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Abstract—Skin cancer is one of the most frequently en-
countered types of cancer in the Western world. According
to the Skin Cancer Foundation Statistics, one in every five
Americans develops skin cancer during his/her lifetime. Today,
the incurability of advanced cutaneous melanoma raises the
importance of its early detection. Since the differentiation of early
melanoma from other pigmented skin lesions is not a trivial task,
even for experienced dermatologists, computer aided diagnosis
could become an important tool for reducing the mortality rate
of this highly malignant cancer type.

In this paper, a computer aided diagnosis system based on
machine learning is proposed in order to support the clinical
use of optical spectroscopy for skin lesions quantification and
classification. The focuses is on a feasibility study of optical
spectroscopy as a medical tool for diagnosis. To this end, data
acquisition protocols for optical spectroscopy are defined and
detailed analysis of feature vectors is performed. Different tech-
niques for supervised and unsupervised learning are explored on
clinical data, collected from patients with malignant and benign
skin lesions.
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troscopy

I. INTRODUCTION

Skin cancer is among the most frequent types of cancer
and one of the most malignant tumors. The incidence of
melanoma in the general population is increasing worldwide
[1], especially in countries where the ozone layer is thinning.
Its incidence has increased faster than that of almost all other
cancers, and the annual rates have increased by 3% to 7% in
the fair–skinned population in recent decades [1]. Currently,
between 2 and 3 million non–melanoma skin cancers and
132,000 melanoma skin cancers occur globally each year [2].

New technologies to assist the dermatologists in identifying
and diagnosing skin lesion have been introduced, such as hand-
held magnification devices and computer-aided image analysis.
Colored image processing methods have been introduced for
detecting the melanoma [3] which focused on non-constant
visual information of skin lesions. Neural network diagnosis
of skin lesion has been applied by classifying extracted fea-
tures from digitized dermoscopy images of lesions [4] [5].

The extracted features are based on geometry, colors, and
texture of the lesions, involving complex image processing
techniques. Many other attempts have been made to auto-
mate the detection and classification of melanoma from the
digital color and surface reflectance images [6][7][8][9][10].
Those attempts involve the initial segmentation of the skin
lesion from the surrounding skin followed by the calcula-
tion of classification features [11][12][5][13][14][15]. Accurate
description and measurement of image features cannot be
achieved without accurate image segmentation. Therefore, a
wide range of algorithms have been proposed in the past for
color image segmentation [16], broadly categorized as pixel-
based segmentation, region-based segmentation [17], region-
based segmentation and edge detection [18]. However, in the
case of optical spectral reflectance images, the research is still
limited due to the late introduction of the imaging technology
in dermatology.

A. Why Optical Spectroscopy?

One of the substantial features for the diagnosis of ma-
lignant melanoma is the skin lesion color [19]. In most of
the related research, skin lesion color was investigated to
disintegrate malignant melanoma lesions from benign lesions
in clinical images [20]. Human skin is a variegated surface,
with fine scale geometry, which makes its appearance difficult
to model. Furthermore, the conditions under which the skin
surface is viewed and illuminated greatly affect its appearance.

As we know that light of different wavelengths access
the skin in different depths (as shown in Figure 1). This
fact led the researchers to evaluate pigmented lesions under
specific wavelengths of light from visible spectrum to near
infrared range. Through multi-spectral imaging we can capture
light from frequencies beyond the visible light range which
allows us to extract additional information that the human
eye fails to capture with its receptors for red, green and blue.
Furthermore, the spectral information can be employed for the
analysis and the information retrieval about the consistence
and the concentration of absorbers and reflectors in the skin.
Different pigments of the skin absorb different wavelengths of
optical spectrum, which helps in determining the reflectance
coefficient of the area of the skin.

www.ijacsa.thesai.org 385 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Fig. 1. Different wavelengths penetrate the skin to different depths. Visible
light and near infrared penetration in skin is more than other wavelengths
(Image source: [21])

One of the most significant features of spectral reflectance
is the property that the spectral reflectance curve is based
on the material composition of the object’s surface, color,
biochemical composition and cellular structure. This property
can be utilized for recognizing objects and segment regions.
Currently there exist only a small number of systems, e.g.
spectrophotometric intracutaneous analysis (SIA) scope [22],
MelaFind [23] and SpectroShade [24], which use multispectral
dermoscopic images as the inputs for subsequent computer
analysis. To the best of our knowledge, the systems which
have already been developed for the analysis of skin lesion
from multispectral images, are based on the images of selected
wavelength without keeping record of reflectance spectra.
However, as different skin lesions can be investigated more in
detail by observing their reflectance, we analyze the feasibility
of spectroscopy as a tool to distinguish benign and malign skin
lesions.

B. Introduction of Spectroscopy

Spectroscopy is a new imaging technology which is in-
creasingly used to derive significant information about tissue.
Due to its multi-spectral nature, this imaging method allows to
detect and classify multiple physiological changes like those
associated with increased vasculature, cellular structure, oxy-
gen consumption or edema in tumors [25]. The hardware setup
for data acquisition is explained in more detail in section III.

Optical spectra in different wavelengths and amplitude is
shown in Figure 2 which shows the differences between four
colors (red, green, yellow and blue). The experiment is perform
on the phantom, where chalks colored with four different
inks are used in the experiment. Figure 2 clearly shows that
variation in color produces difference in optical spectroscopy.

We design an experiment, to observe the difference be-
tween objects based on internal structure. In this experiment we
gather six different fruits (Apple, Blueberry, Kiwi, Strawberry,
Plum and Orange). Data was collected from each fruit after
12 hours for 7 days consecutively. Due to the change in the
internal structure of the fruits the curve was changed, but
the main shape of the curve was always constant. Standard
deviation of each fruit in wavelength and amplitude is shown
in Figure 3.

