
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

337 | P a g e

www.ijacsa.thesai.org

Representing Job Scheduling for Volunteer Grid En-

vironment using Online Container Stowage

Saddaf Rubab
1
 , Mohd Fadzil Hassan

2
, Ahmad Kamil Mahmood

 3
, and Syed Nasir Mehmood Shah

4

1,2,3,4
Department of Computer and Information Sciences, University Teknologi PETRONAS, Bandar Seri Iskandar, 32610, Tronoh,

Perak, Malaysia

Abstract—Volunteer grid computing comprises of volunteer

resources which are unpredictable in nature and as such the

scheduling of jobs among these resources could be very uncertain.

It is also difficult to ensure the successful completion of submit-

ted jobs on volunteer resources as these resources may opt to

withdraw from the grid system anytime or there might be a re-

source failure, which requires job reassignments. However, a

careful consideration of future jobs can make scheduling of jobs

more reliable on volunteer resources. There are two possibilities;

either to forecast the future jobs or to forecast the resource

availability by studying the history events. In this paper an

attempt has been made to utilize the future job forecasting in

improving the job scheduling experience with volunteer grid re-

sources. A scheduling approach is proposed that uses container

stowage to allocate the volunteer grid resources based on the jobs

submitted. The proposed scheduling approach optimizes the

number of resources actively used. The approach presents online

container stowage adaptability for scheduling jobs using volun-

teer grid resources. The performance has been evaluated by

making comparison to other scheduling algorithms adopted in

volunteer grid. The simulation results have shown that the pro-

posed approach performs better in terms of average turnaround

and waiting time in comparison with existing scheduling algo-

rithms. The job load forecast also reduced the number of job

reassignments.

Keywords—Volunteer grid computing; volunteer resources;

container stowage; job scheduling

I. INTRODUCTION

Volunteer grid computing environment is a type of grid
consisting of volunteered resources which are distributed and
heterogeneous in nature [1]. The volunteer grid is growing day
by day as more number of resources is volunteered for high
computational research projects. The ‘World Community Grid’
is a large-scale volunteer computing project supported by IBM
[2]. The statistics for number of resources and research pro-
jects running under it is shown in Fig. 1.

The resources and jobs submitted to a volunteer grid are
unpredictable which affects the performance of volunteer grid
and makes resource management more challenging. It is
therefore difficult to schedule the jobs as the future job rate
and resource availability cannot be anticipated.

The jobs submitted to Volunteer Grid (VG) may vary in
terms of requirements and load. The job requirements change
due to the nature of tasks to be performed and sometimes
based on the time of the day job has been submitted. There
might be a few jobs submitted to volunteer grid repeatedly.
These repeated jobs may have random load and resource re-
quirements on each job submission. It is hard to forecast the
resource demands. There have been studies [3-5] which sug-
gest to allocate a few extra resources to complete a job in VG.

However, it is not an efficient way to over-provision the
resources because it will leave the allocated resources as un-
der-utilized. This underutilization of resources is negating the
objective of VG to maximize the utilization of allocated re-
sources.

Fig. 1. World Community Grid Volunteer Statistics [2]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

338 | P a g e

www.ijacsa.thesai.org

Job migration allows a job to be transferred from one re-
source to another without causing any interruption in job exe-
cution. Job migration can help to balance the load and to
transfer a job from underutilized resource to another one for
achieving VG maximum resource utilization objective where
the job can also complete within the specified deadline.

For example, when most of the jobs running on one re-
source and there is a possibility that a few jobs can miss their
deadlines, those jobs can be transferred to other available re-
sources which can complete the jobs within their specified
deadlines.

In contrast, when jobs are being executed on a resource
which is underutilized, the overall performance of resource is
getting low, the jobs can be transferred to other resources
which can complete the jobs within deadline and free the un-
derutilized resources. This will not only help to maximize the
resource utilization of new resource but also help to free the
previous resource for other large job executions. There are
practices of migrating jobs to improve the turnaround time of
jobs [6-8]. The work presented in [6], proposed a job schedul-
ing strategy which includes history events to make possible a
job scheduling scheme which results in fewer job migrations
and improve the turnaround time as well. Various job migra-
tion strategies are presented in [7], for migrating the unfin-
ished jobs that are delayed or halted on any node.

