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Abstract—Phase synchronization in a brain computer 

interface based on Mu rhythm is evaluated by means of phase lag 

index and weighted phase lag index. In order to detect and 

classify the important features reflected in brain signals during 

execution of mental tasks (imagination of left and right hand 

movement), the proposed methods are implemented on two 

datasets. The classification is performed using linear 

discriminant classifier, quadratic discriminant classifier, 

Mahalanobis distance classifier, k nearest neighbor and support 

vector machine. Classification accuracies up to 74% and 61% for 

phase lag index and weighted phase lag index were achieved. The 

results indicate that phase synchronization measures are relevant 

for classifying mental tasks recorded in the active state and the 

relaxation state from additional motor area and from the 

sensorimotor area. Phase lag index and weighted phase lag index 

methods are easy to implement, efficient, provide relevant 

features for the classification and can be used as an offline 

methods for motor imagery paradigms. 
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I. INTRODUCTION 

Brain computer interface (BCI) systems translate brain 
activities into commands for external devices.  Their main goal 
to provide a communication channel for people with severe 
motor disabilities. 

One of the most popular and used method in recording 
neurological signals is the electroencephalogram (EEG). It is 
simple to use, implies low costs and has a very high time 
resolution allowing EEG based BCIs to respond very quickly 
to user commands [1]. 

EEG based BCIs identify changes that occur while the 
person performs different mental tasks and make use of  
important features in classification. The linear classifiers, 
neural networks and nearest neighbor classifiers are most used 
in BCI applications. 

The EEG signals contain amplitude and phase information.  
Common spatial pattern (CSP) [2], power spectral density 
(PSD) [1], adaptive auto regressive (AAR) parameters [3] and  
Hurst exponent [4] have been used to extract from EEG 

amplitude distinctive features in different mental states. Phase 
synchrony is a mechanism for dynamic integration of 
distributed neural networks in the brain. Phase relationships 
identified between the recordings of electrophysiological 
activity generated within different cortical regions may provide 
information about functional connections between those 
cortical regions [5]. Such relationships are reported between 
cortical regions that are used in the control of a BCI where 
spectral coherence quantifies phase synchronization for 
electrophysiological data [6]. 

Phase synchronization can be difficult due to the presence 
of the common reference, the volume-conduction of source 
activity and the presence of noise sources [7]. To overcome 
these problems, methods that are focusing on phase instead of 
the amplitude have been proposed: the phase locking value 
(PLV) [8], that uses only the relative phase between signals to 
measure the phase-synchronization, the imaginary component 
of the coherency (ImC) [9] as a conservative index of phase-
synchronization, phase lag index (PLI) [10] as a potential 
improvement of the ImC and the weighted phase lag index 
(WPLI) [4] in order to increase the capacity to detect true 
changes in phase synchronization. 

Sensorimotor rhythms (SMR) refer to a brain oscillation in 
the specific frequency band generated from the sensorimotor 
area. SMRs are modulated by motor execution, motor 
observation and motor imagery [11]. 

While performing a mental activity as left/right hand 
movement or imagination changes appear in the sensorimotor 
area in the corresponding signal power of Mu (8-12 Hz) and 
Beta (12-30 Hz) rhythms. 

An off-line analysis is performed in order to extract and 
classify significant features contained in the EEG signals using 
indexes that characterize the phase synchronization (PLI and 
WPLI) in a BCI paradigm based on sensorimotor rhythms. 
Five classifiers are used for distinguishing mental tasks. 

In the section II databases and methods used are described, 
how the features are extracted and how the classification 
methods are applied.  The results are depicted in section III. 
The paper ends with discussions based on our results (section 
IV) and conclusions (section V). 
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II. METHODOLOGY 

A. Datasets 

The EEG signals are recorded with a portable acquisition 
system from the lab of the Faculty of Medical Bioengineering. 
It is provided by g.tec medical engineering GmbH and is based 
on a g.GAMMAcap unit, a g.GAMMAbox unit and a 
g.MOBIlab+ one. The sampling frequency of 256 Hz and 
BCI2000 platform [12] are used. 8 electrodes (CP3, CP4, P3, 
P4, C3, C4, PZ and CZ) are placed on the subject scalp 
according to International 10-20 System. The reference 
electrode is linked on the right earlobe. 