(a) (b)

(c) (d)

Fig. 2. Optical spectra from chalk with color inks in wavelength and
amplitude. (a) Red color, (b) Green color, (c) Yellow color, (d) Blue color

Fig. 3. Spectral standard deviation of each fruit in wavelength and amplitude.
Lower curve (Black colored) is the minimum, the upper curve (Blue colored)
represents the maximum and the middle curve (Red colored) represents the
mean. (a) Apple, (b) Blueberry,(c) Kiwi, (d) Strawberry, (e) Plum, (f) Orange

II. STATE OF THE ART

Skin color measurement through reflectance spectroscopy
has received significant attention in the literature
[19][26][27][28]. It has been used to provide a numerical
index for color, which in turn allows for the study of
constriction of a blood vessel and abnormal redness of the
skin due to local congestion, such as in inflammation [29].
Dawson et al. [30] worked on the reflectance spectroscopy
for the measurement of skin tissue to exemplify the spectral
properties. Farrell et al. [31] and Kienle et al. [32] addressed
the problem of reflectance measurements to determining in
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Fig. 4. Schematic representation of the fiber arrangement in the spectroscopy
probe: 6×200µm illumination fibers arrayed around one 600µm acquisition
fiber.

vivo tissue optical properties. Another approach for measuring
the optical reflectance over a broad range of wavelengths
spectroscopy has been utilized for assessing the skin type and
gestation age of newborn infants by Lynn et al. [33].

The first work to evaluate the possibilities of using re-
flectance spectrophotometry for discriminating between benign
and malignant skin lesions was done by Marchesini et al.
[34]. Their experiments show that the wavelengths between
400 and 800 nm were highly significant to show the differ-
ences between the reflectance spectra of benign and malignant
melanomas. Consequently, the authors report a discrimination
between 31 primary melanoma and 31 benign lesions with a
sensitivity of 90.3% and a specificity of 77.4%, a stepwise
discriminate analysis of reflectance spectral features [35].

Moreover, Bono et al. [36] conclude that color is the most
important parameter in discriminating melanomas from benign
in spectrophotometric imaging of skin lesions using 420-
1020 nm. Recently with Raman spectroscopy the molecular
structure of skin lesions are explored [37], but due to the side
effects of the laser beam on the sensitive skin surface, this
technique is not preferred in the dermatology practice.

III. SYSTEM SETUP

A hand-held reflectance spectroscopy probe (StellarNet
Inc., Oldsmar, FL, USA) (see Figure 5), consisting of 6 ×
200µm illumination fibers arrayed around one 600µm acqui-
sition fiber as shown in Figure 4, was attached to an infrared
optical tracking target in order to be able to determine its
position and orientation in real-time. The selected tracking
system consists of four ARTtrack2 infrared cameras (A.R.T.
GmbH, Weilheim, Germany) positioned to be able to track a
volume of 2 × 2 × 2m3. According to the manufacturer the
positional accuracy for such a configuration is 0.4mm with a
maximum error of 1.4mm (for angle 0.002 rad and 0.007 rad
respectively).

A 178−1132nm, 2048 px, 12 bit CCD spectrometer (Stel-
larNet Inc., Oldsmar, FL, USA) was connected to the ac-
quisition fiber, and a 12W tungsten lamp was connected to
the illumination fibers as a light source. The spectrometer
was controlled by a data processing unit to acquire spectra
synchronously with the tracking information of the probe. The
data-processing unit was also used to run the augmented reality
application that combined spectra, positions and orientations.
An overview of the entire setup is displayed in Figure 5.

A. Data Acquisition Protocol

In our protocol, the the mole selection for the data ac-
quisition is purely based on the doctor’s (or physician’s)
choice based on a visual examination. The labeling of mole is

Fig. 5. System setup: (a) tracking cameras, (b) augmented camera, (c) tracked
probe, (d) spectrometer, (e) light source, and (f) data-processing unit.

Fig. 6. Covering all the surface of prob tip by contacting skin surface.

performed using two classes: suspicious skin lesion (possibility
of malignant melanoma) and normal skin moles based on
physician’s diagnosis.

The data is stored as a plot of wavelength and amplitude (as
shown in Figure 2) by spectrometer without taking into account
the mole structure. The time of data acquisition and the number
of measurements depend on the number of moles defined on
patients, where the time for whole body skin checkup was
approximately 20 minutes.

The spatial resolution of sampling region is 1 mm diameter
which permits the study of smaller lesions and sampling of
several regions within bigger lesions. For mole size bigger
than 3 mm and smaller then 6 mm we take 5 measurements
(4 from the edges, 1 from the center). If the mole sizes exceeds
6 mm then we take 7 measurements (6 from the edges, 1 from
the center). To make sure that the database is consistent and
not biased, we only use the measurements which were taken
once per mole.

The data acquisition time for one mole is 100 ms. It is
important to contact the surface of the mole by the probe tip
and keep the probe in a way that no light goes in from outside
to ensure that the spectra are only obtained from the lesion
itself, as shown in Figure 6. Hair, nails and tattoos are avoided
during data acquisition.

B. Data Acquisition

The data collection for this study was performed in collab-
oration with the dermatology department at Klinikum Rechts
der Isar Mnchen; Germany. All lesions in this analysis were
selected by dermatology experts. In total, 3072 spectroscopic
data vectors were collected from 148 patients, where 2926
measurements were of normal skin moles and 146 measure-
ments from malignant skin lesions. The schematic representa-
tion of data acquisition system is shown in Figure 7. Out of
146 malignant skin lesions, 9 cases were histological proven
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Fig. 7. Schematic diagram of data acquisition system.

melanoma. The remaining 137 are kept under observation.
The details of the 9 cases of melanoma are: average Breslow
thickness was 1.1 mm, the minimum being 0.1 mm and the
maximum 2.8 mm, the average diameter of the lesions was
3 mm, the minimum being 2 mm and the maximum 5 mm.
The average age of patients was 40, where the youngest and
oldest patients were 2 and 82 years old, respectively. 70% of
the examined patients were female. The collected data consists
of the following clinical cases:

• Normal skin: spectra were obtained from the inside of
the upper arm, groin and inside thigh, a region defined
as skin that is not normally exposed to sunlight (i.e.
not tanned).