The job scheduling and resource allocation problem can be
demonstrated as container stowage problem where each job is
considered as a container and resource as a ship or terminal to
pack the containers. Container stowage itself is NP-Hard
problem, which requires stowing the containers in vessels or
ships in order to reduce the operating costs and deliver the
containers at their destination within the budgetary values and
time [9, 10]. Container stowage is illustrated in Fig. 2.

The containers are to be stowed to a ship which can deliver
the containers to destination within the time and operational
cost. A container can only be stowed to one ship at a time
whereas many containers can be stowed to one ship. This can
depict the job scheduling, as illustrated in Fig. 3. A job can be
assigned to one resource at a time and a resource can be allo-
cated to more than one job considering the time and cost con-
straints associated with the jobs and resources.

In this paper, a job scheduling approach has been present-
ed that uses online container stowage to allocate the volunteer
grid resources dynamically based on the job requirements. The
proposed approach will also optimize the number of resources
used in terms of using the allocated resources to their maxi-
mum instead of using excessive resources. The main contribu-
tions of this work are:

 To develop an online container stowage job scheduling
algorithm that is able to avoid the overloading of re-
sources while ensuring the maximum utilization

 A theoretical proof for optimal value of number of re-
sources in use

 Simulation results to compare with existing job sched-
uling approaches

The outline of this paper is as follows. Section II describes
a literature studied on job scheduling in volunteer grid compu-
ting and job reassignments. Section III gives a broad overview
of job scheduling approach whereas Section IV focusing
mainly on the proposed job scheduling algorithm. The results
and simulations are discussed in Section V. Section VI con-
cludes the paper giving the future research direction.

II. RELATED LITERATURE

This section will give a brief literature review on the job
scheduling in volunteer grid which not only will outlines the
practices of job scheduling but also the issues, challenges and
methods on job reassignment.

Due to the growing use of distributed computing resources,
the jobs scheduling becomes an important issue to be studied.
Therefore, the job scheduling in volunteer grid has been stud-
ied vastly in the literature. A survey [11] has been presented
on grid resource management systems, mainly discussing the
grid schedulers such as Condor, AppLes, Globus and Nimrod
which use batch scheduling heuristics. Few of the scheduling
algorithms for volunteer grid are discussed and compared un-
der different input conditions applied using simulation [12].

A 39-days trace of computer availability of 32 machines
located in two classrooms has been collected in [13]. These
traces were used for scheduling techniques analysis to im-
prove average turnaround time in volunteer grid environment.
A tool, named DGSchedSim [14] has also been presented later
on to evaluate different other volunteer grid scheduling algo-
rithms using the collected traces by [13].

A stochastic modeling based job scheduler was presented
in [15]. A job scheduling architecture using performance pre-
diction was proposed in [11], using the neural network that
focuses on local job scheduling on volunteer grid resources.
Cost based online job scheduling algorithm is presented by
Weng et al. [18]. They have compared the performance of
proposed online algorithm with the optimal offline algorithm.

The job scheduling performance in volunteer grid envi-
ronment can be affected because of resource failure or re-
source withdrawn. These can be avoided by migrating or reas-
signing jobs to other available resources [6-8].

Fig. 2. Illustration of Container Stowage Problem

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

339 | P a g e

www.ijacsa.thesai.org

Fig. 3. Illustration of Job Scheduling

A job scheduling strategy based on neural network load
predictions was proposed in [6] that reassigns the jobs from
current resource to another available volunteer resource. Dif-
ferent job scheduling strategies including migration adaptive,
wave migration and immediate migration were presented to
get better turnaround time for job scheduling using volunteer
grid resources [7]. The adaptive scheduling was used by Zhou
et al. [7] to reassign the delayed jobs from current nodes to
less load classified as night nodes. Most of the job scheduling
algorithms and strategies reviewed in this section are greedy
and offline algorithms.