Subjects (33 healthy volunteers, men and women, age 
range 19-59 years) are asked to perform motor imagery tasks.  
The subjects are sitting relaxed in front of a computer screen. 
At the beginning of a trial, the screen is white. After 2 s, an 
arrow pointing to the left or to the right appears on the screen.  
The subject has to imagine the hand movement indicated by 
the arrow and to relax when the screen is white. During the 
recordings, subjects are advised to try to avoid the eye 
blinking, eye movements, feet movements or swallowing.  
Each arrow appears up for 30 times.  The trials are conducted 
in different days. All subjects provide written informed consent 
prior to the experiment. 

The second dataset used is provided by Dr. Allen Osman in 
BCI Competition 2002 [13]. The EEGs are recorded by 59 
electrodes.  The signals are sampled at the frequency 100 Hz. 
The reference electrode is placed on the left mastoid. The 
dataset consists of EEG data recorded from 9 well trained 
subjects. Each session lasts 6 s and each run consists of 90 
trials (45 trials for imagery of left hand movement and 45 for 
imagery of right hand movement). In each trial a cue is shown 
on the screen instructing the subject to perform one of the 
following motor imagery tasks: left hand, right hand, 
relaxation.The signals acquired from 9 electrodes (FC3, FCZ, 
FC4, CP3, CPZ, CP4, C3, CZ and C4) over the sensorimotor 
area are considered for further processing. 

B. Methods 

The phase lag index and the weighted phase lag index are 
used for measuring the synchronization between two signals 
     and     . 

The phase lag index measures the statistical 
interdependencies between time series. The aim of PLI is to 
obtain reliable estimates of phase synchronization that are 
invariant against the presence of common sources as active 
reference electrodes. 

The asymmetry of the phase difference distribution means 
that the likelihood that the phase difference ∆θ will be in the 
interval           0 is different from the likelihood that it 
will be in the interval          . This asymmetry implies 
the presence of a nonzero phase difference („lag‟) between the 
two time series [10]. 

An index of the asymmetry of the phase difference 
distribution can be obtained from a time series of phase 
differences              in the following way: 

      |〈    [       ]〉| ,    (1) 

where      is the signum function and          . 

The PLI ranges between 0 (no interaction) and 1(maximum 
interaction),         . The     denotes the average over 
the time   . A PLI of zero indicates either no coupling or 
coupling with a phase difference    centered around [   ] 
[10]. 

The WPLI increases the capacity to detect real changes that 
occur in phase synchronization, reduces the influence of 
common noise sources and reduces the influence of changes in 
the coherence phase [7]. The weighted phase lag index is 
calculated using the formula: 

     |〈    〉| 〈|    |〉   |〈 | |         〉| 〈|    |〉  (2) 

where      is the imaginary component of the cross 
spectrum between two signals      and       

The complex cross-spectrum      for two real-valued 
signals      and      is computed by Fourier transform. 

         〈         〉,   (3) 

where        is the Fourier transform of signal      and 
       is the Fourier transform of signal     . The symbol 
 indicates the complex conjugation and    denotes the 
expectation value. 

The values of the WPLI are ranged between 0 and 1, where 
1 means total synchronization. Synchronization is defined by 
                  or                     where 
     denotes probability. The WPLI is based on the imaginary 
component of the cross spectrum [7]. 

C. Preprocessing of the EEG signals 

All EEG signals from the first dataset are loaded, and then 
they are band-pass filtered in the 8-12 Hz frequency band by 
means of 100th order Finite Impulse Response (FIR) filter in 
order to avoid phase distortions. Data segments corresponding 
to the left hand motor imagery and to the right hand motor 
imagery are extracted. 

New obtained EEG signals are analyzed using the PLI and 
the WPLI. To compute the phase synchronization, it is 
necessary to know the instantaneous phase of the two signals 
involved. This can be realized using the Hilbert transform. The 
Hilbert transform is performed for all the channels (CP3, CP4, 
P3, P4, C3, C4, PZ and CZ) and the PLI and the WPLI are 
computed for all the possible pairs of EEG channels (both for 
left hand motor imagery and for right hand motor imagery). 

