
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

Evaluation of OLSR Protocol Implementations using
Analytical Hierarchical Process (AHP)

Ashfaq Ahmad Malik and Tariq Mairaj Rasool Khan
PN Engineering College (PNEC)

National University of Science and Technology (NUST)
Karachi, Pakistan

Athar Mahboob
Khwaja Fareed University of

Engineering and Information Technology (KFUEIT)
Rahim Yar Khan, Pakistan

Abstract—Adhoc networks are part of IEEE 802.11 Wireless
LAN Standard also called Independent Basic Service Set (IBSS)
and work as Peer to Peer network by default. These work without
the requirement of an Infrastructure (such as an Access Point)
and demands specific routing requirements to work as a multi-
hop network. There are various Adhoc network routing protocols
which are categorized as Proactive, Reactive and Hybrid. OLSR
(a proactive routing protocol) is one of widely used routing
protocols in adhoc networks. In this paper an empirical study
and analysis of the various OLSR implementations (by different
research groups and individuals) has been conducted in light
of Relative Opinion Scores (ROS) and Analytical Hierarchical
Process (AHP) Online System software. Based on quantitative
comparison of results, it is concluded that OLSRd project is
most updated and best amongst six variants of OLSR protocol
implementations.

Keywords—OLSR; MANET; AHP; Routing Protocols

I. INTRODUCTION AND BACKGROUND INFORMATION

We are working on Mobile Adhoc Networks (MANETs)
based on 802.11 WLAN Standard based mobile devices to
build a trustworthy collaborative system. Due to peculiar nature
of adhoc networks (as compared to infrastructure networks);
the normal routing protocols used in infrastructure or Access
Point (AP) based network can not be directly applied or used in
adhoc networks. There are many routing protocols defined and
used as an outcome of research in adhoc networks such as Ad-
hoc On-demand Distance Vector (AODV), Fisheye State Rout-
ing (FSR) Protocol, Destination-Sequenced Distance-Vector
(DSDV), Optimized Link State Routing (OLSR) etc. These
are broadly categorized as Pro-active and Re-active routing
protocols depending upon the type of algorithm used. OLSR
is one of the commonly and widely used routing protocol in
adhoc networks. It helps in multi-hop communication between
the peer to peer nodes connected in adhoc network.

A. OLSR Protocol

OLSR is a proactive routing protocol used by MANETs.
RFC 3626 [1] was implemented as OLSR daemon (olsrd) in
2004 [2]. As per RFC 3626, the key concept is Multi-Point
Relays (MPRs). Unlike link state routing, where every node
transmits broadcast messages; in OLSR only MPRs transmit
broadcast messages. Only MPRs generate link state informa-
tion, hence reducing the number of control messages flooding
the network. Thirdly, a MPR may choose to report links
between itself and MPR selectors. Learning from experiences

of OLSR version 1, RFC 7181 has been issued for latest
version i.e. OLSRv2 [3]. It is updated by RFC 7183, 7187,
7188, and 7466.

OLSRv2 is also a table driven, proactive routing protocol
which retains the basic mechanisms and algorithms of its
predecessor, however, few enhancements have been done in
calculation of shortest routes through use of link metric (other
than hop count), simplification of messages exchanged and
efficient/flexible signaling framework. It is also the further
optimizing of classic link state routing protocol and works
on concept of MPRs. There are 02 sets of MPRs selected by
each router i.e. ’Flooding MPRs’ and ’Routing MPRs’ used
for reduction of flooding and topology, respectively.

1) Implementations of OLSR: Various organizations have
carried out implementations and research work on OLSR and is
summarized as under. These are primarily based on OLSRv1:

• pyOLSR by INRIA [4]. Initially, pyOLSR was imple-
mented by INRIA as a prototype based on RFC 3626,
however, now it is obsolete.

• OOLSR by Hipercom-INRIA[5]. Complete re-
implementation in C++ based on RFC 3626 by a
Hipercom team at INRIA. It supports Windows and
Linux.