The change in volunteer grid environment is mainly due to
the resource availability and failure, which is the prime reason
for reassignment of jobs. Job scheduling in volunteer grid
computing environment can mimic the container stowage
problem where the containers need to be stowed in ships and
vessels while meeting their time and budgetary constraints.
Container stowage problem has been tried to solve by using
genetic algorithms, combinatorial optimization and heuristics
etc. [9, 10].

Considering this fact, a job scheduling scheme is proposed
in this paper which is adaptive in nature and based on con-
tainer stowage problem concepts. The proposed job schedul-
ing will also use the load prediction/forecast to improve the
average turnaround time for scheduling using volunteer re-
sources.

III. OVERVIEW OF PROPOSED JOB SCHEDULING APPROACH

The proposed scheduling approach consists of a job
scheduler which can schedule the jobs optimally to complete
the submitted jobs within the deadline. The job scheduler is
the one responsible for running proposed scheduling algorithm.
The volunteer resources will run the submitted and assigned
jobs to them individually.

Fig. 4. Scheduling Approach

Each of the resource can have different availability times,
which illustrates that there can be availability time intervals
which can be further sub-divided to fit in more jobs. In such a
case multiple jobs can share one resource. The resource moni-
tor attached with each resource will collect the usage infor-
mation in terms of availability time which means that for how
many CPU clock ticks a resource can serve a job and how
many available CPU clock ticks are still unassigned with the
resource for more jobs. This usage information will be used by
scheduler, which is responsible for overall job scheduling. The
scheduler required the following three (03) inputs:

 resource demand history of jobs

 capacity and load history of resource

 current allocation of resources to jobs

The scheduler has two main components as well. The load
predictor (LP), that is responsible for predicting the resource
demands in near future. The second component of scheduler is
the proposed scheduling algorithm itself, which can optimally
schedule the jobs such that the jobs are completed within the
deadline specified and the currently assigned resources are
utilized maximum. The overview of job scheduling approach
is presented in Fig. 4. The scheduler will be periodically called
after a fixed number of CPU clock ticks to see if there is any
new job arrived or relocation of job is required. In each of
scheduler call, the load predictor will predict the resource de-
mands of new submitted jobs and resource load based on us-
age information. The prediction results will be represented as
CPU clock ticks i.e., the required number of CPU cycles for
job and unassigned available CPU cycles.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

340 | P a g e

www.ijacsa.thesai.org

After the load predictor, the predictions results will be
passed to scheduling algorithm to find that there are enough
resources available to assign more jobs and to execute the al-
ready assigned jobs. If the resources can complete the already
assigned jobs and new jobs, the resource allocation will be
done locally. In other case, the overload mechanism will be
performed.

The scheduling algorithm also reschedules the running
jobs from underutilized resources to the nearly optimal maxi-
mum utilized resource in order to free the underutilized re-
source for future jobs which may require more CPU clock
ticks and help to use the maximum of resource. The schedul-
ing algorithm will then generate an allocation/re-allocation list
(AR list) and pass it to resource monitor to start the job execu-
tion on allocated resources. The scheduling approach makes
use of live reallocation of jobs, which is itself incurring an
overhead but the overall scheduling performance can be im-
proved because the overhead is very negligible.

To analyze the load prediction, in each set of jobs e.g., 250
jobs, the first set of jobs is restricted to 10 jobs and next set is
considered as predicted jobs. This scheme can be followed for
all the job sets as these are multiples of 10. The load predic-
tion can be done using any time series forecasting method like
ARMA, ARCH, GARCH, and Holt-Winters [12-14] etc. The
effect of load prediction will be discussed in Section 0

IV. JOB SCHEDULING AS CONTAINER STOWAGE PROBLEM

The container stowage planning for is a core activity of
shipping and difficult to solve because of combinatorial nature
of alternative mappings of containers to the stowage location
in a ship or vessel [10]. Container stowage can be used to
demonstrate the job scheduling where each of the resource is a
ship and each job is a container to be stowed.