• Normal skin moles: in average 19 spectra per patient
were obtained from benign skin moles. Normal skin
moles can be visually very similar to malignant moles,
as illustrated in Figure 8.

• Malignant skin mole: one spectra was obtained from
middle positions on the lesion. Multiple spectra were
taken depending on size of the mole as discussed in
data acquisition protocol (Section III-A).

Immediately prior to each patient’s data collection session,
the spectrophotometer probe end was placed in the disinfectant
substance to prevent migration of any diseases.

To make sure of reproducibility and accuracy of data
acquisition, one concern was that the pressure of the probe
on the skin might cause blanching by forcing blood out of
local vessels. To test a novel approach to reduce this effect
and to assess the magnitude of this problem, a study was
performed by Osawa et al. [38]. In their study the probe was
held in contact with a flat area of skin and the pressure slowly
increased beyond that which would be applied normally for
taking skin reflectance measurements. Increasing the pressure
caused a decrease in overall reflectance. Osawa et al. suggested
three methods for eliminating the effect: (a) a sensor to
determine the pressure being applied, (b) an adhesive pad to
just hold the probe against the skin, and (c) an electrical contact
sensor to feed back information on when the probe makes
contact with the skin. In our study the pressure on the skin
was reduced by increasing the surface area of contact with a
probe holder that was designed to slide in the probe which
was also used to keep the tracking points (see Figure 5).

Fig. 8. Skin lesions: (a) Malignant skin lesions, (b) Normal skin lesions.

Fig. 9. Representative example of the first part of the sorted PCA eigenvalue
spectrum

(
eij

)
, the y − axis shows the values of the component as a

percentage of the total in log scale.

C. Data Processing

The spectral data is acquired as a 2048D vector of the
floating points values xi ∈ R2048, i = 1, ..., n where n
denotes the number of measurements. Each xi represents the
discretized reflective spectrum from 178 nm to 1132 nm (due
to limitation of hardware) of the ith measurement and is stored
normalized as

x̂i =
xi
‖xi‖2

where i = 1, ..., n (1)

To reduce the dimensions of the input data, principal
components analysis (PCA) is applied. The resulting spectrum
of eigenvalues

(
eij
)
j=1,...,2048

is sorted descending by magni-
tude. Since the highest eigenvalues represent the most relevant
components, a cut-off value CPCA is chosen, such that the final
input data yi for the classification algorithm from measurement
xi(i = 1, ..., n) is

yi =
(
eij
)
j=1,...,CPCA

(2)

The cut-off value CPCA is chosen empirically from
the data. Figure 9 is showing a representative example of(
eij
)
j=1,...,2048

from which CPCA was selected as one of
{2, 3, 4, 5}.

IV. CLASSIFICATION

Classification is performed by a support vector machine
(SVM) [39]. SVM was selected as the method of choice as it
allows to linearly classify data in a high-dimensional feature
space that is non-linearly related to the input space via the use
of specific kernel functions, such as polynomial functions or
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radial basis functions (RBF). This way we can build complex
enough models for skin lesion classification while still being
able to compute directly in the input space.

The SVM classifier needs to be trained first before us-
ing it, thus we partition our already reduced input data
(yi), i = 1, ..., n into two partitions, T ⊂ {1, ..., n} the training
set and V ⊂ {1, ..., n} the testing (or validation) set with
T ∪ V = {1, ..., n} and T ∩ V = {}. The training data set
T is labeled manually into two classes with the ground truth,
l(yi) = ±1. Once the classifier is trained, a simple evaluation
of the decision function d(yi) = ±1 will yield the classification
of any data yi.

In detail, SVM is trying to separate the data φ(yi) mapped
by the selected kernel function φ by a hyperplane wTφ(yi) +
b = 0 with w the normal vector and b the translation. The
decision function then is d(yi) = sgm

(
wTφ(yi) + b

)
. Maxi-

mizing the margin and introducing slack variables ξ = (ξi)
for non-separable data, we receive the primal optimization
problem:

min
w,b,ξ

=
1

2
wTw + C

∑
i∈T

ξi (3)

with constraints l(yi)(wtφ(yi)+b) ≥ 1−ξi, ξ ≥ 0 for i ∈
T . C is a user–determined penalty parameter. Switching to the
dual optimization problem allows for easier computation,

min
α

=
1

2
αTQα− eTα (4)

with constraints 0 ≤ αi ≤ C for i ∈ T ,
∑
i∈T yiαi = 0.

The α = (αi) are the so–called support vectors, e = [1, ...1]T

and Q is the positive semidefinite matrix formed by Qjk =
l(yj)l(yk)K(yj , yk), and K(yj , yk) = φ(yj)

T φ(yk) is the
kernel function built from φ. Once this optimization problem
is solved, we determine the hyperplane parameters w and b,
w directly as w =

∑
i∈T αil(yi)φ(yi) and b via one of the

Karush-Kuhn-Tucker conditions as b = −l(yi)yTi w, for those
i with 0 < αi < C. Thus the decision function of the trained
SVM classifier ends up as

d(yi) = sgn
(
wTφ(yi) + b

)
= sgn

∑
j∈T

αil(yi)K(yj , yi) + b

 (5)

V. EXPERIMENTS

Data collection of 3072 spectroscopic instances is defined
as (xi), i = 1, ..., 3072 labeled into two classes: normal skin
l(xi) = 1 and lesion l(xi) = −1. The 3072 data points were
randomly separated into a training data set T and a testing
(validation) data set V with |T | = 2072 and |V | = 1000,
however retaining the balance of both sets containing 50%
from each of the two classes. A color-coded representation of
the normalized skin spectra x̂i, i ∈ T of the training data set
T is shown in Figure 10.

Fig. 10. Plot of all normalized spectra x̂i from the training data set T ,
color-coded as blue for normal skin moles, red for malignant mole and green
for normal skin. One curve represents one skin lesion data.

TABLE I. RESULTS OF THE CROSS-VALIDATION USING THE TRAINING
DATASET T .