• SMOLSR-MOLSR by Hipercom-INRIA[6]. Multi-
cast OLSR (MOLSR) and Simple Multicast OLSR
(SMOLSR) are extensions of OOLSR. Their function
is to get the control and routing information. The
data is forwarded through Multicast Data Forwarding
Protocol(MDFP) daemon.

• NOA-OLSR by Niigata University in collabora-
tion with INRIA[7]. No Overhead Auto-configuration
OLSR (NOA-OLSR) has been implemented in collab-
oration with INRIA, based on an Algorithm developed
by a professor of Niigata University and INRIA.

• NRL OLSR [8]. It is an implementation based on
RFC 3626 with some additional features by Naval
Research Laboratories. The code is based on INRIA’s
OLSR Version 3 protocol draft for the IETF [9]. It has
Windows and Linux based distributions.

• QOLSR by LRI [10]. It is a Quality of Service
(QoS) extension to OLSR for Linux by Laboratoire de

www.ijacsa.thesai.org 338 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

Recherche en Informatique (LRI), France. Qolyester is
RFC 3626 complaint and implemented in C++.

• OLSR by GRC [11]. A Networking Research Group
(Grupo de Redes de Computadores (GRC)) at Univer-
sitat Politcnica de Valncia (UPV) has ported the OLSR
implemented by INRIA to Windows 2000 and Pocket
PC.

• OLSR by Unik University [2]. It is the most widely
used OLSR implementation and is generally called
OLSR Daemon (OLSRd). The olsrd works on Win-
dows (XP and Vista, Windows 7), Linux (i386, arm,
alpha, mips, xscale), OS X (powerpc, intel, xscale,
iPhone), VxWorks, NetBSD, FreeBSD, OpenBSD,
Nokia N900, Google phone (Android) etc [12].

2) OLSRd Plugins – Additional Features: Plugin is an add-
on pluggable program fragment enhancing functionality of
some program or system. Plugins in context of OLSRd is the
supportability to load dynamically loadable library (DLL) for
the purpose of performing different functions and to generate
or process private package types. In Linux DLL functionality is
available in .so files and in Windows as .DLL file extension.
The olsrd plugins design has been chosen due to following
reasons [2]:

• To add any custom functionality or package, the
source code of olsrd is not required to be changed.

• The plugins can be licensed separately as per condi-
tions of user.

• Any language can be used to code the plugins and can
be compiled as dynamic library.

• The plugins have backward compatibility.

Various types of plugins for OLSRd are Tiny Web Server
(httpinfo), OLSR Node Information Display (txtinfo), Basic
Multicast Forwarding (bmf), Securing OLSR Route (secure),
Outputs in Dot Format over TCP Socket (dot-draw), Dynamic
Announcement of Uplinks (dyn-gw Annoucing), DNS Servers
and host names (nameservice), import of external routes from
qaugga (qaugga), Performance Graph (pgraph), Distributing
P2P Discovery Messages (p2pd), Minimal Example (mini),
Tiny Application Server (tas), Detecting OLSRd Freezing
(watchdog), optimizing kernel ARP cache from OLSR UDP
sniffing (arprefresh), Muticast DNS (mdnsp), Position Update
(PUD) etc.

B. Analytical Hierarchical Process (AHP)

AHP is a type of multi-criteria assessment (MCA) tech-
nique for analyzing complex decisions. It measures intangibles
in relative terms. AHP is a mathematical as well as psycholog-
ical approach and a structured technique to carry out complex
decisions specially applied in group decision making. It was
initially studied and researched in the 1970s by Thomas L.
Saaty. It has been improved and applied in solving decision
problems until now. A good resource on AHP is available at
[13]. An AHP process decision making recommends a most
suitable choice of alternatives based on user defined criteria.
As per this book following steps are involved in an AHP
process decision making to recommend a most suitable choice
of alternatives based on a defined criteria:

• Step-1. The problem is modeled primarily in a hier-
archy of three layers as under:
◦ The Goal or Main Objective to achieve.
◦ The Criteria for evaluation of alternatives.
◦ The choice of available alternatives.

