
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

76 | P a g e

www.ijacsa.thesai.org

Model and Criteria for the Automated Refactoring of

the UML Class Diagrams

Evgeny Nikulchev

Moscow Technological Institute

Moscow, Russia

Olga Deryugina

Moscow Technological University MIREA

Moscow, Russia

Abstract—Many papers have been written on the challenges

of the software refactoring. The question is which refactorings

can be applied on the modelling level. Based on the UML model,

for example. With the aim of evaluating this possibility the

algorithm and the software tool of automated UML class

diagram refactoring were introduced. The software tool

proposed reduces the level of the UML class diagram complexity

metric.

Keywords—UML; refactoring; class diagrams; software

architecture; software design; UML transformation

I. INTRODUCTION

MDA (Model Driven Architecture) [1] approach is
supported by OMG (Object Management Group). In the MDA
approach design process starts with the creation of the PIM
(Platform Independent Model). Then the PIM is automatically
transformed into the PSM (Platform Specific Model).

MDA proposes standards of model creation, transformation
and exchange. For example, UML (Unified Modelling
Language) [2] is used to describe models, XMI (XML
Metadata Interchange) [3] is used to exchange models between
tools. One tool can be used to create a model, and another one
– to analyze or transform it. Thus, model transformations play
an important role in the MDA conception. One of the possible
model transformation objectives can be model refactoring.

Refactoring means restructuring of the system without
changing its behavior. Originally, refactoring was connected
with the code-level transformations. A number of studies have
investigated different means of the software refactoring [4, 5,
6].

Some refactorings apply design patterns to the existing
code. First design patterns were proposed by Erich Gamma et
al. in [7]. Software design patterns describe solutions of
commonly occurring problems. Design patterns are aimed at
the improvement of such software characteristics as
modifiability, reusability, maintainability, etc.

Many papers have been written on the challenges of the
software refactoring. The question is which refactorings can be
applied on the PIM level described with the UML.

There are two main approaches to the problem of UML
refactoring. The first one is connected with the search based
software engineering [8] (SBSE), which is a topic of growing
interest nowadays. In SBSE software engineering problems are
formulated as optimization problems, which then are solved by
search algorithms (Genetic algorithm, Simulated annealing,

Swarm intelligence algorithms, etc.) SBSE is used in order to
solve UML class diagram refactoring problem in [9–14].
However, the result of applying search algorithms to class
diagrams sometimes can be meaningless.

The second approach is connected with the developing
frameworks of automated model refactoring [15–18], where
the main role is given to the software designer. And the
framework applies transformations, using some transformation
rules in interaction with the designer.

This paper explores the problem of the automated UML
class diagram refactoring. This problem is significant as long
as the model refactoring is less time-consuming than the code
refactoring. Furthermore, model refactoring is connected with
the creation of PIM rather than PSM.

The rest of this paper is organized as follows: First, the
problem of the automated UML class diagram refactoring is
formulated in Section 2. Then an algorithm of the automated
UML class diagram refactoring is proposed in Section 3. In
Section 4, the software tool UML Refactoring is introduced
before concluding in Section 5.

II. FORMULATION OF THE PROBLEM

The scheme of the UML class diagram analysis is shown in
Fig. 1. Algorithm takes as input UML class diagram ,d fitness

function)(df and a set of semantically equivalent

transformations T . The output is a list of transformations ,*T

which reduce fitness function value and are recommended to
apply.

Fig. 1. Scheme of the UML class diagram analysis

Let d be a UML class diagram },,,{ RICd where C is

a set of classes },,...,{ 0 kccC I is a set of interfaces

},,...,{ 10 iiI R is a set of relations }.,...,{ 0 grrR

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

77 | P a g e

www.ijacsa.thesai.org

Then ic
 is a class

},,,{ iiii FMAc
 where iA

 is a set of

attributes
},,...,,{ 10

i

n

ii

i aaaA
 iM

 is a set of methods

},,...,,{ 10

i

m

ii

i mmmM
 iF

 is a set of features

}1,0{,...},,,{ stabsvstF iiii is isStatic feature, iv
 is

visibility parameter ii absprotectedprivatepublicv },,,{
 is

isAbstract feature
}.1,0{iabs

In addition,
ii is an interface which defines a set of

methods }.,...,{ 0

i

m

i

i

i

i mmmM

Let us assume that UML class diagram transformation t

can be described as the following mapping function:

,':),(ddEdt (1)

where E is a set of diagram elements ei ϵ d, ei ∈ {C,R,I}.