Extensive literature is available on the container stowage
problem however those presented solutions are not feasible to
apply in grid and volunteer grid environment specifically. The
traditional container stowage solutions can show performance
ratio approximately one which suggests having an approach to
call upon the stowage planning solution after a fixed interval
of time to assign and reassign the jobs. Due to the reassign-
ment, there is a possibility of having many job migrations
from one resource to another when the resource is underuti-
lized or overloaded because the traditional scheduling algo-
rithms does not take new jobs arriving to the system in con-
sideration that can affect the overall system performance.
These all algorithms are usually termed as offline algorithms.

The online container stowage algorithms can be a solution
to reduce the number of job migrations. Although there are
online container stowage algorithms, which does not take the
following container details to avoid container/job migrations.
A few online container stowage algorithms do not allow mi-
gration of already stowed container to a new ship/vessel loca-
tion. If such an online container stowage algorithm is applied,
this will be a limitation to our job scheduling approach alt-
hough the volunteer grid environment allows migration of the
jobs. Using the authors’ experimental setup, it will be proved
that job migration using online container stowage algorithm
using volunteer grid resources will help to achieve nearly op-

timal results.

It must be considered that at time of job migration from
one resource to another, the required CPU burst time of job
might have been reduced as the job has an opportunity to uti-
lize the current resource for its execution. This presents that
a job requirement can be changed after its first assignment to
the current resource. The changed job requirements compel to
have an online algorithm which can accommodate not only the
future jobs but also ensures the maximum utilization of re-
sources in use and free the nearly idle resources. The schedul-
ing algorithm proposed in this study is named as Online Con-
tainer Stowage Job Scheduling (onCSJS). onCSJS illustrates
the container stowage planning by ensuring the behavior of
containers and ships/vessels. The ships/vessels are not allowed
to stow the containers to the maximum limit as it unfavorable
for the ship stability. The resources in onCSJS will mimic the
same behavior by not allowing the jobs to fully utilize the
volunteer resource as it will not only provides a possibility of
overloading but also the migration of large number of jobs in
case of resource failure.

A. Job Scheduling Algorithm

The main objective of onCSJS is to improve the job
scheduling for volunteer grid environment to complete the
jobs within deadline and to use maximum of the resources in
use by freeing the nearly idle resources. The onCSJS is online
relaxed job scheduling algorithm utilizing the concept of con-
tainer stowage by not considering the new jobs when reas-
signing the old jobs and only a few reassignments are ac-
ceptable. The proposed algorithm onCSJS not only assign the
new jobs but also perform the reassignment of old jobs cur-
rently running on volunteer resources. The job assignment to
the available volunteer resources will be performed by calling
assign(job) function. reassign(oldjobs, job) will be called to
reassign the old jobs from current volunteer resource to new
resource. During the reassignment operation the old jobs
which have been executed partially on current resources will
be considered as new jobs because the remaining CPU burst
time are changed and will require less CPU clock ticks to
complete the job. The description of algorithm will be clearer
by understanding the following representations firstly in con-
tainer stowage:

 Let 𝑐 as a container to be stowed and 𝑠𝑖𝑧𝑒(𝑐) as the
size of container, where 𝑠𝑖𝑧𝑒(𝑐)𝜖 (0, 1]

 Let 𝑠𝑣 as the ship/vessel. The 𝑡𝑜𝑡𝑎𝑙_𝑠𝑝𝑎𝑐𝑒(𝑠𝑣) is
the total space available in a ship for container stowage
and 𝑠𝑝𝑎𝑐𝑒(𝑠𝑣) as the space available in 𝑠𝑣 ship for
more containers, where 𝑡𝑜𝑡𝑎𝑙_𝑠𝑝𝑎𝑐𝑒(𝑠𝑣) 𝜖 (0, 1]

The container stowage problem must satisfy the equation
(1) such that the total space of ship/vessel 𝒔𝒗 must be greater
than or equal to the total of already stowed containers and
space left after stowing a new container 𝒄𝒊.

