
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

A Generic Model for Assessing Multilevel
Security-Critical Object-Oriented Programs

Bandar M. Alshammari
Department of Information Technology

School of Computer and Information Sciences
Aljouf University, Saudi Arabia

Abstract—The most promising approach for developing secure
systems is the one which allows software developers to assess and
compare the relative security of their programs based on their
designs. Thereby, software metrics provide an easy approach
for evaluating the security of certain object-oriented designs.
They can also measure the impact on security that caused
by modifications to existing programs. However, most studies
in this area focus on a binary classification of data, either is
classified or unclassified. In fact, there are other models with other
classifications of data, for instance, the common model used by
Defense departments that classifies data into four security levels.
However, these various classifications have received little attention
in terms of measuring their effect. This paper introduces a model
for measuring information flow of security-critical data within
a certain object-oriented program with multilevel classification
of its security-critical data. It defines a set of object-oriented
security metrics which are capable of assessing the security of
a given program’s design from the point of view of potential
information flow. These metrics can be used to compare the
security of programs or assess the effect of program modifications
on security. Specifically, this paper proposes a generic model
that consists of several security metrics to measure the relative
security of object-oriented designs with respect to design quality
properties of accessibility, cohesion, coupling, and design size.

Keywords—Multilevel Security Models; Object-Orientation; Se-
curity Metrics; Security Matrix; Unified Model Language

I. INTRODUCTION

Recently, security has become one of the most crucial
aspects of systems’ development due to the increasing number
of risks and breaches which systems are facing. Therefore,
several studies have suggested different approaches for reduc-
ing these risks and preventing the existence of vulnerabilities.
One example defines a number of safe coding practices which
a programmer needs to follow in order to have a more secure
product [1] [2]. Another approach relies on previously defined
security vulnerabilities. This approach statically analyses pro-
grams’ codes to check if the they contain any of the defined
vulnerabilities [3] [4] [5] [6].

Another approach which can be easily applied is to define
security metrics that can quantify the security level of certain
programs. [7]. Security metrics can be an effective tool in
helping software programers to identify level of risks in a
given program. They also provide programmers with guidance
of how to raise awareness within the organisation. Security
metrics that are based on the designs of programs can provide
systems’ developers with an early guidance for discovering
vulnerabilities and guiding them on following certain secure
corrective steps.

Most of the work on security metrics focus on classifying
data into two levels, either security-critical or not. However,
this is not the case in real systems. Real security-critical
systems have multiple level of classifications for their sensitive
data. Therefore, this paper defines a generic model that takes
into consideration this aspect. It studies the impact on security
of four of the most common software design properties, which
are used in order to enhance the software quality. These
properties consist of Data Encapsulation, Cohesion, Coupling,
and Design Size [8]. In this work, a number of security
metrics for object-oriented designs are defined with respect to
those quality design properties. These metrics are capable of
quantifying the security level of certain programs with regard
to the potential flow of security-critical information based on
the security design principles of “reducing the size of the
attack surface” [9] [10] [11] and “ least privilege” [12] [2].
Such metrics will also assist software developers in assessing
the impact on security of any modifications occurred to their
programs.

The remainder of this paper is organised as follows. Section
2 shows the related work and how this paper defines a model
that is distinct from previous work. Section 3 shows the
research methodology that is used to define this model. Section
4 explains the assumptions which need to be considered when
applying this model. Section 5 studies the relevant security
design principles that this model considers. Section 6 illustrates
the model defined by this paper and the defined security design
metrics. Section 7 illustrates a case study of how to apply this
model to a real system based on its design, and it also shows
the results of the security metrics. Finally, Section 8 concludes
the paper and explains future extensions of this work.

II. RELATED WORK

Many researchers have proposed different approaches
which help in developing more secure programs. One of
these approaches defines a list of principles that can be used
as guidance for developing secure systems [12] [2]. Other
approaches have developed general coding principles that
aim to discover code vulnerabilities [1] [13]. However, these
approaches cannot discover security risks at an early stage and
are not capable of quantifying security of given programs.

The approach which sounds promising with this regard is to
define security metrics at an early stage of development. Some
of the work in this area has proposed metrics for measuring
software security of object-oriented programs such as the work
of [14] [15] [16] [17] [18] [19] [20]. The main objective of
these metrics is to assess programs’ security at different stages

www.ijacsa.thesai.org 419 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

of its development life cycle in order to give a prediction of
the existing vulnerabilities in the program.

Multilevel security, on the other hand, is a crucial aspect
to information systems. In fact, many admit that it is a must
for any system to have various levels of security. In other
words, different security-critical components of any system
have to be classified into different levels of criticality in
terms of information security. There exists several security
models for classifying information with regard to their security
sensitivity. For instance, the US model defines four level of
security classifications (Top Secret, Secret, Confidential, and
unclassified)1. Another example is the British which uses a
model of six levels of security classifications (Top Secret,
Secret, Confidential, Restricted, Protected, and unclassified)2.

Unfortunately, most of studies on software security metrics
focus on defining metrics by classifying system’s components
to classified and not classified ones. Furthermore, there exists
some studies that study multilevel security such as the work
of Kotenko and Doynikova [21] which defines security metrics
for various levels of the system. However, this work doesn’t
consider the information flow of various security values of
security-critical data. Instead, it focuses on dividing different
types of metrics for different parts of the system [21].

