
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

300 | P a g e

www.ijacsa.thesai.org

Role of Requirements Elicitation & Prioritization to

Optimize Quality in Scrum Agile Development

Aneesa Rida Asghar

Dept. of software engineering

Bahria University Islamabad, Pakistan

Shahid Nazir Bhatti

Senior Assistant Professor,

Department of Software Engineering,

Bahria University Islamabad, Pakistan

Atika Tabassum

Dept. of software engineering

Bahria University Islamabad, Pakistan

Zainab Sultan, Rabiya Abbas

Department of Software Engineering,

Bahria University Islamabad, Pakistan

Abstract—One of most common aspect with traditional

software development is managing requirements. As

requirements emerge throughout the software development

process and thus are needed to be addressed through proper

communication and integration between stakeholders, developers

and documentation. Agile methodology is an innovative and

iterative process that supports changing requirements and helps

in addressing changes throughout the development process.

Requirements are elicited at the beginning of every software

development process and project (product) and latter are

prioritized according to their importance to the market and to

the product itself. One of the most important and influencing

steps while making a software product is requirements

prioritization. Prioritizing requirements helps the software team

to understand the existence and importance of a particular

requirement, its importance of use and its urgency to time to

market. There are many requirements prioritization techniques

with their relative strength and weaknesses. Otherwise many of

them fail to take account all the factors that must be considered

while prioritizing requirements such as cost, value, risk, time to

market, number of requirements and effect of non-functional

requirements on functional requirements.

There are several requirements prioritization methodologies

that aid in decision making but importantly many lacks to

account the important factors that have significant influence in

prioritizing requirements. A requirement prioritization

methodology based on several factors such as time to market,

cost, risk etc has been proposed. The proposed model is expected

to overcome this lack. In sprints, requirements will be prioritized

both on the basis of influencing factors such as cost, value, risk,

time to market etc. and through the effect of non-functional

requirements over functional requirements. This will improve

the overall quality of software product when it is included in the

development process of scrum. Requirements will not only be

prioritized based on sprints, human decision but by critically

analyzing the factors (sub characteristics) that can cause the

product to success/ fail repeatedly thus ensuring the consistency

in right requirements and hence the right prioritized

requirements will be selected for a particular sprint at a time.

Keywords—Agile Software Engineering (ASE); Agile Software

Development (ASD); Scrum Software Development Process;

SCRUM; Product Owner (PO)

I. INTRODUCTION

Traditional requirement engineering does not support
changing requirements and continuous communication with
stakeholders therefore problems arise when new requirements
are evolved due to change in business needs and time to market
[4] [3] [1]. Thus software market is moving towards agile
software development as it supports changing requirements and
speedy process development. Agile practices are being
acknowledged and are becoming popular day by day in the
field of requirement engineering. One of the most popular
methods among agile family where software is delivered in
increments called sprints is known as SCRUM [8] [6]. A sprint
consists of 2-4 week iteration. Scrum methodology comprises
of a planning meeting and daily scrum meeting, the planning
meeting is conducted at the beginning of every sprint. In this
meeting team members determine the number of requirements
they can oblige to manage that is they create a sprint backlog
out of that. Sprint backlog contains the list of all the tasks that
should be perform during a particular sprint. Daily scrum
meetings are not more than 15 minutes, where product owner
(PO) gets continuous updates about the development process
and can provide feedback about the features being included.
This way if a PO decides to add new feature to a sprint, he/she
can discuss it with the development team and save time rather
than reviewing it at the end and demanding change at the end.
The team conducts a sprint review at the end of each sprint
where they demonstrate new features and functionality to the
PO or to other stakeholders that can provide any kind of
feedback which could be beneficial or helpful in any way for
the next sprint. This loop of feedbacks results in modifications
to the recently delivered functionality, then again it is more
likely reviewing or adding new requirements to the product
backlog. Another activity in Scrum project management is
Sprint retrospective. The Scrum Master, PO and the
development team participates in this meeting. It is the chance
to reproduce or review the sprint that has ended, and identify
new ways to improve. Scrum consists of three artifacts, sprint
backlogs, product backlogs and burn down charts. The Product
backlog, prioritized by the PO is a complete list of the
functionality (written as user stories) that is to be added to the
product eventually. It is prioritized so that the team can always

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

301 | P a g e

www.ijacsa.thesai.org

work on the most important, urgent and valuable features first.
On the other hand, sprint backlog is the list of all those tasks
that the team obliged to and needs to perform during the sprint
in order to deliver the required functionality. The remaining
amount of work either in a sprint or a release is shown by
„Burn down‟ charts. It is an effective tool to conclude whether
a sprint or release is on schedule to have all planned work
finished in time. The traditional requirements engineering is
very time consuming and requires speedy process to timely
meet the needs of market so modern software industry
demands rapid and iterative process like agile development to
cope with the changing requirements and time.