Two electrodes from the additional motor area CZ and PZ 
and six electrodes from the sensorimotor areas P3, C3, CP3 
(from left hemisphere) and P4, C4, CP4 (from right 
hemisphere) are used. Six combinations for CZ (CZ-CP3, CZ-
CP4, CZ-P3, CZ-P4, CZ-C3, CZ-C4), six combinations for PZ 
(PZ-CP3, PZ-CP4, PZ-P3, PZ-P4, PZ-C3, PZ-C4) and three 
combinations left-right (CP3-CP4, P3-P4 and C3-C4) are 
extracted. 

The approach is firstly evaluated using the PLI and then the 
WPLI. 

The same steps are followed for the second dataset but 
other channels are handled. Nine combinations for left 
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hemisphere:  FCZ-FC3, FCZ-C3, FCZ-CP3, CZ-FC3, CZ-C3, 
CZ-CP3, CPZ-FC3, CPZ-C3, CPZ-CP3, nine combinations for 
right hemisphere: FCZ-FC4, FCZ-C4, FCZ-CP4, CZ-FC4, CZ-
C4, CZ-CP4, CPZ-FC4, CPZ-C4, CPZ-CP4 and three 
combinations left-right: CP3-CP4, FC3-FC4 and C3-C4 are 
formed. 

D. Classifiers 

In order to observe the discrimination between left or right 
motor activity we used 5 classifiers: linear discriminant 
analysis (LDA) [6], quadratic discriminant analysis (QDA) 
[14], Mahalanobis distance (MD) [15], k nearest neighbor 
(KNN) [16] and support vector machine (SVM) [17]. A 10x10 
fold cross validation estimated the classification rate for each 
subject. 

The feature vector is  formed by PLI indexes for left motor 
imagery and right motor imagery. Data are divided into 10 
parts with an equal number of features, 5 parts are used for 
training and the other parts for testing. 

III. RESULTS 

Fig. 1 displays the classification rates obtained with 
classifiers LDA, QDA and MD for PLI for the dataset 
developed with EEGs recorded in our lab. The classification 
rates are above 60%. 68% from the subjects obtained better 
results with QDA classifier and the others 32% with MD 
classifier. 

 

Fig. 1. The classification rates of  PLI using classifiers LDA, QDA and MD 
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TABLE I. shows the classification rates using KNN 
classifier for 1, 2, 3, 4 or 5 neighbors. The higher classification 
rates of about 83% are obtained by subject RH27I and the 
smaller rates of about 68% by subject AL10I. 