SVM Traning
Parameters Linear Poly RBF Sigmoid

Kernel Kernel Kernel Kernel
CPCA = 2 95± 9.2 96± 8.3 95± 7.5 95± 9.1
CPCA = 3 95± 8.3 96± 6.7 97± 9.5 96± 9.5
CPCA = 4 95± 9.6 97± 7.2 97± 8.7 96± 8.6
CPCA = 5 96± 9.2 97± 9.7 97± 8.3 97± 7.7

Before classification, PCA was applied to the x̂i for di-
mension reduction to yield our classification input yi. The
eigenvalue cut-off CPCA was empirically chosen as one of
CPCA ∈ 2, 3, 4, 5.

The SVM classifier (we used LibSVM, [40]) was then
trained using the training data set T . As there are multiple
parameters to be selected, like for example the penalty pa-
rameter C, we performed a cross-validation of 10 folds via
parallel grid search. The average accuracy on the prediction of
the validation fold is the cross validation accuracy.

A. Discussion

The cross-validation of the training data set T determined,
among others, the parameters C = −5 and γ = −7. For
the further parameters CPCA and the choice of the kernel
(linear, polynomial, radial basis function (RBF) or sigmoid)
we performed cross validation of the training data set T , the
results are shown in Table I. The best results were received
consistently by using the RBF kernel, while for CPCA the
value of 5 turned out to be the best choice with an accuracy
of 97± 8.3, where 8.3 is standard deviation.

With the training of the classifier completed, we studied the
accuracy of the testing (validation) data set V . We compared
the manual ground truth labeling l(yi) for data point yi with
the computed decision function d(yi) to compute the accuracy
as follows

Accuracy(%) =
# of correctly predicted data

# of total data
× 100

=
|d(yi)|
|V |

× 100 (6)
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TABLE II. CLASSIFICATION ACCURACY RESULTS USING THE
TESTING DATASET V .

SVM Traning
Parameters Linear Poly RBF Sigmoid

Kernel Kernel Kernel Kernel
CPCA = 2 86.8% 90.3% 89.9% 88.8%
CPCA = 3 89.3% 92.5% 91.8% 90.3%
CPCA = 4 91.9% 92.9% 94.9% 94.1%
CPCA = 5 92.1% 93.6% 94.9% 94.6%

The results are shown in Table II. We achieve the same
accuracy of 94.9% for the kernels RBF with CPCA values of
4 and 5. This corresponds to Figure 9, where it is clear that
between CPCA 4 and 5 there is only very little difference. In
total we received the best results using the RBF kernel and
CPCA = 5.

VI. MANIFOLD LEARNING FOR DIMENSIONALITY
REDUCTION OF SKIN LESIONS USING OPTICAL

SPECTROSCOPY DATA

Most recent applications of machine learning in data min-
ing, computer vision, and in other fields require deriving a
classifier or function estimate from a large data set. Modern
data sets often consist of a large number of examples, each
of which is made up of many features. Though access to an
abundance of examples is purely beneficial to an algorithm
attempting to generalize from the data, managing a large
number of features (some of which may be irrelevant or even
misleading) is typically a burden to the algorithm. Overwhelm-
ingly complex feature sets will slow the algorithm down and
make finding global optima difficult. To lessen this burden on
standard machine learning algorithms (e.g. classifiers, function
estimators), a number of techniques have been developed to
vastly reduce the quantity of features in a dataset, i.e. to reduce
the dimensionality of the data.

Dimensionality reduction has other, related uses in addition
to simplifying data so that it can be efficiently processed. The
most obvious is visualization; if data lies, for instance, in a
100-dimensional space, one cannot get an intuitive feel for
what the data looks like. However, if a meaningful two or
three dimensional representations of the data can be found,
then it is possible to analyze it more easily. Though this
may seem like a trivial point, many statistical and machine
learning algorithms have very poor optimality guarantees, so
the ability to see the data and the output of an algorithm is
of great practical interest. In our case, spectroscopic data is
typically acquired as a high dimensional vector (in our case
a 2048 element vector); this high-dimensionality, however,
creates difficulties for visualization and classification of the
data. Manifold learning has a significant role in dimensionality
reduction and clustering due to its nature of unsupervised
learning [41].

There are many approaches to dimensionality reduction
based on a variety of assumptions and used in a variety of
contexts. We will focus on an approach initiated recently based
on the observation that high-dimensional data is often much
simpler than the dimensionality would indicate. In this work,
we present results of applying different manifold learning
techniques such as Isomap [42], Laplacian Eigenmaps [43] and
Diffusion Map [44] to spectroscopy data from 48 patients with
normal and malignant lesions to reduce the dimensionality,

Fig. 11. Working example of PCA. The left image shows a Gaussian
distribution together with the two principal components. The coloring is
dependent on values of a and b. The right side shows the projection on the
eigenvector corresponding to the largest eigenvalue [46].

and compare them to traditional linear technique Principal
Component Analysis. Clustering results after dimensionality
reduction are shown in Table III for each technique, where
some of the method/parameter combinations yield excellent
results on the patient data compared to the diagnosis of the
treating physicians.

A. Principal Component Analysis

A linear method such as PCA ignores protrusion or concav-
ity of the data [45]. In order to demonstrate the shortcomings
of purely linear methods, we will show results using PCA
and compare with nonlinear manifold learning. PCA finds
a subspace i.e. which finds an optimal subspace that best
preserves the variance of the data [46].

The goal of PCA is to find an optimal subspace i.e. the
variance of the data is maximized. In general, manifold learn-
ing methods do not care about the variance of the data. Non-
linear methods in particular, typically famous on preserving
neighborhood properties within the data [46]. The input and
output of PCA are defined as in equation 7 , given N input
points.

Figure 11 shows a Gaussian distribution together with
the first (and only) two principal components, calculated by
the method described above. The vectors are therefore the
eigenvectors of the matrix C.

The coloring is linearly dependent on the values of a and
b. The right side shows the projection on the eigenvector
corresponding to the largest eigenvalue. As one can see, the
variance of the data is preserved.