𝑠𝑝𝑎𝑐𝑒 (𝑠𝑣) 𝑐 𝑡𝑜𝑡𝑎𝑙
(𝑠𝑣) (1)

The representation of container stowage has been translat-
ed for job scheduling algorithm in volunteer grid environment.

 Let 𝑐 as a job to be assigned and 𝑠𝑖𝑧𝑒(𝑐) as the size

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

341 | P a g e

www.ijacsa.thesai.org

of job, where 𝑠𝑖𝑧𝑒(𝑐) 𝜖 (0, 1]

 Let 𝑠𝑣 as the resource. The 𝑡𝑜𝑡𝑎𝑙_𝑠𝑝𝑎𝑐𝑒(𝑠𝑣) is the
total space available in a resource for scheduling job
and 𝑠𝑝𝑎𝑐𝑒(𝑠𝑣) as the space available in 𝑠𝑣 resource
for more jobs to be assigned, where
𝑡𝑜𝑡𝑎𝑙_𝑠𝑝𝑎𝑐𝑒(𝑣)𝜖(0, 1]

The job scheduling must satisfy the equation (1) such that
the total space of resource 𝒔𝒗 must be greater than or equal
to the total of already assigned jobs and space left after as-
signing a new job 𝒄𝒊.

The 𝒕𝒐𝒕𝒂𝒍_𝒔𝒑𝒂𝒄𝒆 of resource is translated in the range of
0 to 1, which requires classifying the jobs. Following are the
four (04) classes of jobs:

 S-con: Small jobs 𝑠𝑖𝑧𝑒(𝑐) 𝜖 (0, 1/3]

 M-con: Medium jobs 𝑠𝑖𝑧𝑒(𝑐)𝜖 (1/3, 1/2]

 L-con: Large jobs 𝑠𝑖𝑧𝑒(𝑐) 𝜖 (1/2, 2/3]

 VL-con: Very Large jobs 𝑠𝑖𝑧𝑒(𝑐) 𝜖 (2/3, 1]

The system performance can be increased if a threshold is
set for the maximum resource to be utilized. In simulation test
run of onCSJS, the 0.75 or 75% of the total resource available
will be set as CPU clock ticks that a resource can contribute.

The volunteer resources are arranged considering the clas-
sification of jobs each of it will have the
𝒕𝒐𝒕𝒂𝒍_𝒔𝒑𝒂𝒄𝒆(𝒔𝒗)𝝐(𝟎, 𝟏]

 S-ship: Small resource

 M-ship: Medium resource

 L-ship: Large resource

 VL-ship: Very Large resource

Since the resources are heterogeneous in volunteer grid
environment, a few combinations of these resource classes are
also considered including SL-ship, MM-ship and ML-ship.
There are some constraints to be considered while assigning or
reassigning jobs to the resources. The S-ship resource can only
have a few S-con jobs only. M-ship resource can be allocated
to only two M-con jobs, whereas L-ship is for only two L-con
job. The VL-ship can have two VL-con jobs only. SL-ship will
be allocated to one L-con job and few S-con jobs. MM-ship
will only have two M-con jobs. ML-ship can have one M-con
job and one L-con job.

Further, there are groups formed from the S-con submitted
jobs such that the group size of each is 1/3 of the total of
S-con jobs submitted to be scheduled. This will help to assign
the S-con jobs (small jobs) in a few steps and waiting time for
these jobs will be less. It will also reduce the overhead in case
of reassignment of jobs as overhead will be more for L-con or
VL-con jobs in comparison with S-con jobs if require reas-
signment.