None of existing projects have developed metrics for
program security based on its design artifacts that takes into
consideration the different security level of the system’s com-
ponents. This paper defines a generic model that is applicable
to any security-critical object-oriented program in order to
assess its security with respect to the potential flow of security-
critical data.

III. RESEARCH METHODOLOGY

The approach of Ourston and Monney’s [22] states that any
project’s implementation should be conducted in two steps.
The first one is the analytical part which is about defining the
theory of the project. The second one is called the empirical
part which is conducted to prove the analytical part. This paper
follows this approach, and hence it defines the first part that
is called what to measure and the second part which is called
how to measure.

A. What to measure

This paper aims to define a model that is capable of assess-
ing the security of object-oriented programs with multilevel of
data security classifications. It concentrates on specific object-
oriented design properties which have the most effect on se-
curity of programs. The proposed metrics need to measure the
security of programs by identifying the potential information
flow of security-critical data.

B. How to measure

This paper defines a number of security metrics for object-
oriented programs with multilevel security classifications of
their components. The developed metrics have to adhere to

1http://www.state.gov/m/ds/clearances/c10977.htm#5
2https://www.gov.uk/government/publications/government-security-

classifications

Table I. MODEL TERMINOLOGY

Name Description

Security-Critical
Attribute An attribute which holds confidential data.

Security-Critical Method A function which accesses or interacts with
security-critical attributes.

Security-Critical Class A class which has at least one security-critical
attribute or one security-critical method.

certain security design principles for developing secure pro-
grams. These metrics can be applied to any object-oriented
program as long as its class diagram is provided. Such metrics
will assist software developers in assessing the security level
of their programs from an early stage of development based
on the design artifacts of the programs.

IV. MODEL ASSUMPTIONS

The model defined in this paper aims to introduce a set of
security metrics for programs with multilevel classifications
of data secrecy based on their designs. These metrics measure
the potential flow of security-critical data of a given object-
oriented design. Each metric is defined in relation with a spe-
cific security design principle that needs to adhere to in order to
achieve a secure program. The model focuses on defining such
metrics with respect to four object-oriented properties (i.e.,
data encapsulation, cohesion, coupling, and design size) [8].
These metrics are a comparative measurement which means
that results of these metrics can be used to compare the relative
security of various object-oriented programs with regard to
these four design properties.

The metrics have been designed so that their results are
within the range 0 to 1. As the value of the metric decreases,
the more secure a program is. Similarly, as the value of the
metric increases, the less secure a program is. This means that
lowers values of these metrics, the more they adhere to their
related security design principles. And higher values mean that
they less adhere to their relevant security design principles.

One approach which can be used to apply security metrics
based on the program’s design is developed by Alshammari et
al. [19] [20]. This approach depends on accurately providing
annotated classes of security-critical data for a given object-
oriented program using UMLsec [23] and SPARKS [24] an-
notations. In this approach, UMLsec annotations are used to
annotate attributes, methods, and classes with "‘«secrecy»"’ if
they contain or interact with security-critical data. SPARKS
annotations, moreover, are used to show the interactions of
methods with security-critical attributes, methods, and classes.

Instead, this model develops a new approach which helps in
applying security design metrics defined here. This approach
relies on the program’s developers to provide an accurately
designed two dimensional matrix. This matrix shows the
security level of all interactions with security-critical classes
that are caused by methods or classes in a given design.

To illustrate this approach, a class is extracted from a
certain program called Student Information System is shown
in Figure 1 and the matrix related to this class is shown in
Figure 2. Suppose the security model used in this context
is {0,1,2,3}; with 0 being not a security-critical attribute,
and 3 is the most security-critical attribute. In this class,

www.ijacsa.thesai.org 420 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

Student

- name : String
+ dob : Date
+ nationalID : Double
- portalPassword : Double

+ getName() : String
- getDOB() : Date
- getNationalID() : Double
+ getPortalPassword() : Double

Figure 1. Student UML Class Diagram

Attributes

- name + dob + nationalID - portalPassword

M
e

th
o

d
s

+ getName()
0 0 0 0

- getDOB()
0 1 0 0

- getNationalID()
0 0 2 0

+ getPortalPassword()
0 0 0 3

Figure 2. Student Class Security Matrix

suppose that name is not a security-critical attribute (hence,
its security value is 0), and is accessed by method getName.
DOB is supposed to be a security-critical attribute with se-
curity value 1, and is only accessed by method getDOB.
Also suppose that nationalID is another security-critical
attribute with security value 2, and is only accessed by method
getNationalID. Suppose that portalPassword is also
a security-critical attribute with security value 3, and is only
accessed by method getPortalPassword. Then, the secu-
rity matrix associated with the class diagram from Figure 1can
be seen in Figure 2.

V. RELEVANT SECURITY DESIGN PRINCIPLES

This section illustrates those security design principles that
are relevant to the security design metrics defined by this
model. In this paper, two design principles have been chosen
to be studied when developing this model (i.e., Least Privilege
and Reduce Attack surface). These were chosen based on
previous work [19] which has shown that these two principles
can have the most effect on developing secure systems, and
hence they need to be intensively considered when defining
security metrics. Therefore, these metrics are constructed with
respect to these two principles in order to measure the security
of designs from the perspective of potential information flow.