Figure 12 shows that PCA cannot handle non-linear
datasets.The left image shows a spiral distribution (2-d Swiss
roll) together with the two principal components. The coloring
is dependent on the values of t, where the function is given as
f(t) = (tcos(t), tsin(t)). The right side of Figure 12 shows
the overlapping projection on the eigenvector corresponding
to the largest eigenvalue. One can observe that blue, red and
yellow points are all overlapping in the center of the projected
line [46].

This means that most geometric information of the data
is lost through this projection. In most cases distances are
only meaningful in local neighborhoods, following Non-linear
manifold learning methods address this problem.

www.ijacsa.thesai.org 390 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

Fig. 12. PCA cannot handle non-linear datasets. The left image shows a
spiral distribution (2-d Swiss roll) together with the two principal components.
The coloring is dependent on the values of t, where the function is given as
f(t) = (tcos(t), tsin(t)). The right side shows the overlapping projection
on the eigenvector corresponding to the largest eigenvalue [46].

B. Non-linear Manifold Learning Methods

Typical non-linear manifold learning methods are graph-
based and perform the following three basic steps.

1) Build undirected similarity graph G = (V,E). where
the vertices V are give by the data points xi

2) Estimate local properties, i.e. the weight matrix W to
define the weighted similarity graph G = (V,E,W ),
where wij ≥ 0 represents the weight for the edge
between vertex i and j. Weights are obtained by
means of a kernel. A weight of 0 means that the
vertices are not connected.

3) Derive an optimal global embedding Ψ which pre-
serves these local properties.

There are three often used techniques for building the
similarity graph G. First, there is the ε-neighborhood graph
which connects all vertices with distance ‖xi − xj‖2 smaller
than ε. The ε graph is naturally symmetric [47] [46].

Contrary to this local connection is the fully connected
graph which uses a similarity function that incorporates lo-
cal neighborhood relations such as the Gaussian function:
wij = exp(−‖|xi − xj‖2 /(2σ2)). This leads directly to the
third step, since it implicitly defines the weights [46].

k-nearest neighbor (kNN) graphs combine both worlds by
connecting each vertex only to its k-nearest neighbors.

C. Manifold Learning

In the field of machine learning, a very popular research
area is manifold learning, which is related to the algorithmic
techniques of dimensionality reduction. Manifold learning can
be divided into linear and nonlinear methods. Linear methods,
which have long been part of the statistician’s toolbox for ana-
lyzing multivariate data, include Principal Component Analysis
(PCA) and multidimensional scaling (MDS). Recently, re-
searchers focus on techniques for nonlinear manifold learning,
which include Isomap, Locally Linear Embedding, Laplacian
Eigenmaps, Hessian Eigenmaps, and Diffusion Maps [46].
The algorithmic process of most of these techniques consists
of three steps: a nearest-neighbor search, a computation of
distances between points, and an eigen-problem for embedding
the D-dimensional points in a lower-dimensional space. The
manifold learning: Isomap, Laplacian Eigenmaps and Diffu-
sion Maps will be compared and contrasted with the linear

Fig. 13. Normalized spectral graph data sets, malignant skin lesions. Each
curve is the vector, representing one skin lesion. Without labeling of the data
the overlaps curves are difficult to separate

method PCA for a spectroscopic dataset. The goal is to find
a mapping function Ψ from the original D-dimensional data
set X to a d-dimensional dataset Y in which distances and
information are preserved as much as possible and d < D:

Ψ : RD → Rd (7)

In our case, we have D = 2048 and thus

Ψ : x̂i ∈ R2048 → yi ∈ Rd (8)

where xi and xi are vectors and Rd is a space.

D. System Experiments

We collected 372 spectroscopic data vectors from 48
patients, 326 measurements were of normal skin moles, 46
measurements were malignant skin lesion (as diagnosed by the
treating physician). 13 cases out of 46 malignant skin lesions
were pathologically verified by the laboratory. All lesions
for this experiment were selected by only well-experienced
physicians (not by newly joined dermatologists). This was the
only additional protocol to the data acquisition protocols as
discussed in section III-A. A color-coded representation of
the normalized skin spectra data set is shown in Figure 13
and Figure 14. Figure 13 shows malignant skin lesions and
Figure 14 shows malignant skin lesions combined with normal
skin mole. In Figure 14 one can observe the overlap between
two classes of data set.

Fig. 14. Normalized spectral graph data sets combined form, blue for
malignant skin lesions and red for normal skin mole.

The proposed methods were implemented in Matlab 10.1
using libraries for the dimensionality reduction. Clustering
was performed by selecting a separating hyperplane in the
processed three-dimensional data.
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Fig. 15. PCA 3D representation of 2048D dataset. The best possible angle to
visualize the data points. Blue for malignant skin lesions and red for normal
skin mole. PCA:1.9386s is the runtime of method

TABLE III. CLUSTERING ACCURACY WITH DIFFERENT METHODS
AND PARAMETERS. WHERE k IS k-NEAREST NEIGHBORS , A IS FOR

ALPHA AND S IS REPRESENTING SIGMA PARAMETER

Parameters Isomap Laplacian Diffusion
Eigenmaps Maps

k = 15, A = 2, S = 20 88% 0% 10%
k = 20, A = 2, S = 30 90% 87% 81%
k = 30, A = 1, S = 20 86% 92% 90%
k = 35, A = 1, S = 20 94% 96% 92%

Before applying manifold learning we need to elucidate
some parameters that play a significant role in producing
meaningful data representation. The parameters for the non-
linear dimensionality reduction techniques are:

• k: The k-nearest neighbors specify the number of
nearest neighbors used to build the graph for the
Isomap, Laplacian eigenmaps and Diffusion maps
methods. If k is chosen too large or too small, the
local geometry may not be interpreted correctly. Here
we used the values of k = 15, 20, 30, 35.

• Alpha: This parameter controls the normalization.

• Sigma: This specifies the width of the Gaussian kernel.
The larger Sigma is, the more weight far-away points
will exert on the weighted graph. We used Sigma =
20, 30.