There are many factors involved in the success or failure of
a product, one of them is collecting and prioritizing
requirements [2]. Requirements elicitation and prioritization is
one the most challenging task during product development and
it is very unlikely to be able to write down all the requirements
at early stage, they evolve continuously throughout the
development process and are needed to be addressed properly
to meet the changing needs of market and time. As scrum is an
agile methodology, therefore it allows engineers to handle
changing requirements as they evolve; however, it is still a
challenging task to comprehend which prerequisites are
sufficiently vital to have high need and to be incorporated into
early sprints. Organizing requirements into Priorities
requirements helps the project team to comprehend which
requirements are most essential and most urgent to implement
and execute. Prioritization is likewise a helpful activity for
decision making in other phases of software engineering.
Therefore there should be a well-managed requirement
prioritization technique included in scrum processes that
improves its quality.

A requirement prioritization technique based on several
factors such as time to market, cost, risk etc. has been proposed
that will improve the quality of software product when it is
included in the development process of scrum. The proposed
model is expected to overcome the lack of quality of the prior
models. Requirements will be prioritized both on the basis of
influencing factors such as cost, value, risk, time to market etc.
and through the effect of non-functional requirements over
functional requirements. Requirements will not only be
prioritized based on human decision but by critically analysing
the factors that can cause the product to fail/success repeatedly
thus ensuring the consistency in right requirements for a
particular sprint at a time.

II. MATERIALS AND METHODS

A. Agile Requirement Engineering

In this work [1], author presented the 10 years progress of
agile research and proposed some future research areas for
agile researchers to hold on to an approach that is theoretical or
hypothetical. A survey based methodology was used to get
reliable information about the progress of agile methodologies.
It is significant to remember that one can produce and enhance
fields as a scientific discipline only if energies are able to
convey a solid theoretic system to conduct research on agile
development. Therefore, it is a need that in future when
investigating into agile development proficient research areas,
agile researchers hold on to a more theoretical based approach.

Ming Huo et al [3] proposed that agile methods can assure
quality even agile methods are faster and have to manage
changing requirements. Author basically presented a
comparison between waterfall model and agile model and
presented the results. Agile methods contain some practices
that have QA abilities, so with the help of this quality can be
achieved more appropriately through agile methods. However
one thing that must be considered when documenting agile RE
is that in complex software development processes, less
documentation can bring some issues/ problems.

Lan Cao et al [4], presented an empirical study on agile RE
practices. This study shows the difference between agile RE
and traditional RE is an iterative finding approach. Developing
clear and complete requirements specification is impossible in
agile development. Because of such important differences a
new set of agile RE practices had come into practices that are
reported in this paper. The study participants recognized that
the most important practice in RE is thorough communication
between the developers and customers.

Numerous participants highlighted that the efficiency of
this practice depends deeply & effectively on exhaustive
communication and interaction between customers and
developers. Risks such as incomplete requirements,
ineffectively developed requirements or wrong requirements
are possessed if high quality interaction lacks in any project.

In this work Pekka et al [6], proposed that there are
different methods of agile process that needs the empirical
evidences. Authors emphasized on the quality of methodology
not the quantity. This approach was chosen for comparative
analysis of these processes. Five perspectives are included in
the analytical lenses. SDLC include the process aspect abstract
principles vs. concrete guidance, empirical evidence, project
management and universally predefined vs. situation
appropriate. New directions are offered based on these 5
perspectives that focus on quality not on quantity of methods.

Amin et al [7], proposed that some lessons of RE must be
considered by the agile methods if the most emphasized thing
is quality. Some major aspects of RE that are not a much
emphasized in agile are analysis (verification and validation),
non-functional requirements and managing change. Author
suggested that these practices of RE can be adopted in agile
and high quality can be achieved. RE practices such as
simplicity, continuing validation, short releases and frequent
refactoring, can be implemented in the perspective of agile
main ideas.