A. Least Privilege

This principle is described as allowing programs and users
to complete a certain job with the least privileges [12] [2]. Its

main advantages consist of minimizing interactions between
privileged components in a given system, and hence minimiz-
ing loss in case of a successful attack [12] [2].

B. Reduce Attack surface

This principle also aims to make programs more secure by
decreasing the number of components that can be reached from
outside the system [9] [25]. There are several approaches for
reducing such components. A common approach is described
by Howard [9] suggest reducing the amount of running code
by turning off any unnecessary features of the system. Another
approach is to minimise the number of entry points in the
system that can be accessed by untrusted users [9].

VI. MULTILEVEL SECURITY ASSESSMENT MODEL

Due to the importance of having multiple levels of data
security for any systems, this paper defines a model that is
capable of defining a set of security metrics that meet this
purpose. This model considers four of the most common soft-
ware design properties to define these metrics. these properties
include the data encapsulation, cohesion, coupling, and design
size of systems [8]. These metrics depend on the security levels
defined by system’s security analysts. Furthermore, the model
develops a security matrix that can be used easily to extract
the required information of these security design metrics.

These security design metrics are defined to be generic,
which means that they can be applied to any program regard-
less of the type of security model it uses. For the purpose
of illustration, let’s address the set of values of the security
model used in this context as V = {0, . . . ,v}, where an attribute
labelled as 0 means it is not security-critical and an attribute
labelled as v (the maximum number in the model) means it
is the most security-critical attribute in that program. (let the
magnitude operator |S| returns the size of a given set S.) These
metrics are defined as follows.

A. Accessibility of Security-Critical Attributes Metric (AS-
CAM)

The design property of data encapsulation in object-
oriented designs is concerned with having restrictions on data
accessibility inside a given program [8]. In terms of security,
it has been shown that this property has a major effect on
program’s security including the work of Maruyama et al. [13]
and Alshammari et al. [19]. These studies have shown that
creating security-critical attributes less accessible from outside
their classes make programs more secure. This will eventually
satisfy the specifications of the security principle of “reducing
the attack surface size”.

This metric aims to measure the proportion of security-
critical attributes which are accessible from outside their class
in a given design for an object-oriented program with respect
to their security levels. Therefore, this metric is defined as;
"The ratio of the number of criticality of non-private security-
critical attributes in a given design to the total number of
criticality of security-critical attributes in that design".

Consider the set of attributes in a design D as Ai, i ∈
{1, . . . ,a}, set of security-critical attributes in D as SCA j,
j ∈ {1, . . . ,sca} such that SCA ⊆ A, and set of non-private

www.ijacsa.thesai.org 421 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

(accessible) security-critical attributes in D as ASCAk, k ∈
{1, . . . ,asca} such that ASCA ⊆ SCA ⊆ A. Then, ASCAM is
expressed as:

ASCAM(D) =
∑

asca
k=1 (ASCAk× v)
|SCA|×max(V)

(1)

B. Accessibility of Security-Critical Methods Metric (AS-
CMM)

As it’s shown previously that the design property of data
encapsulation in object-oriented designs is concerned with
having restrictions on data accessibility inside a given pro-
gram [8]. Another possible way of accessing data is through
methods which have access to attributes. Similar to direct
accessibility of security-critical attributes, accessing security-
critical attributes indirectly through methods which interact
with them can have the same security impact. Therefore, it
is recommended to have less accessibility to methods which
interact with security-critical attributes in order to satisfy
the security design principle of “reducing the attack surface
size” [19].

This metric aims to measure the proportion of methods
which have access or interaction with security-critical at-
tributes and are accessible from outside their class in a given
object-oriented design with respect to their security levels.
Therefore, this metric is defined as; "The ratio of the number of
criticality of non-private security-critical methods in a given
design to the total number of criticality of security-critical
methods in that design".

Consider the set of methods in a design D as Mi, i ∈
{1, . . . ,m}, set of security-critical methods in D as SCM j,
j ∈ {1, . . . ,scm} such that SCM ⊆ M, and set of non-private
(accessible) security-critical methods in D as ASCMk, k ∈
{1, . . . ,ascm} such that ASCM ⊆ SCM ⊆M (Given a set S, let
the magnitude operator |S| returns the size of the set.) Then,
ASCMM is expressed as:

ASCMM(D) =
∑

ascm
k=1 (ASCMk× v)
|SCM|×max(V)

(2)

C. Cohesiveness of Security-Critical Methods Metric
(CSCMM)

In terms of object-oriented design properties, it is rec-
ommended to have a cohesive design which increases the
interactions of attributes with methods inside their class. In
regard to security, it is recommended to decrease cohesiveness
of interactions between security-critical attributes and methods
inside their classes in order to have more secure programs [19].
Cohesiveness is about privileges over security-critical attributes
and the fewer number of such interactions, the more this
adheres to the security design principle of least privilege [19].