E. Discussion

All four studied methods (PCA, Isomap, Laplacian Eigen-
maps and Diffusion maps) were applied independently. PCA
is applied on 2048 dimensional data vectors, and the first three
most significant components are taken. Each point represents
one skin lesion (malignant or benign). The data set is labeled
which is represented by two colors red and blue. Red points
are malignant and blue are benign. It is clear from the 3D
representation of the data shown in Figure 15 that the data
is not clearly distinguishable into two clusters. The main
reason PCA could not perform well is because PCA maximizes
the variance of the data and in our case direction of the
variance helps to distinguish between the two classes. The best
clustering accuracy PCA achieved is 63%.

The 3D representation of the 2048D data victor after
applying Isomap is shown in Figure 16. It is clear from the
figure that some area of the data is very nicely clustered.

Fig. 16. Applying manifold learning by using Isomap and the output 3D
representation as a result. Blue for malignant skin lesions and red for normal
skin mole. The points that corresponds to malignant data examples, are well
separated from those points corresponds to benign.

Fig. 17. Diffusion maps 3D data representation. The clusters are clearly
visible. Blue for malignant skin lesions and red for normal skin mole.

The Isomap is governed by the geodesic distances between
distant points, which causes distortions in local neighborhoods
so maybe that is one reason that the data set is not clustered
perfectly. Overall Isomap produce better results than PCA.

Figure 17, shows that the Diffusion maps is able to preserve
the order of clusters in three dimensions similar as Isomap.
Choosing the right parameter(s) is a difficult stage in manifold
learning. Experiments are performed with different parameters
as in table III. The results were computed as the number of

Fig. 18. Laplacian Eigenmaps 3D representation of 2048D dataset. Apart
from few points which are in wrong cluster, the two clusters are well separated.
Blue for malignant skin lesions and red for normal skin mole.
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Fig. 19. A reduced 3D representation of spectroscopy 2048D dataset.
The worst selection of parameters for all four methods. None of the method
produced clear clustering of the dataset. Blue for malignant skin lesions and
red for normal skin mole

correctly classified points over the total number of points and
as a ground truth we have labeling provided by dermatologist.
According to the literature [48], Diffusion maps perform better
as compared to other manifold learning techniques but in our
case Laplacian eigenmaps produces best results by choosing
the right parameters shown in Figure 18. Laplacian eigenmaps
preserve local neighborhood of the points which reflect the
geometric structure of the manifold.

In Figure 19, all four methods are shown with worst param-
eters selection. The figure shows that the dataset is not easily
distinguishable into two clusters. Variation in parameters for
non-linear manifold learning methods are shown in Table III.

Isomap capture local geometry correctly and the dataset is
clustered into two parts with an accuracy of 94% as shown
in Table III. By increasing the neighborhood size to 20 and
Sigma to 30, Laplacian eigenmaps and Diffusion maps perform
better. Adding even more neighborhood information, Laplacian
eigenmaps clustering accuracy improves to 96%. The param-
eters shown in the table are the only best combination for our
dataset.

Four manifold learning techniques are applied to the prob-
lem of dimensionality reduction and clustering of optical
spectroscopic data in dermatology. In contrast to the linear
method PCA, all studied manifold learning techniques were
able to perform satisfactorily in clustering normal skin mole
from malignant skin lesions, provided the parameters were
chosen correctly. In particular, Laplacian Eigenmaps look very
promising for the intended dermatological application.

VII. CONCLUDING REMARKS ON FEASIBILITY OF
OPTICAL SPECTROSCOPY FOR SKIN LESIONS

CLASSIFICATION

In this part of the paper, optical spectroscopy for skin
lesions classification is analyze. Optical spectroscopy by itself
produces data, which, due to its high-dimensionality, cannot be
directly utilized for classifying skin lesions. In other words,
distinguishing between malignant and benign skin lesions is
difficult. First the dimension of the data needs to be reduced
in a meaningful way. In this respect, the application of man-
ifold learning techniques to the problem of dimensionality

reduction and clustering of spectroscopic data in dermatology
is introduced. One other problem in dermatology is about
quantifying the progress of skin lesions. For this purpose, one
needs to be able to numerically compare two or more images
of e.g. the same lesion taken during different sessions. This
involves accurate registration of all those images. Combination
of optical spectroscopy with tracking as a solution to this
problem is presented. In our approach, this combination is
used as a guidance for acquiring spectral measurements at the
same positions and orientations as the first acquisition. We
defined spectroscopic data acquisition protocol in section III-A
for using our system optimally. We also evaluated a patient
dataset with an SVM-based classification of skin lesions.

The system opens a new way for utilizing the real po-
tential of optical spectroscopy for noninvasive diagnosis of
skin lesions. In taking optical spectroscopy even one step
further using the system, it is a promising technique for the
discrimination of malignant skin lesions from benign ones.
Spectroscopy could form the basis of a clinical method to
diagnose skin lesions due to the accuracy and reproducibil-
ity of its measurements. Acquisition of spectroscopic data
causes little or no patient discomfort, does not alter the basic
physiology of the skin, poses no hazard to the patient and
does not interfere with any other standard clinical diagnostic
practices. The scan could be performed by a non-specialist
and therefore might be a useful tool for the prescreening of
skin lesions. However, before full integration of spectroscopy
into the clinical workflow, some further challenges need to be
addressed:

• From our experience, there is need for several spectro-
scopic probes with different diameter sizes in order i)
to cover only the area relevant to the lesion during the
acquisition, i.e. to avoid getting measurements from
the healthy skin region around the lesion and ii) to
avoid multiple scans of the same lesion.

• In our experiments, we have observed that different
samples taken from the same mole led to different
spectral readings. A method is required to create a rep-
resentative measurement from multiple spectroscopic
readings for each mole.

• Optical spectroscopy based skin lesion diagnosis sys-
tems should be patient specific, since every patient
has his/her own individual pattern of lesions which
can be monitored throughout his/her body moles. In
our study, we have observed that it is important to
perform the classification within patient specific data
in order to build a reliable system.

• Combining optical spectroscopy with other imaging
technologies, e.g. dermoscopy imaging, multispectral
imaging and hyperspectral imaging, can improve the
diagnosis further, since the optical spectroscopy pro-
vides complementary information to these techniques.