TABLE I. THE CLASSIFICATION RATES OBTAINED WITH KNN FOR PLI 

Subjects 
Number of neighbors 
1 2 3 4 5 

AB28I 79,37% 79,49% 79,59% 79,71% 79,79% 

AS24I 75,93% 76,12% 76,15% 76,25% 76,24% 

MA12I 75,46% 75,54% 75,71% 75,88% 75,95% 

RR28I 84,67% 84,70% 84,69% 84,72% 84,63% 

AL21I 69,70% 69,76% 69,88% 69,96% 69,99% 

LA12I 75,56% 75,52% 75,38% 75,34% 75,24% 

RH27I 83,62% 83,74% 83,83% 83,98% 84,04% 

SA31I 70,94% 70,98% 70,95% 70,97% 70,99% 

PD24I 73,74% 73,73% 73,70% 73,65% 73,58% 

RA14I 72,89% 72,88% 73,03% 73,13% 73,28% 

AL42I 73,72% 73,75% 73,74% 73,71% 73,60% 

NA30I 75,07% 75,14% 75,18% 75,23% 75,26% 

RS30I 73,50% 73,47% 73,43% 73,38% 73,28% 

RV50I 73,89% 73,95% 74,07% 74,16% 74,29% 

CA10I 75,50% 75,50% 75,50% 75,53% 75,57% 

MC24I 73,57% 73,69% 73,78% 73,90% 73,97% 

RA60I 78,04% 78,06% 78,13% 78,21% 78,18% 

RG24I 75,26% 75,29% 75,25% 75,20% 75,08% 

AL27I 81,34% 81,33% 81,31% 81,38% 81,41% 

AP24I 76,85% 76,76% 76,76% 76,72% 76,58% 

AC23I 83,54% 83,61% 83,68% 83,77% 83,84% 

AL10I 67,90% 67,84% 67,76% 67,67% 67,70% 

AL17I 73,76% 73,75% 73,70% 73,67% 73,56% 

AL20I 74,07% 74,20% 74,27% 74,37% 74,41% 

AL31I 75,37% 75,50% 75,59% 75,65% 75,67% 

TR17I 76,98% 76,85% 76,80% 76,74% 76,62% 

IB17I 77,54% 77,44% 77,39% 77,34% 77,27% 

MIG13I 80,43% 80,45% 80,41% 80,33% 80,15% 

RC13I 75,28% 75,33% 75,52% 75,63% 75,79% 

CM28I 73,46% 73,52% 73,43% 73,44% 73,36% 

MF41I 71,74% 71,77% 71,94% 72,04% 72,24% 

RE60I 76,43% 76,46% 76,41% 76,35% 76,28% 

Using WPLI, the classification rates for all the subjects are 
smaller with 20% in comparison with PLI using classifiers 
LDA, QDA, MD (Fig.2). The accuracy rates are below 66%. 

Unlike PLI, where none of the subjects obtained higher 
classification rates with LDA classifier, for WPLI, 6 subjects 
obtained the best classification rates with LDA, 18 subjects 
with QDA classifier and 9 subjects with MD classifier. 

 
Fig. 2. The classification rates (%) for WPLI using classifiers LDA, QDA 

and MD 
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Subjects MIG13I and CA10I achieved the highest 
classification rates by means of KNN classifier when WPLI is 
used as feature vector. In comparison with PLI the 
classification rates obtained with WPLI are also lower 
(TABLE II). 