V. RESULTS AND SIMULATION

A. Experimental Setup

SETI@home [15] has been selected for resources and
LCG1 [16, 17] dataset has been used for jobs submitted to be
scheduled on volunteer resources. SETI@home project has
recorded activities of 60883 nodes for a period of 10 months
[15]. In SETI@home there are missing values such as zero or
negative values in RAM size, null values are saved in location,
null values in time zone and other components. These all null,
zero and negative values were removed before starting the
simulation using a pre-processing method. After
pre-processing, only 38,166 nodes are having complete data.
Table 1 shows population of nodes after pre-processing the
missed values.

TABLE I. NUMBER OF NODES AFTER PRE-PROCESSING

Type of Nodes Number of Nodes

Initial 60883

After pre-processing Location 38180

After pre-processing location RAM size,
Time zone

38166

The LCG1 dataset contains 11 days of recorded node ac-
tivities with 188,041 jobs of 53y 179d 7h 26m 46s CPU time
The details can be studied in an online published report [17].
For benchmarking only top 15 nodes activities for 5 days from
processed resource dataset has been selected and total of 1000
jobs from LCG1 has been selected randomly.

B. Benchmarking of onCSJS

The performance of proposed algorithm onCSJS has been
compared with EDF (Earliest Deadline First), LLF (Least
Laxity First), RM (Rate Monotonic), FCFS (First Come First
Serve) and RR (Round Robin) [18-20] using trace datasets
available online.

C. Active Resources

In the simulation run, a resource with less than two jobs is
considered as non-active. Fig. 5 shows the number of active
resources during 5 days with 5 hours difference. It has been
assumed in onCSJS that the active resources are those which
are allocated to two or more jobs. The reason of a resource
being non-active could be the reassignment of jobs or re-
sources are idle from the start. If a resource has been assigned
only one job, it will be reassigned to another active resource if
can execute, and current resource will become non-active. It
has been observed that if the number of jobs is less there will
be less number of active resources.

On the contrary, if the number of jobs is increased pre-
serving the same amount of resources, the number of active
resources will be more.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

342 | P a g e

www.ijacsa.thesai.org

Fig. 5. Active Resources 1-5 Days

It proves our claim that active resources must be ensured
that they are being used to the maximum and rest of the
resources are saved for any future jobs. The scheduling
algorithms chosen for benchmarking do not consider the factor
of active and non-active resources; therefore, it is not a valid
justification to make a comparison with the proposed
algorithm.

D. Load on Active Resources

From Fig. 6, the behavior of active resources is easy to
study. Fig. 3 gives more detail analysis of active resources
with respect to the jobs scheduled using different algorithms.
The proposed algorithm onCSJS used less number of active
resources and tried to use the maximum of the active re-
sources.

The difference will be clearer if more number of resources
is used. In the simulation, only 15 volunteer resources are se-
lected, however of the number of resources are more, the dif-
ference in number of active resources using onCSJS as com-
pared with other scheduling algorithms will be more evident.

Fig. 6. Load on Active Resources

E. eassignment of Jobs

Fig. 7 presents the number of reassignments in case the job
has to be migrated from one resource to another depending on
the scheduling algorithm being used to test the performance.
The number of reassignments is increasing as the number of
jobs submitted increased. The number of job migrations is
more in onCSJS as compared to the RR and RM because the
proposed algorithm focuses more on the overall performance
rather than on individual job runs.

F. Performance Comparisons

The performance of job scheduling algorithm can be ex-
plained briefly with the help of average waiting time and av-
erage turnaround time. The onCSJS scheduling algorithm
performs better than the baseline scheduling algorithms for
both the average waiting time and average turnaround time.