Deepti Mishra et al [8], proposed that agile process can be
helpful for the development of complex software projects.
Author supported his argument with the help of a case study. A
medium enterprise (SME) that practiced agile methods,
achieved many successful results. Starting a project with agile
methods and then achieving optimum methods by tailoring
agile methods according to vision and benefits is the main
reason of the success of supply chain management. The
architectural design of this large scale complex project was
supported with formal documentation. In the successful
completion of the project an important role was played by this
design documentation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

302 | P a g e

www.ijacsa.thesai.org

Franek et al [11], proposed different ways of RE methods
from which agile software development can get advantages.
Some common and different features and attributes of
traditional approaches and agile approaches are also discussed.
Agile approaches such as XP involves feedback from
development teams and customers, communication and
simplicity. Similarly RE process also includes dictation,
analysis and validation. But in agile process phases are not as
clearly distinguished as in RE process and techniques can also
vary. Overall both are pursing same objectives. The major
difference is of documentation that is really important to
communicate with the stakeholders.

V. N. Vithana [12], conducted a research using qualitative
methods to find out which requirement engineering practices
are mostly being used in SCRUM methodology when
developing a software product offshore. In order to collect data
different job holders from nine organizations were questioned.
It was found that RE practices such as Customer Involvement,
prototyping, test driven development and Interaction are the
least practiced activities of Requirement Engineering, although
most of the team members were successfully practicing
iterative requirements engineering, face to face
communication, managing requirements change and
requirements prioritization of SCRUM RE practice.

B. Requirements Prioritization Techniques

In this Anna Perini et al [14], proposed a strategy called
Case-Based Ranking (CBRank). This method joins the
preferences of the stakeholders of the project with the
approximation of requirements ordering that is computed over
machine learning methods. On simulated data the properties of
CBRank are performed and then matched with a method called
state-of-the-art prioritization, thus provided empirical results.
However there are some assumptions in the CBRank
prioritization process such as arbitrary selection as pair
sampling policy and the monotonicity of the elicitation process.
To improve the efficiency of real complex sitting methods the
authors intend to work in future on non-monotonic formal logic
case and pair sampling strategies that are more refined.

DAN HAO et al, [10] in this article, have presented a
strategy that comprises the total and additional strategies for
unified test case prioritization. These tactics prioritize test cases
in light of components secured per test case, the aggregate
number of program segments (or code-related) and the number
of others (not yet covered) program segments (or code-related)
components covered per test case, respectively. The proposed
approach includes basic and extended models, which define a
spectrum of test case prioritization from a purely total to a
purely additional technique by specifying the value of a
parameter referred to as the fp value [10].

Rahul Thakurta [15], proposed a quantitative structure that
determines the priority of a list of non-functional requirements.
This framework involves members from business organization
and the project to provide a measurable ground for assessing
the level of value addition that is considered while choosing a
new non-functional requirement to the project‟s requirement
set. However, the inputs provided to the framework by
members were subjective which may result in non-optimal
results. Additionally, as the requirements assessment process

involves stakeholders from both business organizations and the
project, there are odds of irreconcilable interests and priorities
of requirements. The author has also set the directions for
future work which is to build a heuristic to bound the number
of stakeholders to be preferred for assessment process.

Naila Sharif et al [16], devised a new requirements
prioritization technique called FuzzyHCV which is a hybrid of
two domains (SE and Computational Intelligence). It is a
fusion of two methodologies which are Hierarchical
Cumulative Voting (HCV) and Fuzzy Expert System. In
FuzzyHCV, rather than a single crisp value a triangular fuzzy
number is used. The proposed technique has been applied on 3
case studies and the results obtained are very close to the
results of actual prioritization used in all of the three case
studies. It is found that FuzzyHCV produces more precise
results than HCV by comparing them with actual results for the
chosen datasets. Authors intend to carry on work in this area by
using fuzzyHCV for other domains problem such as decision
making problems in employee selection and by incorporating
fuzzyHCV to already existing decision making or requirements
prioritization techniques so that less risky choices are made in
future.

Nupul Kukreja et al [17], in this have proposed a
prioritization methodology to prioritize requirements of system
and software. This methodology is a two-step approach and is
based on decision theoretic model using a prioritization
algorithm called TOPSIS viz. In the proposed approach [13],
initially, the system is fragmented into high-level Minimal
Marketable Features (MMFs). The proposed methodology
allows measuring the effect of fluctuating business priorities on
individual requirements without much overhead. This
methodology also authorizes stakeholders to perform numerous
analyses which also help in accurately judging the impact of
fluctuating business priorities on individual requirements.