TABLE II. THE CLASSIFICATION RATES OBTAINED WITH KNN FOR WPLI 

Subjects 
Number of neighbors 
1 2 3 4 5 

AB28I 53,72% 53,79% 54,05% 54,22% 54,30% 

AS24I 53,56% 53,33% 53,31% 53,18% 53,12% 

MA12I 56,36% 56,51% 56,67% 56,80% 56,77% 

RR28I 53,30% 53,27% 53,31% 53,38% 53,43% 

AL21I 54,95% 54,95% 54,93% 54,93% 54,85% 

LA12I 57,58% 57,55% 57,53% 57,53% 57,50% 

RH27I 54,96% 54,96% 54,95% 54,98% 54,99% 

SA31I 58,36% 58,51% 58,54% 58,60% 58,58% 

PD24I 59,27% 59,26% 59,25% 59,28% 59,27% 

RA14I 54,34% 54,42% 54,51% 54,66% 54,66% 

AL42I 51,89% 51,71% 51,61% 51,46% 51,34% 

NA30I 55,15% 55,34% 55,45% 55,55% 55,70% 

RS30I 57,73% 57,75% 57,70% 57,75% 57,83% 

RV50I 55,13% 55,08% 55,05% 55,01% 55,01% 

CA10I 61,58% 61,63% 61,60% 61,63% 61,56% 

MC24I 57,38% 57,43% 57,28% 57,26% 57,18% 

RA60I 56,21% 55,95% 55,83% 55,69% 55,49% 

RG24I 52,39% 52,43% 52,41% 52,39% 52,37% 

AL27I 57,35% 57,46% 57,68% 57,97% 58,21% 

AP24I 55,07% 55,18% 55,37% 55,54% 55,62% 

AC23I 54,47% 54,50% 54,55% 54,60% 54,70% 

AL10I 56,15% 56,12% 56,02% 56,00% 55,92% 

AL17I 57,52% 57,47% 57,42% 57,34% 57,22% 

AL20I 57,84% 57,87% 57,95% 58,02% 57,99% 

AL31I 55,21% 55,34% 55,41% 55,48% 55,45% 

TR17I 52,11% 52,16% 52,08% 52,00% 51,91% 

IB17I 54,52% 54,57% 54,53% 54,49% 54,44% 

MIG13I 62,81% 62,70% 62,71% 62,70% 62,75% 

RC13I 54,13% 54,14% 54,11% 54,10% 54,03% 

CM28I 57,80% 57,79% 57,76% 57,77% 57,73% 

MF41I 58,60% 58,56% 58,52% 58,37% 58,23% 

RE60I 54,74% 54,60% 54,45% 54,28% 54,08% 

Fig. 3 presents the results for PLI compared with the results 
for WPLI using SVM classifier. For PLI, the highest 
classification rate is 86.25% – subject RR28I and for WPLI 
61.56% – subject AL27I. 

 

Fig. 3. The classification rates  for PLI and WPLI using SVM classifier 
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In the next section are shown the classification results 
obtained on the second dataset used. Subject 1 achieved the 
following discrimination rates: 85.80% - LDA, 83.33% - QDA 
and 87.08% - MD for PLI (Fig. 4). 

 
Fig. 4. The classification rates for PLI applying LDA, QDA and MD 

KNN classification with 1, 2, 3, 4, 5 neighbors is depicted 
in TABLE III. The results are in the range of 63.99% (subject 
8) and 87.34%  (subject 1). 

TABLE III. THE CLASSIFICATION RATES (%) OBTAINED WITH KNN FOR 

PLI 

Subjects 
Number of neighbors 
1 2 3 4 5 

Subject 1 87,22% 87,34% 87,34% 87,34% 87,24% 

Subject 2 68,94% 68,72% 68,51% 68,31% 68,11% 

Subject 3 72,36% 72,29% 72,13% 71,97% 71,91% 

Subject 4 85,68% 85,82% 85,85% 85,98% 85,91% 

Subject 5 77,75% 77,49% 77,34% 77,20% 77,26% 

Subject 6 70,26% 70,02% 69,68% 69,46% 69,24% 

Subject 7 72,47% 72,40% 72,23% 72,18% 72,02% 

Subject 8 65,20% 65,04% 64,79% 64,44% 63,99% 

Subject 9 84,47% 84,31% 84,36% 84,31% 84,26% 

The discrimination rates achieved with WPLI and LDA, 
QDA and MD are presented in Fig. 5. For each of the three 
classifiers, the results are smaller compared to those when the 
feature vector used the PLIs. 

In TABLE IV. are presented the results obtained with 
KNN. The higher classification is achieved by Subject 9 and 
the smaller one by Subject 3. 

Concerning the comparison between performances 
achieved with SVM classifier, for PLI and WPLI the higher 
difference between rates is 29.01% for subject 1 and the 

smaller one is 1.85% (Fig. 6). Subject 7 attained a better 
classification for WPLI. 

The findings are consistent with other works [18], [19] in 
which the second dataset is exploited. So, in [18] where a time-
frequency approach is investigated using six subjects (1, 2, 5, 
6, 7, 9), for subject 1 and subject 9 are reported the 
classification rates 81.11% and 83.61%, respectively. With PLI 
for subject 1 the classification rates achieved are in the range 
77.78% - 87.34%, while for subject 9 the classification rates 
were in the range 67.28% - 84.47%. For WPLI, for subject 1 
the classification rates are between 48.76% - 62.34% and for 
subject 9: 59.25% - 62.86%. 

In [20], where Itakura distance based method is used and 20 
subjects from the first database, the classification rates are 
approximately the same with the actual results. For example, 
subject RR28I achieved 81.67%, 86.67%, 85.00% 
classification rates using LDA, QDA and MD classifiers, 
compared to 74.09%, 79.68%, 79.56% for PLI and 56.20%, 
55.60% and 55.84% for WPLI. 

 

Fig. 5. LDA, QDA and MD classification corresponding to the WPLI method 
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Fig. 6. The classification rates for PLI and WPLI using SVM classifier 

Fig. 7 displays the highest classification rates obtained for 
phase lag index and weighted phase lag index with all five 
classifiers and for datasets used. 