• Step-2. The elements of hierarchy are pairwise com-
pared based on multiple judgments of each pair of
element to establish priorities.

• Step-3. The overall priorities of hierarchy are calcu-
lated through synthesis of above judgments.

• Step-4. Check weather the judgments are consistent
and conclude final result based on these judgments.

Various types of tools are available in the market to apply
AHP such as BPMSG AHP Online System (AHP-OS), Priority
Estimation Tool (PriEst), AHP Solver, MakeItRational, Open
Decision Maker, AHP Analyzer, AHP Software, ABC AHP
Decision Making Software, easyAHP, AHP.net etc. We in our
research have used AHP-OS.

1) BPMSG’s AHP-OS: AHP-OS is web based tool de-
veloped by Business Performance Management Singapore
(BPMSG). It is one of the most latest, updated and easy to use
web application/tool (developed in php) available online for
Multi Criteria Decision Making (MCDM) based on classical
AHP by Saaty. It does not cater other MCDM methods such
as Fuzzy AHP, Modified AHP(M-AHP) etc and has peculiar
advantages, disadvantages and limitations as associated with
each method. It calculates weightings or ratio scales (by
paired comparison of criterion) and consistency index based
on input by the user (either calculated or subjective opinions).
Mathematically it is based on calculation of Eigen value
problem. The calculation of Eigen value gives the consistency
ratio whereas, the dominant normalized right Eigen vector
of the matrix gives the scale ratio. It is based on following
features which are available to registered users:

• AHP Projects – A hyperlink to handle complete AHP
projects including group decision support.

• AHP Priority Calculator – A hyperlink calculate pri-
orities based on pairwise comparisons.

• AHP Hierarchies – A hyperlink for defining complete
set of hierarchies, evaluation of priorities and alterna-
tives.

• AHP Group Session – A hyperlink for participating
in AHP group sessions.

2) Application of AHP in Software Selection: A broad
review of application of AHP has been presented in [14], [15].
It includes but not limited to selection, evaluation, benefitcost
analysis, allocations, planning and development, priority and
ranking, decision-making, forecasting in medicines and related
fields. Other areas are personal, social, manufacturing sector,
political, engineering, education, industry, government, and
others which include sports, management etc.

AHP is also applied to selection of software. Simulation
Software [16], Multimedia Authorizing Systems (MAS) [17],
Project Management Software [18], ETL Software [19], Data
Warehouse System for Large and Small Enterprises in Taiwan

www.ijacsa.thesai.org 339 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

[20], Forecasting Software [21] etc are best examples in this
regard. These studies motivated us to apply AHP to different
variants of OLSR software to select the best one to suit in our
adhoc network based collaborative system project.

3) Mathematical Modeling in AHP: A complete and elab-
orate description of mathematical modeling and application of
relevant theorems in AHP is given in [22]. The mathematics
used in determining and calculating decision hierarchy and
overall result in AHP-OS is given in [23]. The same is
summarized in following paragraphs.

• Scale of Intensity. The scale of intensity from the
1-9 (denoted by x) is used as an integer for each
selection while comparison of paired criteria and
alternative. The x is transformed into c (which is
used as an element in pairwise comparison matrix)
as under:

Linear scale:
c = x (1)

Logarithmic scale:

c = log2(x+ 1) (2)

Root Square scale:

c =
√
x (3)

Inverse Linear:
c =

9

(10− x)
(4)

Balanced Scale: When w = 0.5, 0.55, 0.6, ..., 0.9.

c =
w

(1− w)
(5)

Power Scale:
c = x2 (6)

Geometric Scale:
c = 2x−1 (7)

• Row Geometric Mean Method (RGMM). RGMM
has been used to calculate the priorities Pi, to input
the N x N pairwise comparison of the matrix A = aij .
The calculation and normalization is done as under:
Calculation:

ri = exp

[
1

N

N∑
j=1

ln(aij)

