and H. Schütze, An Introduction to Informa-
tion Retrieval, online ed. Cambridge, England: Cambridge University
Press, 2008, pp. 58-60.

[9] M. Crochemore, C. Hancart, and T. Lecroq, Algorithms on Strings,
1st ed. Cambridge University Press, Apr. 2007.

[10] H. Abdel Ghafour, A. El-Bastawissy, and A. F. Heggazy, “AEDA:
Arabic edit distance algorithm towards a new approach for Arabic
name matching,” in Proceedings International Conference on Computer
Engineering & Systems (ICCES), Cairo, Egypt, Dec. 2011, pp. 307–311.

[11] V. Levenshtein, “Binary codes capable of correcting deletions, inser-
tions, and reversals,” Soviet Physics Doklady, vol. 10, no. 8, pp. 707 –
710, Feb. 1966.

[12] W. Gomaa and A. Fahmy, “Short answer grading using string similarity
and corpus-based similarity,” International Journal of Advanced Com-
puter Science and Applications (IJACSA), vol. 3, no. 11, pp. 115–121,
Nov. 2012.

[13] S. Mustafa and Q. Al-Radaideh, “Using n-grams for Arabic text
searching,” Journal of the American Society for Information Science
and Technology, vol. 55, no. 11, pp. 1002–1007, Sep. 2004.

[14] S. Mustafa, “Character contiguity in n-gram-based word matching: The
case for Arabic text searching,” Information Processing & Management,
vol. 41, no. 4, pp. 819–827, Jul. 2005.

[15] ——, “Word-oriented approximate string matching using occurrence
heuristic tables: A heuristic for searching Arabic text,” Journal of the
American Society for Information Science and Technology, vol. 56,
no. 14, pp. 1504–1511, Dec. 2005.

[16] D. Hirschberg, “A linear space algorithm for computing maximal
common subsequences,” Communications of the ACM, vol. 18, no. 6,
pp. 341–343, Jun. 1975.

[17] F. Peng and D. Schuurmans, “A hierarchical EM approach to word
segmentation,” in In 6th Natural Language Processing Pacific Rim Sym-
posium (NLPRS2001) Shai Fine, Yoram Singer, and Naftali Tishby.1998,
2001, pp. 475–480.

[18] M. Melucci and N. Orio, “A novel method for stemmer generation based
on hidden markov models,” in Proceedings of the twelfth international
conference on Information and knowledge management. ACM, 2003,
pp. 131–138.

[19] K. ur Rehman and I. Hussain, “Unsupervised morphemes segmenta-
tion,” 2005.

[20] M. Creutz and K. Lagus, “Unsupervised models for morpheme seg-
mentation and morphology learning,” ACM Transactions on Speech and
Language Processing, vol. 4, no. 1, pp. 1–34, Jan. 2007.

[21] S. Keshava and E. Pitler, “A segmentation approach to morpheme
analysis,” in Working Notes for the CLEF Worksh 2007, Hungary, 2007,
pp. 1–4.

[22] D. Bernhard, “Simple morpheme labelling in unsupervised morpheme
analysis,” in Advances in Multilingual and Multimodal Information
Retrieval. Springer, 2008, pp. 873–880.

[23] S. Bordag, “Unsupervised and knowledge-free morpheme segmentation
and analysis,” in Advances in Multilingual and Multimodal Information
Retrieval. Springer, 2008, pp. 881–891.

[24] O. Eroglu, H. Kardes, and M. Torun, “Unsupervised segmentation of
words into morphemes,” 2009.

[25] H. Poon, C. Cherry, and K. Toutanova, “Unsupervised morphologi-
cal segmentation with log-linear models,” in Proceedings of Human
Language Technologies: The 2009 Annual Conference of the North
American Chapter of the Association for Computational Linguistics.
Association for Computational Linguistics, 2009, pp. 209–217.

[26] H. Hammarström and L. Borin, “Unsupervised learning of morphology,”
Computational Linguistics, vol. 37, no. 2, pp. 309–350, 2011.

[27] J. Naradowsky and K. Toutanova, “Unsupervised bilingual morpheme
segmentation and alignment with context-rich hidden semi-Markov
models,” in Proceedings of the 49th Annual Meeting of the Association

for Computational Linguistics: Human Language Technologies-Volume
1. Association for Computational Linguistics, 2011, pp. 895–904.

[28] B. Can and S. Manandhar, “Methods and algorithms for unsupervised
learning of morphology,” in Computational Linguistics and Intelligent
Text Processing. Springer, 2014, pp. 177–205.

[29] R. Falk and M. Bar-Hillel, “Probabilistic dependence between events,”
The Two-Year College Mathematics Journal, vol. 14, no. 3, pp. 240–
247, Jun. 1983.

www.ijacsa.thesai.org 355 | P a g e