 
Fig. 7. The classification accuracies using all classifiers for PLI and WPLI  

IV. DISCUSSIONS 

The research evaluated two phase synchronization based 
methods with two indexes: phase lag index and weighted phase 
lag index, on two different datasets. Phase synchronization 
contains important features connected to the brain activity and 
in this way the discrimination can be made between left and 
right hand movement. The first dataset is formed by EEG 
recordings collected by the authors. So, in this case, the 
research is more efficient because all the details and conditions 
on which the recordings were made are known. The opinion of 
the voluntaries and their information regarding the experiments 
are also well-known. The volunteers are trained first by 
performing effectively the movement of the left/right hand and 
after that performing left/right hand imagination.  For the 
second dataset used there are not available so many 
information: the acquisition system it is not described or 
mentioned, isn‟t specified if the recordings took placed in the 
same day or in different days and the age of the volunteers is 

not known. It is mentioned that the subjects were well trained. 
The technical and social details are very important in 
developing a brain computer interface. 

For the first dataset, the classification rates obtained with 
PLI are different from the results attained with WPLI. Using 
LDA classification method 5 subjects obtained differences 
higher with 10% for PLI in comparison with WPLI. Two 
subjects achieved better results with WPLI. Differences below 
5% between PLI and WPLI were noticed at 8 subjects.    With 
QDA classifier classification rates obtained are higher than 
LDA but also the higher differences between classification 
rates for PLI and WPLI. For 70% of the subjects the 
differences between classification rates are in the range of 
10.22%-19.71%. No subject has achieved higher classification 
rates for WPLI. MD classification provided better results for 
PLI for 87% of the subjects. The smaller difference between 
the classification rates is obtained by one subject – 2.07%. 

If we are comparing the results obtained with LDA, QDA 
and MD the higher classifications rates are achieved with 
QDA. 

Regarding the KNN classification the number of neighbors 
is very important. We have chosen to represent all five 
neighbors in order to see which neighbor is the best. The 
average for 1 neighbor was 75.78%, 2 neighbors – 75.82, 3 
neighbors – 75.84%, 4 neighbors – 75.88%, 5 neighbors 
75.87% in the case of PLI. In the case of WPLI the average 
obtained were 56.01%, 56.01%, 56.02%, 56.03%, 56.01%. 
SVM classifier outperforms all classifiers used. In this cases 
aren‟t highlighted major differences between neighbors. Two 
subjects achieved classification rates above 86% when the 
feature vector is formed with and other two subjects when the 
feature vector is formed with WPLI. 

For the second dataset used we can conclude the following: 
the higher difference between PLI and WPLI is 24.07% and the 
smaller difference is 2.47% for LDA classification. 

QDA method revealed approximately the same results as 
LDA classification. The highest classification rate is about 
83.33% and the smallest one is about 62.35%. 

If we compare LDA, QDA and MD the higher 
classification rates are obtained with MD. For PLI the results 
are also better. 

In KNN classification the difference between neighbors 
were not significant. The average was 76% for PLI and 56% 
for WPLI. 

With SVM classification the highest classification rates are 
also obtained. 

Overall, the classification rates are better for the second 
dataset. 

The discrimination rates are higher with 8-10% for the 
second dataset compared to the first dataset. 

Although WPLI is a more complex method by introducing 
weighted normalized phase difference, the classification rate is 
not higher than 60%. 
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The type of classifier utilized, the way how a subject could 
imagine the hand movement are some aspects that should be 
explored more deeply. 

V. CONCLUSIONS AND FUTURE WORK 

Offline analysis based on phase synchronization are 
proposed and tested. 

The results suggest that methods could be exploited for 
BCI paradigms. It was found a large variability between 
subjects and between datasets. 

PLI and WPLI avoid artifacts caused by the volume 
conductor. Volume conductor is very important for the EEG 
recordings because the analysis of connectivity is limited due 
to the low spatial resolution. 

The results revealed satisfactory even although no methods 
for elimination of artifacts and few EEG channels were used. 

Future wok implies developing an ensemble classifier (a 
combination of classification methods) for improving the 
classification rates. 
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