The main aim of this metric is to measures the degree of
potential flow of security-critical data caused by interactions
between security-critical attributes and methods in a given
object-oriented design taking into consideration the security
levels of these attributes. Therefore, this metric is defined
as; "The ratio of the number of methods which interact with
security-critical attributes for every class to the maximum

number of methods which could interact with attributes for
every class in a specific program’s design".

To calculate this metric, the number of interactions with
every security-critical attribute is multiplied by its security
level for every class. Then, the sum of these values are divided
by the total number of possible ways of interactions with
attributes in that class. This can be calculated by multiplying
the total number of methods in that class by the total number
of attributes in the same class. Then, it is multiplied by the
maximum value of the security model used in context. The
values of all of the classes’ cohesiveness is summed, and then
divided by the number of classes in the design in order to take
the design’s average cohesiveness.

Consider the set of classes in a design D as Ci, i ∈
{1, . . . ,c}, set of methods in the same design as M j, j ∈
{1, . . . ,m}, set of attributes in D design as Ak, k ∈ {1, . . . ,a},
and set of security-critical attributes in D as SCAl , l ∈
{1, . . . ,sca} such that SCA ⊆ A. Let α (SCAl) be the number
of methods which access security-critical attribute SCAl . Then,
CSCMM is expressed as:

CSCMM(D) =
∑

c
i=1

∑
sca
l=1 α(SCAl)×v

|M|×|SCA|×max(V)

|C|
(3)

D. Coupling of Security-Critical Classes Metric (CSCCM)

Coupling is one of the most common object-oriented design
properties that have been widely examined in several studies.
This property is defined by the number of interactions an object
has with others inside the program [26]. Many studies have
shown that it’s recommended for object-oriented programs to
be loosely-coupled between its components in order to be more
reusable, understandable, and extensible [8] [26].

With regard to information security, it has been shown that
there is a high correlation between coupling and insecurity
of programs. The study of Liu and Traore [27] has shown
that successful attacks in many cases are caused by highly-
coupled objects. Furthermore, the studies of Alshammari et
al. [19] [20] have shown that loosely-coupled programs can
decrease the potential flow of security-critical information, and
thus creating more secure programs. This satisfies the security
design principle of “least privilege” [12].

Therefore, this model focuses on the effect of coupling on
programs security, and it defines a security metric that fits the
multilevel security model described here. This coupling metric
aims to measure the potential occurrence of links between
security-critical attributes and classes in a given design taking
into consideration the security level of each link. Therefore,
this metric is defined as; "The ratio of criticality of the number
of associations of all classes with security-critical attributes
to the maximum number of associations which could occur
with security-critical attributes for every class in a specific
program’s design".

Consider the set of classes in a design D as Ci, i ∈
{1, . . . ,c}, set of attributes in the design D as Ak, k∈{1, . . . ,a},
and set of security-critical attributes in D as SCAl , l ∈
{1, . . . ,sca} such that SCA ⊆ A. Let β (SCAl) be the number
of classes which are associated with security-critical attribute
SCAl . Then, CSCCM is expressed as:

www.ijacsa.thesai.org 422 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

CSCCM(D) =
∑

sca
l=1 β (SCAl)× v

|C−1|× |SCA|×max(V)
(4)

E. Security-Critical Design Size Metric (SCDSM)

Design size is one of the object-oriented properties that
must be considered from an early stage of a program’s devel-
opment life-cycle since it has a major impact on its reusability
and functionality [8]. Due to this importance, Bansiya and
Davis [8] defined a metric that is related to this property. This
metric is called Design Size in Classes (DSC) which measures
of the number of classes in a specific design [8].

In terms of programs’ security, the effect of the design size
property has been studied in a number of studies. This include
the work of Chowdhury et al. [7] which defined a metric to
measure the ratio of critical code segments in a particular
program’s code. The work of Alshammari et al. [19] [20] have
also studied this property. They show that it is desirable to
have a small design size of security-critical classes in order to
adhere to the security design principle of “reducing the attack
surface size” [20].

The model defined in this paper considers the importance
of the design size property on security, and hence it defines
a metric for this purpose. The main goal of this metric is
to measure the proportion of security-critical classes taking
into consideration their security levels. Therefore, this metric
is defined as; "The ratio of criticality of the number of security-
critical classes to the total number of security-critical classes
in a specific program’s design".

Consider the set of classes in a design D as Ci, i ∈
{1, . . . ,c}, set of attributes in the design D as Ak, k∈{1, . . . ,a},
set of security-critical attributes in D as SCAl , l ∈ {1, . . . ,sca}
such that SCA ⊆ A, and set of classes with security-critical
classes defined in them in the design D as SCCl , l ∈{1, . . . ,scc}
such that SCC ⊆C. Then, SCDS is defined as:

SCDSM (D) =
∑

scc
l=1 (SCCl× v)
|C|×max(v)

(5)

VII. MODEL CASE STUDY

This section shows how to apply the multilevel security
design metrics defined here for a specific banking system.
To measure the security of a given program with regard to
these metrics, a complete UML class diagram needs to be
provided by the system’s developers. It is also required to
provide the security matrix defined by this model as explained
in the previous section. This matrix shows the interactions of
every attribute with other methods and classes, and the security
level of each interaction.