Assume that the semantically equivalent transformation t is
such a transformation t(d,E): d → d’, that:

() ('),S d S d (2)

where)(dS is a structural semantic value of the diagram

d , which can be described as follows:

{...},{{...}},{...},...,{...},{{
1

121 icccS
i

k

ii

i

}},,...,,{{...}},{...},..., 2112

i

m

iiii
rrrii (3)

where
ik dcc ,...,1

 are the classes of the diagram ;d

il dii ,...,1
 are the interfaces of the diagram ;d im drr ,...1

 are

the relations of the diagram .d

The automated UML class diagram refactoring problem
can be formulated as follows:

Assume that there is a UML class diagram ,d a set of

semantically equivalent transformations ,T and a fitness

function).(df

Then it is required to find such a set of pairs },,{ Et that:

.0)'(),,(' dfEdtd

III. AUTOMATIC UML CLASS DIAGRAM REFACTORING

ALGORITHM

Then the CDTA (Class Diagram Transformation Analysis)
Algorithm can be described as follows:

for each tϵT
L = search(t,d,f) //search pairs {t,E} for which ∆f(d’)<0
Q.add(L) //add pairs {t,E} to the resulting list
return Q

The search(t,d,f) function can be defined as follows:

L1 = analyze(t,d) //search element sets E ∈d for the
transformation
for each eϵL1

d’ = refactor(e,t,d) //apply transformation t to the
diagram d
if (f(d’) < f(d)) //check the decrease of the f(d) value
 L2.add(t,e) //add t and e to the
resulting list
return L2

The analyze (t,d) method is specific for each
transformation. For example, the algorithm of searching sets of
diagram elements E on which the Strategy transformation can
be conducted can be described as follows:

1) Make a list of classes having inheritors l1.

2) 2. For each class from l1 check whether its inheritors

implement any interfaces. If yes – add them to the list l2.

3) 3. For each class from l1 calculate)(dK . If

0)(dK – add to the list l3: {parent_id,

{child_classes_ids},{interfaces_ids}}.

4) 4. Return l3.
Let us formulate an example of the fitness function –

structural complexity metric :)(dK

n

i

n

i ii MkAkRkIkCkdK
0 054321 ||||||||||)(

m

i jMk
06 |,'| (4)

where)(dK is the structural complexity of the diagram ;d

|| C is the number of classes ;dci
|| I is the number of

interfaces

;dii || R is the number of relations ;dri iA is a set of

attributes ;, dcca iij iM is a set of class methods (except

of the methods, declared in implemented interfaces)

;, dccm iii 'jM is a set of interface methods

;, diim iij 654321 ,,,,, kkkkkk are weights for each group of

elements.

IV. UML CLASS DIAGRAM REFACTORING TOOL

Class diagram refactoring software should solve the
following tasks:

1) UML class diagram analysis: searching the

transformations which can be conducted to decrease the fitness

function value;

2) UML class diagram transformation.
Main functional blocks of the UML refactoring tool are

shown in Fig. 2. XMI parser translates XMI document to the
abstract data structure UML Map [19], which stores UML class
diagram elements in hash-maps. Then Analyzer searches pairs
{t,E}, which reduce fitness function value and forms the
Transformations table on the screen. OOM Calculator
calculates various object-oriented metrics for the UML class
diagram and forms the Metrics table on the screen. If a user has
chosen some transformation from the table, the Transformer
applies it to the diagram. User can export an attained diagram
to XMI document.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

78 | P a g e

www.ijacsa.thesai.org

Fig. 2. Functional blocks of the UML class diagram refactoring tool

Let us introduce an example of applying the UML
refactoring tool to the class diagram d shown in Fig. 3.

Assume that it is required to minimize relations count
value. First, weight values for the fitness function should be

set: .01.0;01.0;01.0;1;01.0;01.0 654321 kkkkkk

Then it is attained, that:

.19.1202.006.003.01202.006.0)(dK

Fig. 3. Initial UML class diagram d

The UML Refactoring tool proposes the following
transformations (see Fig. 4):

 Interface insertion for the classes Magician, Cleric and
for methods useWeapon(), useMagic();

 Strategy insertion for the interfaces MagicBehaviour,
WeaponBahaviour, parent class Character and child
classes Archer, Magician, Warrior, Hunter, Cleric.

Fig. 4. Transformations proposed by the UML refactoring tool

The result of applying the Strategy transformation to the
diagram d is shown in Fig. 5 and Fig. 6.