The average waiting time of onCSJS and baseline sched-
uling algorithms is presented in Fig. 8. The average waiting
time of onCSJS and EDF is very close and there is a signifi-
cant difference with other scheduling algorithms.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

5 15 25 35 45 55 65 75 85 95 105 115

N
u

m
b

e
r

o
f

ac
ti

ve
 r

e
so

u
rc

e
s

1-5 Days (5hrs interval)

250 Jobs 500 Jobs

750 Jobs 1000 Jobs

0

2

4

6

8

10

12

14

100 200 300 400 500 600 700 800 900 1000

A
ve

ra
ge

 N
u

m
b

e
r

o
f

A
ct

iv
e

 R
e

so
u

rc
e

s

Jobs

onCSJS EDF LLF

RM FCFS RR

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

343 | P a g e

www.ijacsa.thesai.org

Fig. 7. Reassignments on Jobs

Fig. 8. Average Waiting Time

Fig. 9. Average Turnaround Time

Fig. 10. Reassignment of Jobs with onCSJS

0

100

200

300

400

500

600

700

800

250 Jobs 500 Jobs 750 Jobs 1000 Jobs

A
ve

ra
ge

 N
u

m
b

e
r

o
f

R
e

as
si

gn
m

e
n

ts

Jobs

onCSJS RR RM

2528

541

1210

843

497 495.7

0

500

1000

1500

2000

2500

3000

FCFS RR LLF RM EDF onCSJS

A
ve

ra
ge

 W
ai

ti
n

g
Ti

m
e

Scheduling Algirthims

773

317

641

486

267 266

0

100

200

300

400

500

600

700

800

900

FCFS RR LLF RM EDF onCSJS

A
ve

ra
ge

 T
u

rn
ar

o
u

n
d

Ti

m
e

Scheduling Algirthims

0

100

200

300

400

500

600

700

800

900

1000

250 Jobs 500 Jobs 750 Jobs 1000 Jobs

A
ve

ra
ge

 N
u

m
b

e
r

o
f

R
e

as
si

gn
m

e
n

ts

Jobs

onCSJS RR RM CSJS

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

344 | P a g e

www.ijacsa.thesai.org

The turnaround time of onCSJS is presented in Fig. 9. It
has been observed that average turnaround time calculated
using onCSJS is very less than the baseline scheduling
algorithms. The less turnaround time can be a similar effect
for less waiting time. The less waiting time and less
turnaround time are due to the reason of scheduling the jobs to
a resource with available CPU clock ticks that can be allocated
to submitted jobs.

G. Load Predictor Analysis

If the load prediction is not included in the proposed job
scheduling algorithm onCSJS, let’s call that CSJS. In CSJS the
number of job reassignments will be more because there is no
consideration for the future job load on volunteer re-sources
and the job scheduling will be different. The number of job
reassignments is very less in onCSJS (Fig. 7) as compared to
CSJS (Fig. 10). This proves that if job prediction is made us-
ing any forecasting method, it can help to reduce the job reas-
signments overhead. The results are tabulated in Table II.

TABLE II. NUMBER OF REASSIGNMENTS

Scheduling

Algorithms

Jobs

250 500 750 1000

onCSJS 100 289 523 670

RR 78 120 157 230

RM 64 98 143 210

CSJS 170 367 678 865

VI. CONCLUSION

There are job scheduling policies which can make use of
history events. The job scheduling in volunteer grid compu-
ting environment can be aided with container stowage consid-
ering the jobs as containers and resources as ships or vessels.
A job scheduling algorithm using the container stowage has
been proposed for volunteer grid computing environment. The
design and evaluation has been discussed in details by making
comparisons with the other job scheduling algorithms includ-
ing EDF, RM, RR, LLF and FCFS. The proposed algorithm
considers job reassignments dynamically that’s why it is
named as onCSJS. The effect of not including reassignments
has also been discussed. The onCSJS takes history events into
account at time of assigning jobs to volunteer resources. If the
history events are not taken in considerations, it will increase
the number of reassignments and we call it as CSJS.

In future, the onCSJS can be incorporated in the middle-
ware of volunteer grid to study its impact in real environment.
A more accurate forecasting method can be engaged rather
than taking the next batch of jobs as forecasted jobs.

ACKNOWLEDGMENT

Authors appreciatively acknowledge the High Perfor-
mance Computing Center (HPCC) at Universiti Teknologi
PETRONAS (UTP), Malaysia for providing the volunteer grid
computing environment.