A. Banking System UML Class Diagram

The UML class diagram shown in Figure 3 is part of a
banking system extracted to show how to measure the security
of a certain program with regard to the model defined by this
paper. This diagram consists of classes that are responsible
for storing information about clients of a certain bank. The
class diagram consists of five classes; Customers, Credit Cards,
Debit Cards, Loans, and Cheques. Each of these classes is

responsible for a specific task, and it contains a number of
attributes and methods to surf this purpose.

For instance, the Customers class is responsible for storing
personal information about clients such as their name, date of
birth, national ID, and ebanking password. It also defines a
number of methods that are related to retrieve specific data in
response to requests from either inside or outside the class. The
Loans class stores information about the customer’s loans such
as the loan amount. It has also functions that are responsible for
returning this information once requested. The Cheques class
provides information about the customer’s cheques, and defines
functions that access such information. The Credit Card and
Debit Card classes define attributes that store cards’ numbers
and their passwords. They also contain methods that return and
update this information.

B. Banking System Matrix

This section explains how to construct the security matrix
associated with the banking system illustrated in this paper.
This matrix shows the interactions between attributes and
methods in the entire system. It also shows those classes which
directly access certain attributes from outside their classes.
This security matrix has to include a security value for every
interaction. This value is the same as the security level of the
attribute which the interaction has occurred with.

For the purpose of this case study, let’s suppose that
the security model used by in this context is {0,1,2,3,4}.
Attributes which their security value is 0 indicate that they are
not security-critical. Other than that, attributes are security-
critical and their criticality level depend on their security value.
This means as this value increases, the security criticality of a
certain attribute increases. For instance, attributes assigned the
security value of 1 indicate that they have the least security-
critical data, while attributes which their security value is 4
show the highest security-critical data. Moreover, the matrix
shows the accessibility of every attribute, method, and class in
the system. This information is extracted from access modifiers
shown in the UML class diagram of the system.

Table II. BANKING SYSTEM’S ATTRIBUTES SECURITY LEVELS

Class Attribute Security Level

Customers name 0
Customers dob 2
Customers nationalID 3
Customers portalPassword 4
Credit Cards cardNo 4
Credit Cards cardPassword 4
Debit Cards cardNo 3
Debit Cards cardPassword 4
Cheques chequeNo 1
Cheques chequeAmount 2
Loans interestRate 0
Loans loanAmount 1

In the UML class diagram in Figure 3, there are five
classes and each one of them has a number of attributes with
different security levels. Let’s suppose that the system’s analyst
has provided Table II which shows the security levels for all
attributes in the system. These values are used in order to
construct the security matrix of the banking system as shown
in Figure 4 (which needs to be constructed by the system’s
analyst).

www.ijacsa.thesai.org 423 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

Cheques

- chequeNo : Double
- chequeAmount : Float

+ getChequeNo : Double
+ getChequeAmount() : Double

Customers

- name : String
+ dob : Date
+ nationalID : Double
- ebankingPassword : String

+ getName() : String
- getDOB() : Date
- getNationalID() : Double
+ getEpassword() : String

Loans

- interestRate : Double
- loanAmount : Double

+ SetInterestRate(Double : rate) : Void
+ getloanAmount() : Double

Credit Cards

- cardNo : Double
- cardPassword : Integer

- getCardNo() : Double
+ getCardPassword() : Integer
+ setCardPassword(Integer : pass) : Void

Debit Cards

- cardNo : Double
- cardPassword : Integer

+ setCardPassword(Integer : pass) : Void
+ verifyCredentials(Double: cNo, Integer : pass) : Boolean

Figure 3. Banking System UML Class Diagram

C. Model Security Metrics Results

The main goal of this section is to show how to calculate
the security metrics defined by this model based on the security
matrix shown in Figure 4. The purpose and result of each
metric are explained here in order to identify their impact on
security of the banking system examined here.

The data encapsulation metrics measure the ratio of ac-
cessible security-critical attributes and methods in a given
class with regard to the total number of security-critical
attributes and methods in that class taking into consideration
their security values. This means that when calculating these
metrics, the security level of each attribute and method has
been considered. These values can be easily obtained from the
security matrix shown in Figure 4. Therefore, the ASCAM
is computed by counting the number of non-private security-
critical attributes multiplied by each of their security values.
In Design 3, there are eight security-critical attributes out
of ten attributes defined in the banking system UML class
diagram. Out of these eight security-critical attributes, there are
two attributes which are accessible from outside their classes
(i.e., Customers.dob and Customers.nationalID).
This information is shown in the security matrix since
these two attributes have the (+) symbol in front of them
which is an access modifier for public attributes. The secu-
rity value associated with Customers.dob is 2 and with
Customers.nationalID is 3. Therefore„ the total secu-
rity value of accessible security-critical attributes in this case
is 5. The the total security value of possible accessibility of
security-critical attributes is counted by multiplying the total
number of security-critical attributes in the design (i.e., 8) to
the maximum value of criticality in the security model used in
context (i.e., 4) which is 32. Hence, the ASCAM is computed
by dividing 5 to 32, which is 0.16.