Fig. 5. The result of applying the Strategy transformation to the diagram d

After the transformation, the following is attained:

,23.702.008.005.0702.006.0)'(dK

.96.4)(dK

Fig. 6. Diagram d’ attained as the result of the Strategy transformation

V. CONCLUSIONS

The presented framework gives the possibility to analyze
and automatically restructure UML class diagrams in
accordance with aims of the refactoring, which can be
formulated based on the fitness function (4).

The main role is given to the software designer, who can
import/export UML class diagrams in XMI format, refactor
them and save the results.

The framework calculates metrics and proposes a list of
transformations, which minimize the fitness function value.
Available transformations include Strategy, Façade, Interface
insertion, etc.

Future research should examine the effectiveness of the
proposed framework to the large software systems.
Furthermore, lists of available transformations and calculated
metrics should be expanded.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

79 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] OMG Model Driven Architecture (http://www.omg.org/mda)

[2] OMG Unified Modelling Language UML. Version 2.5
(http://www.omg.org/spec/UML/2.5)

[3] XML Metadata Interchange (XMI) Specification. Version 2.4.2
(http://www.omg.org/spec/XMI/2.4.2)

[4] J. Kerievsky, “Refactoring to Patterns. Boston M. A.: Addison-Wesley,
2004.

[5] M. Fowler, Refactoring: Improving the Design of Existing Code”,
Boston M. A.: Addison-Wesley, 2000.

[6] T. Mens, T. Tourwe, “A survey of software refactoring”, IEEE
Transactions on Software Engineering, vol. 30, no. 2, 2004, pp. 126 –
139.

[7] E. Gamma, H. Richard, J. Ralph, and V. John, “Design patterns:
Abstraction and reuse of object-oriented design”, Springer Berlin
Heidelberg, 1993.

[8] M. Harman, S. Mansouri, Y. Zhang, “Search-based software
engineering: Trends, techniques and applications”, ACM Computing
Surveys, vol. 45, no. 1, 2012.

[9] M. Amoui, S. Mirarab, S. Ansari and C. Lucas, “A genetic algorithm
approach to design evolution using design pattern transformation”,
International Journal of Information Technology and Intelligent
Computing, vol. 1, 2006, pp. 235 – 245.

[10] M. Bowman, L. Briand, and Y. Labiche, “Solving the class
responsibility assignment problem in object-oriented analysis with
multi-objective genetic algorithms”, Technical report SCE-07-02,
Carleton University.

[11] S. Hadaytullah, Vathsavayi, O. Räihä, and K. Koskimies, “Tool support
for software architecture design with genetic algorithms”, Proceedings
of ICSEA’10. IEEE CS Press, August 2010, pp. 359–366.

[12] R. Lutz, “Evolving good hierarchical decompositions of complex
systems, Journal of Systems Architecture”, vol. 47, 2001, pp. 613 – 634

[13] C. Simons C., I. Parmee, “Single and multi-objective genetic operators
in object-oriented conceptual software design”, Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’07), 2007,
pp. 1957 – 1958.

[14] O. Deryugina, "Improving the structural quality of UML class diagrams
with the genetic algorithm", 6th Seminar on Industrial Control Systems:
Analysis, Modeling and Computation, vol. 6., 2016, art. 03003.

[15] Y. Rhazali, Y. Hadi, A. Mouloudi, “A Model Transformation According
Model Driven Architecture”, Proceedings of 3rd International
Conference on Computing Engineering & Enterprise Management
(ICCEEM-2015), 2015, pp. 6 – 14.

[16] Y. Rahmounea, A. Chaoui, E. Kerkouche, “A Framework for Modeling
and Analysis UML Activity Diagram using Graph Transformation”,
International Workshop on the Use of Formal Methods in Future
Communication Networks (UFMFCN 2015), 2015, pp. 612 – 617.

[17] E. Kerkouche, A. Chaoui, E. Bourennane, O. Labbani, “A UML and
Colored Petri Nets Integrated Modeling and Analysis Approach using
Graph Transformation”, Journal of Object Technology”, vol. 9, no. 4,
2010. pp. 25–43.

[18] Sergievskiy Maxim, “N-ary relations of association in class diagrams:
design patterns,” International Journal of Advanced Computer Science
and Applications, vol. 7, no. 2, 2016, pp. 265-268.

[19] O. A. Deryugina “Transformation of UML class diagrams using genetic
algorithm”, Russian Technological Journal, vol.1, no. 4 (9), 2015, pp.
36–42.