]
=
(N∏

j=1

aij

)
(8)

Normalization:

pi =
ri∑N
j=1 ri

(9)

• Consistency Ratio(CR). CR is calculated by calcu-
lating λmax (the principal eigenvalue) and putting in
equation below (calculated by Lonson/ Lamata linear
fit):

CR =
λmax −N

2.7699N − 4.3513−N
(10)

II. DEFINING OF CRITERIA/ ELEMENTS OF CRITERION

A. General Criteria – Mean Opinion Score (MOS) and Rela-
tive Opinion Score (ROS)

A general selection criteria based on ROS (as applied
in GeoSharing project [24] for selection of an embedded
Operating System) where a relative score from 1-5 has been
considered (5 being highest score awarded based on observa-
tion or judgment of each observer). This type of scoring is
relative to one an other (of the projects under consideration)
and once carried out by single person can be termed as Relative
Opinion Score (ROS). A more relevant ROS can be related as
mentioned in Table I. The same type of scoring once conducted
through a group of peoples and their average is taken as Mean
Opinion Score (MOS).

TABLE I. RELATIVE OPINION SCORE (ROS) AWARDS

Observation Score
Excellent 5

Very Good 4
Good 3

Satisfactory 2
Just Satisfactory 1
Un-Satisfactory 0

B. Elements of Criterion

The selection a software for practical usage depends on
multiple factors. However, following factors are considered
vital and have been considered as a selection criteria for
selection of OLSR software.

• Stability of software – Measure of reliability and
robustness that it should not crash and it is usable
without bugs/ interruptions.
◦ OLSRd and NRL-OLSR are quite stable and

we assign it ROS of 4. We have experienced
crashing of OLSRd and NRL-OLSR very few
times.

◦ The QOLSR implementation is tested in OP-
NET simulator. Qolyester is a testbed for
QOLSR algorithms,hence, may have bugs. As
per available documentation certain bugs are
already known. We assign ROS of 3.

◦ OLSR’s prototype implementation/ porting on
Windows 2000 and Pocket PC by GRC-UPV
may have inherent bugs. Hence, we have
awarded ROS of 2.

◦ NOA-OLSR is also a Proof of Concept im-
plementation of OLSR with No Overhead
and Auto-Configuration by INRIA, France. Its
source is not available for installation and
testing. Hence, exact stability can not be as-
certained. We have awarded ROS of 1.

◦ pyOLSR, OOLSR (developed in C++),
SMOLSR and MOLSR (extensions of
OOLSR) are also implementations by INRIA
France. However, the source code is not
available on the referred website. Hence, we
assign ROS of 0 to all of these variants with
respect to ascertaining the stability.

www.ijacsa.thesai.org 340 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

• Maintainability by Developers – Are the develop-
ers maintaining there distributions through nightly or
stable builds on regular basis?
◦ OLSRd is regularly being maintained by

www.OLSR.org; latest version is OLSRd
0.9.0.3. OLSRv1 is being used for up-dating
and development of OLSR V2. We assign ROS
of 5.

◦ NRL-OLSR is also being maintained by Naval
Research Labs USA. Latest distribution is
NRL-OLSRd Ver 7.8.1; last updated on 10
Aug 2007. We assign ROS of 2 to it.

◦ QOLSR’s most current version is Qolyester-
20090302 available online on its website.
Since, than it is not updated Hence, we have
awarded ROS of 3.

◦ NOA-OLSR source is not available for instal-
lation and testing. Hence, we have assigned
ROS of 0 to it.

◦ The source of pyOLSR, OOLSR (developed
in C++), SMOLSR and MOLSR (extensions
of OOLSR) is also not available and not being
updated. Hence, we assigned ROS of 0.