• Patient age is an important factor which needs to
be taken into account during the acquisition of op-
tical spectroscopy data. As the cellular structures can
change according to the age of the patient, differences
in spectroscopic readings have been observed between
young and elderly people, which can be addressed by
creating groups of patients accordingly.
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• Accurate data acquisition requires constant contact of
the probe with the surface of the lesion which is
hindered in some cases by ragged skin lesions. Further
studies are required to investigate new techniques for
data acquisition without touching the skin surface.

• A more in-depth study on data sets with larger
variation is required to demonstrate general utility
of optical spectroscopy in the clinical setting. Espe-
cially, data accompanied by pathological verification
of malignant melanoma would be highly desirable to
demonstrate the reliability of the presented methods.

REFERENCES

[1] R. Marks, Epidemiology of melanoma, clinical excremental dermatol-
ogy, PMID: 11044179 (PubMed - indexed for MEDLINE) 25 (2000)
395–406.

[2] W. H. Organization, Ultraviolet radiation and the intersun programme,
Website, http://www.who.int/uv/faq/skincancer/en/
(2007).

[3] O. Colot, R. Devinoy, A. Sombo, D. de Brucq, A color image process-
ing method for melanoma detection, Medical Image Computing and
Computer-Assisted Interventation MICCAI 1496 (1998) 562.

[4] M. H. Madsen, L. Hansen, J. Larsen, K. Drzewiecki, A probabilistic
neural network framework for detection of malignant melanoma, in
artificial neural networks in cancer diagnosis prognosis and patient
management, in: 18th IEEE Symposium on Computer-Based Medical
Systems, 2001, pp. 141–183.

[5] P. Rubegni, G. Cevenini, M. Burroni, R. Perotti, G. Dell’eva, P. Sbano,
C. Miracco, P. Luzi, P. Tosi, P. Barbini, L. Andreassi, Automated
diagnosis of pigmented skin lesions, Publication of the International
Union Against Cancer 101 (2002) 576–580.

[6] J. Sanders, B. Goldstein, D. Leotta, K. Richards, Image processing
techniques for quantitative analysis of skin structures, Comput. Methods
Programs Biomed. 59 (4) (1999) 167–180.

[7] A. Bono, S. Tomatis, C. Bartoli, The invisible colors of melanoma. a
telespectrophotometric diagnostic approach on pigmented skin lesions,
Eur. J. Cancer 34 (10) (1996) 727–729.

[8] S. Dreiseitl, L. O. Machado, H. Kittler, S. Vinterbo, H. Billhardt,
M. Binder, A comparison of machine learning methods for the diagnosis
of pigmented skin lesions, Journal of Biomedical Informatics 34 (2001)
28–36.

[9] A. Blum, H. Luedtke, U. Ellwanger, R. Schwabe, G. Rassner, C. Garbe,
Digital image analysis for diagnosis of cutaneous melanoma. develop-
ment of a highly effective computer algorithm based on analysis of 837
melanocytic lesions, Br. J. Dermatol. 151 (5) (2004) 1029–1038.

[10] R. J. Stanley, R. H. Moss, W. V. Stoecker, C. Aggarwal, A fuzzy
based histogram analysis technique for skin lesion discrimination in
dermatology clinical images, Comput. Med. Imag. Graph. 27 (2003)
387–396.

[11] F. Ercal, A. Chawla, W. V. Stoecker, H. Lee, R. H. Moss, Neural
network diagnosis of malignant melanoma from color images, IEEE
Trans. Biomed. Eng. 14 (9) (1994) 837–845.

[12] J. Boldrick, C. Layton, J. Ngyuen, S. Swtter, Evaluation of digital
dermoscopy in a pigmented lesion clinic: Clinician versus computer
assessment of malignancy risk, J. Amer. Acad. Dermatol. 56 (3) (2007)
417–421.

[13] K. Hoffmann, T. Gambichler, A. Rick, M. Kreutz, M. Anschuetz,
T. Grunendick, A. Orlikov, S. Gehlen, R. Perotti, L. Andreassi, J. N.
Bishop, J. P. Cesarini, T. Fischer, P. J. Frosch, R. Lindskov, R. Mackie,
D. Nashan, A. Sommer, M. Neumann, J. P. Ortonne, P. Bahadoran, P. F.
Penas, U. Zoras, P. Altmeyer, Diagnostic and neural analysis of skin
cancer (danaos). a multicentre study for collection and computer-aided
analysis of data from pigmented skin lesions using digital dermoscopy,
Br. J. Dermatol. 149 (10) (2003) 801–809.

[14] G. Surowka, K. Grzesiak-Kopec, Different learning paradigms for the
classification of melanoid skin lesions using wavelets, in: in Proc. 29th
Annu. Int. Conf. IEEE EMBS, 2007, pp. 3136–3139.

[15] Z. Zhang, R. H. Moss, W. V. Stoecker, Neural networks skin tumor
diagnostic system, in: in Proc. IEEE Int. Conf. Neural Netw. Signal
Process., 2003, pp. 191–192.

[16] M. Kudo, J. Sklansky, Comparison of algorithms that select features for
pattern classifiers, Pattern Recognit. 33 (2000) 25–41.

[17] S. Umbaugh, Y. Wei, M. Zuke, Feature extraction in image analysis,
IEEE Eng. Med. Biol. 16 (4) (1997) 62–73.

[18] S. E. Umbaugh, R. H. Moss, W. V. Stoecker, Applying artificial
intelligence to the identification of variegated coloring in skin tumors,
IEEE Eng. Med. Biol. Mag. 10 (4) (1991) 57–62.

[19] E. A. Edwards, S. Q. Duntley, The pigments and color of living human
skin, American Journal of Anatomy 65 (3) (2005) 1–33.

[20] S. Nischic, C. Forster, Analysis of skin erythema using true color
images, IEEE Trans. Med. Imag. 16 (6) (1997) 711–716.