Here authors have also presented a validation report of this
methodology by implemented this with 24 project teams of
students at the Software Engineering project course in the
University of Southern California. Although this approach has
some drawbacks that need to be tackled in future; such as, one
of the drawbacks of TOPSIS is reversal of ranks i.e. the
original order of requirements prioritization may change if
irrelevant requirements are entered into the prioritization. This
limitation was not considered while implementing the approach
as the teams were result oriented therefore they resisted in
adding irrelevant requirements for prioritization. Another
drawback is that the ordered prioritization of requirements may
not accurately reflect the anticipated rank ordering of
requirements

To overcome the drawbacks of TOPSIS, several other
prioritization algorithms could be used instead of TOPSIS viz
such as Cost of Delay, Simple Additive Weighting or Weigers‟
Prioritization. Also one can simply record items to eliminate
the overhead of winbook's incapability to record the items.

III. FRAMEWORK FOR REQUIREMENTS PRIORITIZATION

Missing or poorly specified quality requirements can lead
to project failure or huge loss. Eliciting quality requirements
effectively is a difficult task altogether especially in SCRUM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

303 | P a g e

www.ijacsa.thesai.org

where one person i.e. the product owner [PO] has to make the
list of all the requirements to be included in the project. It can
be a hectic and difficult task. As „Quality‟ requirements drive
the architecture of software-intensive systems, they are more
important than the functional requirements. Thus the success or
failure of mission critical systems depends on how well the
quality requirements are engineered and implemented.
Prioritizing requirements is also another challenging task while
developing a software product. Product Owner‟s commonly
use following backlog prioritization techniques: Kano analysis,
Moscow and Relative weighting (Karl wieger) [3] [8].

IV. METHODOLOGY

The proposed model is based on several techniques that are
being used to prioritize requirements. However when
combined, they are expected to give better results. The First
step in this model is cumulative voting, in cumulative voting
each stakeholder distributes a total of 100 points ($, euro or
coins) on the requirements, the Product Owner then will sum
up the points and present the derived ordering of the
requirements. Although the desired features will be selected at
this point but there could be the chance that the selected feature
will not provide benefit in terms of cost, time or easiness as
much as it could have provided with other features selected at
this time. The second step is Numerical assignment of
requirements; it‟s the most common technique for prioritizing
requirements and is based on grouping requirements into
different priority groups. For example group the requirements
gathered from first steps into different groups based on their
nature such as risk requirements, value requirements, and
complex requirements etc. After this, requirements will be
grouped based on influencing factors that could be effecting
these requirements in any way. For example R1 and Rn are risk
requirements [11] (see fig 2 below) and they are in any way
contradicting with other requirements at the moment that have
also been selected to implement in the sprint. Fig.1 depicts the
steps of the proposed methodology.

This will cause trouble in implementing all of these
requirements, therefore it should be taken care of while
selecting and prioritizing requirements for a sprint. Next the
groups will be prioritized based on highest points (see fig 2).
Groups with requirements R1, R3, R4 have greater number of
points as a whole then the other group therefore it has higher
priority than other. After this the next step is AHP, in AHP the
priorities of requirements is calculated to estimate their relative
importance by comparing all unique pairs of requirements. In
other words, the individual performing the comparison will
decide manually which requirement has more significant, and
to what extent using a scale 1-9.[14] AHP provides better
results than any other tested methods as it is a ratio scale
methodology, and also includes a consistency check.

Fig. 1. Hybrid model for Requirements Prioritization

Steps involved in AHP are:

1) Make an v×v matrix (v represents the number of

requirements) requirements are latter inserted in rows and

columns of the matrix.

2) For each pair of requirements, insert their relative

intensity of importance (where the row of X meets the column

Y). At the same point, insert the reciprocal values to the

transposed positions (e.g. if cell XY=4 then cell YX=1/4)

3) Now, calculate the eigenvalues of this matrix to get the

relative priority of each requirement. The final result will be

the relative priorities of the requirements.
Total no. of comparisons that AHP requires is v×(v−1)/2.

Redundancy is produced in pair-wise comparisons in AHP,
therefore AHP also calculates the consistency ratio to check the
accuracy of the comparisons [14].