• Usage – Is there any developer community which is
using the software? User experience of general users
and their views are also important factors.
◦ As discussed in preceding sub section of Main-

tainability, same ROS scoring is applied with
respect to NRL-OLSR and QOLSR.

◦ Considering usage and testing of software by
the developer community; we assign ROS of
1 each to NOA-OLSR, OOLSR and PyOLSR.

◦ Based on experiences of OLSRd; OLSRv2 is
developed and being improved. Moreover, OL-
SRd has been implemented and used in various
adhoc networking projects such as GeoShar-
ing, MANET Manager (SPAN), Byzantium,
Commotion, Qual.net etc. Hence, ROS of 5 is
awarded for Usage criteria element.

• Security – Are security features appropriately ad-
dressed in the software and the known vulnerabilities
adequately addressed?
◦ OLSRd has a security plug-in and we assign

ROS of 4.
◦ Other variants lacks security feature, hence, we

have assigned ROS of 0 to each one of them.

• Cross-platform – Does the software support multiple
OS platforms such as Windows, Linux, Mac, Android
etc.
◦ OLSRd is developed for multiple platforms

including Windows, Linux, Mac and Android.
We award ROS of of 5.

◦ The QOLSR is developed for Linux platform.
We assign ROS of 2.

◦ The NRL-OLSR is also supports multi-
platforms and we assign it ROS of 4.

◦ NOA-OLSR is also implemented for Linux.
We award ROS of 1.

◦ pyOLSR is also supports multi-platforms i.e.
Windows, POSIX and Linux. We assign ROS

of 3.
◦ OOLSR is also Windows and Linux based. We

assigned ROS of 3.

• Other Features – Are multiple features (other than
the basic design) provided?
◦ OLSRd provides multiple features through plu-

gins as discussed in sub-section above. We
award ROS of 4.

◦ The QOLSR provides QoS feature. We assign
ROS of 1.

◦ The NRL-OLSR supports fuzzy-sighted rout-
ing and Simplified Multi-cast Forwarding. We
assigned ROS of 2.

◦ NOA-OLSR supports No Overhead Auto-
configuration; a very important feature in ad-
hoc environment. We award ROS of 1.

◦ pyOLSR works with basic OLSR. We assign
ROS of 0.

◦ OOLSR is improved to provide SMOLSR and
MOLSR. We assigned ROS of 2.

C. Summary of ROS

The summary of ROS as per our opinion based on discus-
sion in sub-section II-B are as given in Table II.

TABLE II. RELATIVE OPINION SCORE (ROS) - VARIANTS OF OLSR

Software/ OLSRd pyOLSR OOLSR NOA NRL Q
Criteria OLSR OLSR OLSR
Stability 4 0 0 1 4 3

Maintenance 5 0 0 0 2 3
Usage 5 1 1 1 2 3

Security 4 0 0 0 0 0
Cross-platform 5 3 3 1 4 2
Other Features 4 0 2 1 2 1

Total 27 4 6 4 14 12

III. EXPERIMENTATION WITH BPMSG’S AHP-OS

With this definition of basic criteria we move on to our
experimentation with BPMSG’s AHP-OS. Register with AHP-
OS website [22] and login with the provided user name and
password. Further steps involved are discussed in ensuing
paragraphs.

A. Defining Hierarchy

We defined the hierarchy using the basic node as “Selecting
OLSR Software” with node leaf or sub-categories as Stability,
Maintenance, Usage, Security, Multi-platform support and
Other Features etc. The overall OLSR selection AHP hierarchy
along-with requisite criteria and alternatives is as shown in
Figure 1.

B. Compare Criteria

Each category of criteria is pairwise compared to find that
which criterion has more weight or importance. In our opinion
Stability, Maintenance and Security has more importance as
compared to Usage, Multi-platform and Other Features crite-
rion of OLSR software. Each pair of criterion was compared
in light of following AHP Scale:

www.ijacsa.thesai.org 341 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

Fig. 1. Overall AHP Hierarchy for Selection of OLSR

Equal Importance as 1, moderate importance as 3, strong
importance as 5, very strong importance as 7, Extreme impor-
tance as 9, whereas 2, 4, 6, 8 are the values in-between afore
stated values.