With regard to the ASCMM which measures the

accessibility of security-critical methods in a certain design,
it is computed by counting the number of non-private
security-critical methods multiplied by their security values
for each of them to the total number of possible accessibility
of security-critical methods in the same design multiplied
by the maximum security value defined in the model. The
security value of a certain method is the same as the security
value of the attribute it interacts with, which is shown in
the security matrix. If there is a method that interacts with
more than one attribute of different security levels, then
the security level of this method is the same as the highest
attribute that it interacts with. The security matrix in Figure 4
shows that there are eleven security-critical methods which
eight of them are non-private security-critical methods.
Out of these eight methods, there are two methods which
their security value is 1; Cheques.getChequeNo and
Loans.getLoanAmount. There is one method which its
security value is 2 (i.e., Cheques.getChequeAmount).
There is one method which its security value
is 3; Customers.getNationalID. There are
five methods which their security value is 4;
Customers.getPortalPassword, two methods in
Credit Cards class CreditCards.getCardPassword
and CreditCards.setCardPassword, and two methods
in Debit Cards classDebitCards.setCardPassword
and DebitCards.verifyCredentials. The total
possible security value of accessible security-critical methods
is counted by multiplying the total number of security-critical
methods (i.e., 11) to the maximum value of criticality in the
security model used in context (i.e., 4), which is 44. Hence,
the ASCMM is computed by dividing 27 to 44, which is 0.61.

In terms of the metric which measures the cohesiveness
of security-critical methods in a given design (i.e., CSCMM),
it computes the interactions of methods in a given program
with security-critical attributes in the same program taking

www.ijacsa.thesai.org 424 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

Attributes
-

Customers.

name

(0)

+

Customers.

dob

(2)

+

Customers.

nationalID

(3)

-

Customers.

portalPassword

(4)

-

CreditCards.

cardNo

(4)

-

CreditCards.

cardPassword

(4)

-

DebitCards.

cardNo

(3)

-

DebitCards.

cardPassword

(4)

-

Cheques.

chequeNo

(1)

-

Cheques.

chequeAmount

(2)

-

Loans.

interestRate

(0)

-

Loans.

loanAmount

(1)

C
la

s
s

e
s + Customers 0 0 3 0 0 0 0 0 0 0 0 0

+ Credit Cards 0 2 3 0 0 0 0 0 0 0 0 0

+ Debit Cards 0 2 3 0 0 0 0 0 0 0 0 0

+ Cheques 0 0 3 0 0 0 0 0 0 0 0 0

+ Loans 0 0 3 0 0 0 0 0 0 0 0 0

M
e

th
o

d
s

+ Customer.getName 0 0 0 0 0 0 0 0 0 0 0 0

- Customer.getDOB 0 2 0 0 0 0 0 0 0 0 0 0

- Customer.getNationalID 0 0 3 0 0 0 0 0 0 0 0 0

+ Customer.getPortalPassword 0 0 0 4 0 0 0 0 0 0 0 0

- CreditCards.getCardNo 0 0 0 0 4 0 0 0 0 0 0 0

+ CreditCards.getCardPassword 0 0 0 0 0 4 0 0 0 0 0 0

+ CreditCards.setCardPassword 0 0 0 4 0 4 0 0 0 0 0 0

+ DebitCards.setCardPassword 0 0 0 0 0 0 0 4 0 0 0 0

+ DebitCards.verifyCredentials 0 0 0 4 0 0 3 4 0 0 0 0

+ Cheques.getChequeNo 0 0 0 0 0 0 0 0 1 0 0 0

+ Cheques.getChequeAmount 0 0 0 0 0 0 0 0 0 2 0 0

+ Loans.setInterestRate 0 0 0 0 0 0 0 0 0 0 0 0

+ Loans. getLoanAmount 0 0 0 0 0 0 0 0 0 0 0 1

Figure 4. Banking System Security Matrix

ASCAM ASCMM CSCMM CSCCM SCDSM

Value 0.16 0.61 0.3 0.175 0.75

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
e
c
u

ri
ty

 R
a
ti

o

Figure 5. Banking System Results Chart

into consideration the security values of these attributes. The
main aim of this metric is to have a low value of cohesiveness
as possible in order to meet the requirements of the security
design principle of least privilege. From the design used in this
context, there are 11 security-critical methods interacting with
different security-critical attributes of different security levels.
The criticality of interactions is calculated by summing the
number of interactions in every class, and then multiplying
each interaction by its security value. This result is divided
by the number of methods in the same class multiplied by
the number of security-critical attributes and by the maximum
security value in the model. In the Customers class case,
the criticality of interactions of methods in this class with
its security-critical attributes is 9. This is extracted from the
security matrix in Figure 4 since the criticality of interactions

from method Customers.getDOB is 2, the criticality of
interactions from method Customers.getNationalID
is 3, and the criticality of interactions from method
Customers.getPortalPassword is 4. Moreover, the
total number of possible interactions from inside the Customers
class with its security-critical attributes is 48. The same process
has to be done for all classes f the program, then the sum is
divided by the total number of classes in that program. Hence,
the cohesiveness of the Credit Cards class is 0.33, Debit Cards
class is 0.6875, Cheques class is 0.1875, and Loans class is
0.125. Finally, the CSCMM is computed by dividing the sum
of the cohesiveness of all classes (i.e., 1.5175) to the number
of classes in the design (i.e., 5). which gives 0.3035 and this
is the result of the CSCMM for the design shown here.