At this point when small number of requirements have been
selected and grouped, it is best to apply AHP at this point as
grouping the requirements based on their nature and
influencing factors will make it easy to check requirements
with other groups and find out their relative importance, or
contradiction between them. As Agile development team and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

304 | P a g e

www.ijacsa.thesai.org

PO have best idea because of their experience in the field about
the implementation of such requirements that are conflicting
each other to some extend and/or the risk or cost while
implementing them it is suggested to apply MoSCoW at this
point. MoSCoW is based on human opinion based on their
experience, desire and influencing factors at that time such as
market demand, cost, risk, time and resources, the resultant
selected requirements are then again filtered using MoSCoW,
this is expected to filter out those requirements that may have
gotten higher points during the 100 dollar test (cumulative
voting) but are causing contradiction to other requirements or
may be less beneficial to get them implemented in this sprint.
New requirements from the backlog are added after such
requirements have been filtered out. If the number of newly
added requirements is greater than 3 or 4 then all the steps are
repeated on those newly added requirements. If small number
of requirements is being added then only MoSCoW should be
applied.

Detailed diagram of the Proposed Model is presented
below.

Fig. 2. Detailed presentation of the proposed model

Fig. 3. Detail implementation (staging) in scrum

The validation of the proposed model is made via detail
simulations using iThink software (see fig 4 below). The model
is expected to increase the quality of the requirements being
selected and prioritized during the sprints in SCRUM agile
development. The simulation shows that as the number of
requirements increases during the development process (see
chart 1) and new requirements are added after filtering out
requirements that were contradicting others, the priority of the
requirements changes as new requirements were added after
applying the selected techniques.(see chart 2) The results of
these changes in requirements and prioritization shows that the
quality of the selected requirements and prioritization increases
(see chart 3) and is expected to give better results while
implementing in SCRUM agile development.

set of Requirements with points

Voted requirements

Prioritzed Requirements

Priority Requirements

New Requiremnets f rom the list

Requirements

~

Cumulativ e Volting

~

Numerical Assignment

Rejected Requirements

f rom MoSCow 2

~

Analy tical Hirarchy

Process

AHP

~

MoSCow

Top 10 requirements

f or 1st sprint

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

305 | P a g e

www.ijacsa.thesai.org

Fig. 4. Simulations of the proposed model in iThink

Fig. 5. Chart showing requirements upsurge during SDLC

Fig. 6. Chart showing the priority of requirements change‟s as new

requirements arrive

set of Requirements with points

Voted requirements

Prioritzed Requirements

Priority Requirements

New Requiremnets f rom the list

Requirements

~

Cumulativ e Volting

~

Numerical Assignment

Rejected Requirements

f rom MoSCow 2

~

Analy tical Hirarchy

Process

AHP

~

MoSCow

Top 10 requirements

f or 1st sprint

00:31 26 Sep 2016

Untitled

Page 1

1.00 13.25 25.50 37.75 50.00

Weeks

1:

1:

1:

0

150

300

1: set of Requirements with points

1

1

1

00:31 26 Sep 2016

Untitled

Page 1

1.00 13.25 25.50 37.75 50.00

Weeks

1:

1:

1:

7

12

16

1: Priority Requirements

1

1 1

http://www.thesaurus.com/browse/upsurge

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

306 | P a g e

www.ijacsa.thesai.org

Fig. 7. Chart shows that the quality of requriements increases when applied

to proposed model for a peculiar set of requirements

V. CONCLUSION

As requirements emerge throughout the software
development process and requirements are needed to be
prioritized and hence managed with highest priority, especially
when the scenario is that of Agile Software Development
process. As disused and highlighted in this research work, there
are many requirements prioritization techniques,
methodologies proposed and been followed but most of them
fail to account those classical factors (metrics) that influence
the overall quality of software product being developed for
example ISO (9126, 25000) external metrics. In the following
research work a methodology has been proposed in which we
have taken account of the mentioned ISO/ IEC external metrics
(i.e. 25000, 9126) which affect the quality of process as well as
product. Further as it can be seen clearly that these mentioned
metrics (attributes) increase the quality of requirement‟s being
selected for the development of the product by considering all
those aspects that has influence in prioritizing requirements,
especially in case of ISO 25000. The proposed model here is a
hybrid of other requirements prioritization techniques, it has
the advantages of all the positive features already available of
those ascribed techniques as mentioned and also have a
consistency check that ensure that right requirements are being
selected at the right time for the sprint under process in case of
ASE (scrum).

REFERENCES

[1] Elsevier (2012) A decade of agile methodologies: Towards explaining
agile software development, The Journal of Systems and Software

[2] Mohd. Muqeem, Dr.Mohd.Rizwan, Validation of Requirement
Elicitation Framework using Finite State Machine”, IEEE International
Conference on Control, Instrumentation, Communication and
Computational Technologies (ICCICCT), pp 1210 – 1216, 2014.