The selection of pairwise criterion is shown in Figure 2.
The overall result of pairwise comparison of each criterion
element is shown in Figure 3.

C. Evaluation of Alternatives

On completion of pairwise comparison of criterion, the
evaluation of alternatives i.e. OLSR software available in the
open source community are also pairwise compared to one
another based on subjective opinions or actual measurements.
The software also provides group input based decisions as well.
The pairwise comparison is made based on the ROS as given in
Table II. As an example the pairwise comparison of only one
criterion for all the alternatives is shown in Figure 4. Overall
status of alternatives is shown in Figure 5. The threadbare
analysis of the results recorded in ROS Table II and AHP-OS’s
Figure 5 reveal that AHP has more granularity with respect to
analysis of each criteria element as compared to ROS.

D. Summary of Results

Six OLSR alternatives have been compared in light six
criterion elements. Each criterion weighting based on the appli-
cable importance is summarized in graph at Figure 6. Similarly,
different variants of OLSR and their overall percentages are
summarized as shown in Figure 5. We can clearly see that
OLSRd is ranked first, followed by NRL-OLSR as second and
QOLSR as third.

Fig. 2. Pairwise Comparison of Criterion Elements

Fig. 3. Pairwise Comparison Results – Criterion Elements

IV. CONCLUSION AND FUTURE WORK

OLSRd (by OLSR.org) has been finalized as a better
project and a choice for practical implementation for use in
a collaborative system being designed in an adhoc networking
environment. The empirical study based on quantitative com-
parison of ROS and AHP criteria elements; ranks OLSRd as
First and NRL-OLSR as Second choice for implementation
in practical adhoc networks. OLSR2 based on OLSRv2 is
considered as the latest implementation based on OLSRd by
OLSR.org and can be a better choice for future projects

www.ijacsa.thesai.org 342 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

Fig. 4. Pairwise Comparison of Alternatives–Stability

after testing in practical scenarios. Application of AHP-OS
decision making helps and provides the objective mathematics
to process the inescapable subjective and personal preferences
of an individual or a group in making a decision based on
various criterion. We have applied and configured a level-
2 hierarchy. We intend to apply more relevant sub-criterion
to a group of hierarchy such as selection of most suitable
adhoc networking project for building a nomadic collaborative
information system.

ACKNOWLEDGMENT

We acknowledge the support of NUST-PNEC for carrying
out this research by providing necessary funding for procure-
ment of COTS devices. We also thank BPMSG for the free
access to on-line AHP-OS Software.

REFERENCES

[1] Network Working Group, “Optimized Link State Routing Protocol
(OLSR).” RFC 3626, October 2003.

[2] A. Tnnesen, “Impementing and extending the Optimized Link State
Routing Protocol,” Master’s thesis, Department of Informatics, Univer-
sity of Oslo, August 2004.

[3] Internet Engineering Task Force (IETF), “Optimized Link State Routing
Protocol (OLSR) Version 2 (RFC7181).” RFC 7181, April 2014.

[4] Hipercom-INRIA, “pyOLSR.” Online Web Page, July 2003. Accessed
on 01 August 2015.

[5] Hipercom-INRIA, “OOLSR.” Online Web Page, November 2004. Ac-
cessed on 01 August 2015.

[6] Hipercom-INRIA, “SMOLSR-MOLSR.” Online Web Page, August
2005. Accessed on 01 August 2015.

[7] Hipercom-INRIA and Niigata University, “NOA-OLSR.” Online Web
Page, 2005. Accessed on 01 August 2015.

[8] Naval Research Laboratories (NRL), “The NRL OLSR Routing Proto-
col Implementation.” Online.

[9] Ron Lee and Joe Macker, “OLSRD HOWTO, Version 1.0.” Online,
October 2005.