[21] S. D. Depths, www.missionignition.net/bms/led heal clip image008.jpg
[22] M. Moncrieff, S. Cotton, E. Claridge, P. Hall, Spectrophotometric

intracutaneous analysis: a new technique for imaging pigmented skin
lesions, Br J Dermatol. 146 (3) (2002) 448–57.

[23] P. name: MelaFind(R), Mela sciences, inc., Address: 50
South Buckhout Street, Suite 1, Irvington, NY 10533,
http://www.melasciences.com/ (2004).

[24] P. name: SpectroShade(R), Mht s.p.a. headquarter, Production and
Commercialization Via Milano 12, 37020 Arbizzano di Negrar (VR)
Italy, www.mht.it (2007).

[25] A. Kim, U. Kasthuri, B. Wilson, A. White, A. L. Martel, Preliminary
clinical results for the in vivo detection of breast cancer using intersti-
tial diffuse optical spectroscopy, MICCAI Workshop on Biophotonics
Imaging for Diagnostics and Treatment 75 (2006) 1601–2321.

[26] H. E. Kuppenheim, R. aymond Heer, Spectral reflectance of white and
negro skin between 440 and 1000mµ, Journal of Applied Physiology
4 (10) (1952) 800–806.

[27] R. R. Anderson, J. A. Parrish, The optics of human skin, Journal of
Investigative Dermatology 77 (1) (1981) 13–19.

[28] J. W. Feather, M. Hajizadeh-Saffar, G. Leslie, J. B. Dawson, A portable
scanning reflectance spectrophotometer using visible wavelengths for
the rapid measurement of skin pigments, Phys. Med. Biol. 34 (1) (1989)
807–20.

[29] B. L. Diffey, R. J. Oliver, P. Farr, A portable instrument for quantifying
erythema induced by ultraviolet radiation, Br. J. Dermatol. 111 (1984)
663–72.

[30] J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill,
G. W. Fisher, J. W. Feather, A theoretical and experimental study of
light absorption and scattering by in vivo skin, Phys. Med. Biol. 25
(1980) 695–709.

[31] T. J. Farrell, M. S. Patterson, B. Wilson, A diffusion theory model of
spatially resolved, steady state diffuse reflectance for the non–invasive
determination of tissue optical properties in vivo, Med. Phys. 19 (1992)
879–88.

[32] A. Kienle, L. Lilge, M. S. Patterson, R. Hibst, R. Steiner, B. C.
Wilson, Spatially resolved absolute diffuse reflectance measurements
for non-invasive determination of the optical scattering and absorption
coefficients of biological tissue, Appl. Opt. 35 (1996) 2304–14.

[33] C. J. Lynn, I. S. Saidi, D. G. Oelberg, S. L. Jacques, Gestational age
correlates with skin reflectance in newborn infants of 24−−42 weeks
gestation, Biol. Neonate 75 (1993) 9–64.

[34] R. Marchesini, M. Brambilla, C. Clemente, M. Maniezzo, A. E.
Sichirollo, A. Testori, D. R. Venturoli, N. Cascinelli, In vivo spectropho-
tometric evaluation of neoplastic and non-neoplastic skin pigmented
lesions–i. reflectance measurements, Photochem Photobiol 53 (1991)
77–84.

[35] R. Marchesini, N. Cascinelli, M. Brambilla, C. C. L. M. E. Pignoli,
A. Testori, D. R. Venturoli, In vivo spectrophotometric evaluation of
neoplastic and non-neoplastic skin pigmented lesions–2. discriminant
analysis between nevus and melanoma, Photochem Photobiol 55 (1992)
515–22.

[36] A. Bono, S. Tomatis, C. Bartoli, G. Tragni, G. Radaelli, A. Maurichi,
R. Marchesini, The abcd system of melanoma detection: a spectrophoto-
metric analysis of the asymmetry, border, color, and dimension, Cancer
85 (1999) 7–72.

www.ijacsa.thesai.org 394 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 10, 2016

[37] S. Sigurdsson, P. A. Philipsen, L. K. Hansen, J. Larsen, M. Gniadecka,
H. C. Wulf, Detection of skin cancer by classification of raman spectra,
in: IEEE Trans. Biomed. Eng., 2004, pp. 1784–1793.

[38] M. Osawa, S. Niwa, A portable diffuse reflectance spectrophotometer
for rapid and automatic measurement of tissue, Meas. Sci. Technol. 4
(1993) 668–76.

[39] N. Cristianini, J. S. Taylor, An Introduction to Support Vector Machines
and Other Kernel based Learning Methods, 1st Edition, Cambridge
University Press, 2000.

[40] C.-C. Chang, C.-J. Lin, Libsvm: A library
for support vector machines, Open source,
http://www.csie.ntu.edu.tw/ cjlin/libsvm (2001).

[41] L. Cayton, Algorithms for manifold learning, TR 2008–0923, University
of California, Franklin St., Oakland, (June 15 2005).

[42] J. B. Tenenbaum, V. de Silva, J. C. Langford, A global geometric
framework for nonlinear dimensionality reduction, Science 290 (5500)
(2000) 2319–2323.

[43] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques
for embedding and clustering. in: Advances in neural information
processing systems, MIT Press, Cambridge 14 (1) (2002) 585–591.

[44] R. Coifman, S. Lafo, Diffusion maps: Applied and computational
harmonic analysis, Special Issue: Diffusion Maps and Wavelets 21 (1)
(2006) 5–30.

[45] T. Hastie, R. Tibshirani, J. H. Friedman, The elements of statistical
learning: Data Mining, Inference and Prediction, Springer, 2001.

[46] R. Socher, M. Hein, Manifold Learning and Dimensionality Reduction
with Diffusion Maps, Tech. report, 2008.

[47] U. von Luxburg, A tutorial on spectral clustering, Stat Comput, Springer
Science and Business Media 17 (5) (2007) 395–416.

[48] B. Bah, Diffusion maps: Analysis and applications, dissertation 66,
Mathematical Modeling and Scientific Computing, Wolfson College,
University of Oxford, UK (September 2008).

www.ijacsa.thesai.org 395 | P a g e