With regard to the security metric of coupling, it aims

www.ijacsa.thesai.org 425 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

to reduce the number of associations of classes with other
security-critical inside a given program. The lower number
of such associations, the more secure a program is in terms
of the least privilege security design principle. This metric is
computed by counting the number of outsider classes which
interact with security-critical attributes, and each interaction is
multiplied by the security level of these attribute. The security
level of each interaction is determined by the security level
of the attribute a class is interacting with. Then, this number
is divided by the total number of possible associations with
security-critical attributes. In Figure 4, there are five security-
critical classes which have ten security-critical attributes of dif-
ferent security levels. The number of classes that interact with
the security-critical attribute Customers.dob is two, and it’s
security level is two. Hence, the criticality of these interactions
when those two numbers are multiplied by each other is four.
The number of classes which interact with security-critical
attribute Customers.nationalID is four, and it’s security
level is three. Thus, the criticality of these interactions is
twelve. The number of classes which interact with security-
critical attribute Customers.portalPassword is three,
and it’s security level is four. Thus, the criticality of these
interactions is twelve. Finally, the criticality of the total number
of links with security-critical classes is 28. The criticality of
the possible number of classes that may interact with security-
critical classes in this design is 160 (number of classes less
by one multiplied by number of security-critical attributes and
then multiplied by the maximum security level in this case).
Therefore, the CSCCM is computed by dividing 28 over 160,
which is 0.175.

The design size metric aims to measure the proportion of
security-critical classes in a given program. A lower value of
this metric is desirable in order to meet the requirements of the
security design principle of reducing the attack surface size. To
compute this metric, each security-critical class is multiplied
by its security level, and the sum of this is divided over the total
number of classes multiplied by the maximum security value
in a certain design. The security value of a certain class is the
same as the highest security value of the attributes it includes.
In the design shown in Figure 4, there are five classes that all of
them have security-critical attributes. There are three security-
critical classes which their security value is 4 ; Customers,
Credit Cards, and Debit Cards. There are one security-critical
class which its security value is 2 (i.e., Cheques) and one class
which its security value is 1 which is Loans. The sum of these
security values is 15. The total security values of all classes
in a certain design is computed by multiplying the number
of classes (5 in this context) by the maximum security value
in a given design (4 in this context). Hence, The SCDSM is
computed by dividing 15 over 20 which is 0.75.

D. Results Discussion

Figure 5 shows the results of the five security metrics
defined and studied by this paper. This part examines these
results in order to show which ones contribute to a more secure
design. As shown in the previous section, the results of these
metrics vary and this effects the security of the program in
reference to the relevant security design principle. For instance,
the result of ASCAM is the lowest one among the results
of the five metrics defined by this model. Since ASCAM
measures the information flow with regard to the accessibility

of security-critical attributes in order to meet the requirements
of the security design principle of reducing the attack surface
size, then this result indicates that it is the best metric which
makes the program secure in this regard.

On the other hand, SCDSM measures the information
flow of security-critical data in a given object-oriented design
with regard to the size of the security-critical classes in that
design. Therefore, it is desirable to have as few as possible of
security-critical classes to satisfy the security design principle
of reducing the attack surface size. However, the result of
SCDSM in the case study shown here is the highest one among
all of the five metrics, and hence the examined program is the
least secure with this regard.

In terms of the metrics which measures the information
flow in a given design in order to meet the requirements of the
security design principle of granting least privilege, the results
of these metrics show that CSCCM is lower than CSCMM.
This indicates that CSCCM is more secure than CSCMM in
terms of the least privilege security design principle in this
case.

VIII. CONCLUSION

This work has developed a generic model for quantifying
security of multilevel object-oriented designs. It concentrates
on defining five security design metrics with regard to four dif-
ferent quality design properties for object-oriented programs.
These metrics aim to assess the potential information flow of
security-critical data within a given program with regard to
security design principles of least privilege and attack surface
size. This model differs from previous ones as it takes into
consideration the criticality of the system’s components which
is defined by their security levels. Further contribution of
this work includes the definition of a security matrix that is
developed in order to make it easy for software designers to
extract the results of these metrics from the system’s UML
class diagram. At the end of this paper, a case study of a
typical object-oriented program is examined. It has shown
in this case study how to apply these metrics, construct the
security matrix of that design, and compare the results of these
metrics to identify which metrics makes programs more secure
than others.

Future extensions of this work include studying the effect
of other software quality properties such as polymorphism
and inheritance on the security of object-oriented programs.
Future work also includes studying these metrics on a lower
level of modularity such as at the code-level to identify the
impact of these metrics and others on multilevel security-
critical programs.

ACKNOWLEDGMENT

I wish to thank the anonymous reviewers for their helpful
suggestions. The author gratefully acknowledges Aljouf Uni-
versity for funding this research through grant 35/344.

REFERENCES

[1] M. Howard and D. LeBlanc, Writing Secure Code. Redmond, Wash.:
Microsoft Press, 2002.