[10] Laboratoire de Recherche en Informatique (LRI), France, “QOLSR.”
Online Web Page, 2005. Accessed on 01 August 2015.

[11] Grupo de Redes de Computadores (GRC), Networking Research Group-
Universitat Politcnica de Valncia (UPV), “OLSR protocol implementa-
tion.” Online, July 2009. Accessed on 01 August 2015.

[12] Andreas Tnnesen and Thomas Lopatic and Hannes Gredler and Bernd
Petrovitsch and Aaron Kaplan and Sven-Ola Tcke, “ olsrd - an adhoc
wireless mesh routing protocol .” Online Web Page, 2008 (updated).
Accessed on 01 August 2015.

[13] T. L. Saaty, Decision Making for Leaders: The Analytic Hierarchy
Process for Decisions in a Complex World. RWS Publications, 2008.

[14] O. S. Vaidya and S. Kumar, “Analytic hierarchy process: An overview
of applications,” Elsevier’s European Journal of Operational Research,
pp. 1–29, April 2004.

[15] T. L. Saaty and L. G. Vargas, Models, Methods, Concepts & Ap-
plications of the Analytic Hierarchy Process; International Series in
Operations Research & Management Science, ch. Chapter 2: The
Seven Pillars of the Analytic Hierarchy Process, pp. 23–40. Springer
Science+Business Media NY, 2012.

[16] S. Erees, E. Kuruolu, and N. Morali, “An application of analytical
hierarchy process for simulation software selection in education area,”
Frontiers in Science, vol. 3, pp. 66–70, March 2013.

[17] Vincent S. Lai and Robert P. Trueblood and Bo K. Wong, “Software
Selection: A case study of the application of the Analytical Hierarchical
Process(AHP) to the selection of a Multimedia Authoring System
(MAS),” Elsevier’s Information and Management, vol. 36, pp. 221–232,
January 1999.

[18] B. Kutlu, A. Bozanta, E. Ates, S. Erdogan, O. Gokay, and N. Kan,
“Project Management Software Selection Using Analytic Hierarchy
Process Method,” International Journal of Applied Science and Tech-
nology, vol. 4, pp. 113–119, November 2014.

[19] M. Hanine, O. Boutkhoum, A. Tikniouine, and T. Agouti, “Application
of an integrated multi-criteria decision making AHP-TOPSIS method-
ology for ETL software selection,” SpringerPlus, 2016.

[20] H.-Y. Lin and P.-Y. Hsu, “Application of the Analytic Hierarchy Process
on Data Warehouse System Selection Decisions for Small and Large
Enterprises in Taiwan,” International Journal of The Computer, the
Internet and Management, vol. 15, pp. 73–93, December 2007.

[21] A. Pekin, G. Ozkan, O. Eski, U. Karaarslan, G. Ertek, and K. Kilic,
“Application of the Analytic Hierarchy Process (AHP) for Selection
of Forecasting Software,” 5th InternationalSymposium on Intelligent
Manufacturing Systems, Sakarya, Turkey, 2006.

[22] K. D. Goepel, “BPMSGs AHP Online System.” Online, May 2014.
Accessed on 02 Sep 15.

[23] K. D. Goepel, “BPMSG AHP Excel Template with multiple Inputs.”
Online, December 2013.

[24] L. Lamouline and V. Nuttin, “The GeoSharing project: An Openmoko
geoposition sharing system,” Master’s thesis, École Polytechnique de
Louvain, Université catholique de Louvain, 2011.

www.ijacsa.thesai.org 343 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

Fig. 5. Overall Result of Pairwise Compared Alternatives and Criterion Elements

Fig. 6. Summary of Overall Percentage Weight of Criterion Elements

Fig. 7. OLSR Variants Percentages – Participant 1

Fig. 8. OLSR Variants Percentages – Participant 2

Fig. 9. Overall OLSR Variants Percentages - Average of Both Participants

www.ijacsa.thesai.org 344 | P a g e