[3] Ming Huo, June Verner, Liming Zhu, Muhammad Ali Babar (2004)
Software Quality and Agile Methods, IEEE

[4] Lan Cao, Balasubramaniam Ramesh (2008) Agile Requirements
Engineering Practices:An Empirical Study, IEEE.

[5] Shahid Nazir, SEN-2005, Why Quality? ISO 9126 Software Quality
Metrics (Functionality) Support by UML Suite, NY, USA.

DOI=http://dl.acm.org/citation.cfm?doid=1050849.1050860

[6] Pekka Abrahamssona, Juhani Warstab, Mikko T. Siponenb and Jussi
Ronkainen (2003) New Directions on Agile Methods: A Comparative
Analysis, IEEE.

[7] Armin Eberlein, Julio Cesar Sampaio do Prado Leite (2002) Agile
Requirements Definition: A View from Requirements Engineering,
Proceedings of the International Workshop on Requirement engineering.

[8] S. N. Bhatti, Deducing the complexity to quality of a system using
UML. ACM SIGSOFT Software Engineering Notes 34(3): 1-7 (2009).
DOI= http://dl.acm.org/citation.cfm?doid=1527202.1527207

[9] DAN HAO, LINGMING ZHANG, LU ZHANG, GREGG
ROTHERMEL, HONG MEI, (2014) A Unified Test Case Prioritization
Approach, ACM Transactions on Software Engineering and
Methodology, Vol. 24, No. 2, Article 10, Pub. date: December 2014.

[10] Frauke Paetsch, Frauke Paetsch, Dr. Frank Maurer (2003) Requirements
Engineering and Agile Software Development, IEEE

[11] V. N. Vithana (2015) Scrum Requirements Engineering Practices and
Challenges in Offshore Software Development, International Journal of
Computer Applications (0975 – 8887), Volume 116 – No. 22, April
2015.

[12] Azar, J.,Smith, R.K., “Value-Oriented Requirements Prioritization in a
Small Development Organization”, IEEE Computer society, 2007, pp 32
– 37, 2007.

[13] Anna Perini , Angelo Susi , Paolo Avesani (2013) A Machine Learning
Approach to Software Requirements Prioritization, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 39, NO. 4,
APRIL 2013

[14] Rahul Thakurta (2013) A framework for prioritization of quality
requirements for inclusion in a software project, Software Quality
Journal (2013) 21:573–597

[15] Naila Sharif, Kashif Zafar, Waqas Zyad (2014) Optimization of
Requirement Prioritization using Computational Intelligence Technique,
2014 International Conference on Robotics and Emerging Allied
Technologies in Engineering (iCREATE) Islamabad, Pakistan, April 22-
24, 2014

[16] Nupul Kukreja, Barry Boehm (2013) Integrating Collaborative
Requirements Negotiation and Prioritization Processes: A Match Made
in Heaven, Proceedings of the 2013 International Conference on
Software and System Process

[17] Rubaida Easmin, Alim Ul Gias, Shah Mostafa Khaled (2014) A Partial
Order Assimilation Approach for Software Requirements Prioritization
3rd INTERNATIONAL CONFERENCE ON INFORMATICS,
ELECTRONICS & VISION 2014

[18] Shahid N. Bhatti, Maria Usman, Amr A. Jadi, 2015, Validation to the
Requirement Elicitation Framework via Metrics. ACM SIGSOFT
Software Engineering Notes 40(5): 17, USA. DOI=
http://dl.acm.org/citation.cfm?doid=2815021.2815031

[19] J. Karlsson and K. Ryan. 1997, “Prioritizing requirements using a cost-
value approach,” IEEE Software 14 (5), pp. 67–74.

[20] John A Mcdermid, Software Engineer‟s Reference Book, Butterworth-
Heinemann, 1991.

00:31 26 Sep 2016

Untitled

Page 1

1.00 13.25 25.50 37.75 50.00

Weeks

1:

1:

1:

0

100

200

1: Top 10 requirements f or 1st sprint

1

1

1

http://www.thesaurus.com/browse/peculiar
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Azar,%20J..QT.&searchWithin=p_Author_Ids:37841909800&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Smith,%20R.K..QT.&searchWithin=p_Author_Ids:37280034200&newsearch=true