[2] G. McGraw, Software Security: Building Security In. Upper Saddle
River, NJ: Addison-Wesley, 2006.

www.ijacsa.thesai.org 426 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 11, 2016

[3] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in
Java applications with static analysis,” in SSYM’05: Proceedings of the
14th conference on USENIX Security Symposium, (Berkeley, CA, USA),
pp. 18–18, USENIX Association, 2005.

[4] S. F. Smith and M. Thober, “Improving usability of information flow
security in Java,” in Proceedings of the 2007 workshop on Programming
languages and analysis for security, PLAS ’07, (New York, NY, USA),
pp. 11–20, ACM, 2007.

[5] G. Smith, Principles of Secure Information Flow Analysis, vol. 27,
pp. 291–307. Springer, 2007.

[6] Y. Liu and A. Milanova, “Static analysis for inference of explicit
information flow,” in Proceedings of the 8th ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering,
PASTE ’08, (New York, NY, USA), pp. 50–56, ACM, 2008.

[7] I. Chowdhury, B. Chan, and M. Zulkernine, “Security metrics for source
code structures,” in Proceedings of the Fourth International Workshop
on Software Engineering for Secure Systems, (Leipzig, Germany),
pp. 57–64, ACM, 2008.

[8] J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented
design quality assessment,” IEEE Transactions on Software Engineer-
ing, vol. 28, pp. 4–17, 2002.

[9] M. Howard, “Attack surface: Mitigate security risks by minimizing
the code you expose to untrusted users,” Microsoft MSDN Magazine,
vol. 11, 2004.

[10] P. K. Manadhata, K. M. C. Tan, R. A. Maxion, and J. M. Wing, “An
approach to measuring a system’s attack surface,” Tech. Rep. CMU-
CS-07-146, Carnegie Mellon University, Pittsburgh, PA, August 2007.

[11] P. Manadhata and J. Wing, “An attack surface metric,” IEEE Transac-
tions on Software Engineering, vol. PP, no. 99, p. 1, 2010.

[12] M. Bishop, Computer Security: Art and Science. Boston: Addison-
Wesley, 2003.

[13] K. Maruyama, “Secure refactoring - improving the security level of ex-
isting code,” in Proceedings of the Second International Conference on
Software and Data Technologies (ICSOFT 2007) (J. Filipe, B. Shishkov,
and M. Helfert, eds.), (Barcelona, Spain), pp. 222–229, 2007.

[14] S. Chidamber and C. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on Software Engineering, vol. 20, pp. 476–
493, 1994.

[15] M. Lorenz and J. Kidd, Object-Oriented Software Metrics: A Practical
Guide. Englewood Cliffs, NJ: PTR Prentice Hall, 1994.

[16] V. R. Basili, “Gqm approach has evolved to include models,” IEEE
Software, vol. 11, pp. 1–8, 1994.

[17] F. B. e Abreu, M. Goulão, and R. Esteves, “Toward the design quality
evaluation of object-oriented software systems,” in Proceedings of the
5th International conference on Software Quality, Austin Texas, 1995.

[18] B. Henderson-Sellers, Object-oriented metrics: measures of complexity.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

[19] B. Alshammari, C. J. Fidge, and D. Corney, “Security metrics for
object-oriented class designs,” in Proceedings of the Ninth International
Conference on Quality Software (QSIC 2009), (Jeju, Korea), pp. 11–20,
IEEE, 2009.

[20] B. Alshammari, C. J. Fidge, and D. Corney, “Security metrics for
object-oriented designs,” in Proceedings of the Twenty-First Australian
Software Engineering Conference (ASWEC 2010), Auckland, 6–9 April
(J. Noble and C. J. Fidge, eds.), (California, USA), pp. 55–64, IEEE
Computer Society, 2010.

[21] Igor Kotenko and Elena Doynikova, “Comprehensive multilevel secu-
rity risk assessment of distributed information systems,” International
Journal of Computing, vol. 12, no. 3, pp. 217–225, 2013.

[22] D. Ourston and R. J. Mooney, “Theory refinement combining analytical
and empirical methods,” Artificial Intelligence, vol. 66, no. 2, pp. 273–
309, 1994.

[23] J. Jurjens, “Using UMLsec and goal trees for secure systems devel-
opment,” in Proceedings of the 2002 ACM Symposium on Applied
Computing Madrid, (Madrid, Spain), ACM, 2002.

[24] J. Barnes, High Integrity Software: The SPARK Approach to Safety and
Security. London, Great Britain: Addison-Wesley, 2003.

[25] P. K. Manadhata, An Attack Surface Metric. PhD thesis, Computer
Science Department, Carnegie Mellon University, December 2008.

[26] S. Bennett, S. McRobb, and R. Farmer, Object-Oriented Systems
Analysis and Design Using UML. Maidenhead: McGraw-Hill Higher
Education, third ed., 2006.

[27] M. Y. Liu and I. Traore, “Empirical relation between coupling and
attackability in software systems: a case study on DOS,” in Proceedings
of the 2006 Workshop on Programming Languages and Analysis for
Security, Ottawa, (Ottawa, Ontario, Canada), pp. 57–64, ACM, 2006.

www.ijacsa.thesai.org 427 | P a g e