REFERENCES

[1] M. Nouman Durrani and J. A. Shamsi, "Volunteer computing: require-
ments, challenges, and solutions," Journal of Network and Computer
Applications, vol. 39, pp. 369-380, 2014.

[2] J. W. Taylor and R. D. Snyder, "Forecasting intraday time series with
multiple seasonal cycles using parsimonious seasonal exponential
smoothing," Omega, vol. 40, pp. 748-757, 2012.

[3] N. P. Preve, Grid Computing: Towards a Global Interconnected Infra-
structure: Springer-Verlag London, 2011.

[4] K. Chard, K. Bubendorfer, and P. Komisarczuk, "High occupancy re-
source allocation for grid and cloud systems, a study with DRIVE," in
Proceedings of the 19th ACM International Symposium on High Per-
formance Distributed Computing, 2010, pp. 73-84.

[5] S. Krawczyk and K. Bubendorfer, "Grid resource allocation: allocation
mechanisms and utilisation patterns," in Proceedings of the sixth Aus-
tralasian workshop on Grid computing and e-research-Volume 82, 2008,
pp. 73-81.

[6] S. Naseera and K. M. Murthy, "Prediction Based Job Scheduling Strate-
gy for a Volunteer Desktop Grid," in Advances in Computing, Commu-
nication, and Control, ed: Springer, 2013, pp. 25-38.

[7] D. Zhou and V. Lo, "Wave scheduler: Scheduling for faster turnaround
time in peer-based desktop grid systems," in Job Scheduling Strategies
for Parallel Processing, 2005, pp. 194-218.

[8] J. Zhang, "Flexible distributed computing with volunteered resources,"
2010.

[9] P. Giemsch and A. Jellinghaus, "Optimization models for the container-
ship stowage problem," in Operations Research Proceedings 2003, ed:
Springer, 2004, pp. 347-354.

[10] M. Zeng, M. Y. H. Low, W. J. Hsu, S. Y. Huang, F. Liu, and C. A. Win,
"Automated stowage planning for large containerships with improved
safety and stability," in Proceedings of the Winter Simulation Confer-
ence, 2010, pp. 1976-1989.

[11] N. Ding, C. Benoit, G. Foggia, Y. Besanger, and F. Wurtz, "Neural Net-
work-Based Model Design for Short-Term Load Forecast in Distribution
Systems," 2015.

[12] D. C. Montgomery, C. L. Jennings, and M. Kulahci, Introduction to time
series analysis and forecasting vol. 526: John Wiley & Sons, 2011.

[13] P. J. Brockwell, Introduction to time series and forecasting vol. 1: Taylor
& Francis, 2002.

[14] C. Chatfield, "The holt-winters forecasting procedure," Applied Statis-
tics, pp. 264-279, 1978.

[15] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
"SETI@ home: an experiment in public-resource computing," Commu-
nications of the ACM, vol. 45, pp. 56-61, 2002.

[16] Z. Balaton, Z. Farkas, G. Gombas, P. Kacsuk, R. Lovas, A. C. Marosi, et
al., "EDGeS: the common boundary between service and desktop grids,"
Parallel Processing Letters, vol. 18, pp. 433-445, 2008.

[17] J. Basney, M. Livny, and T. Tannenbaum, "Deploying a high throughput
computing cluster," High performance cluster computing, vol. 1, pp.
356-361, 1999.

[18] S. Teng, W. Zhang, H. Zhu, X. Fu, J. Su, and B. Cui, "A
Least-Laxity-First Scheduling Algorithm of Variable Time Slice for Pe-
riodic Tasks," Breakthroughs in Software Science and Computational
Intelligence, p. 316, 2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

345 | P a g e

www.ijacsa.thesai.org

[19] Y. Xu, H. Su, Y.-J. Pan, Z.-G. Wu, and W. Xu, "Stability analysis of
networked control systems with round-robin scheduling and packet
dropouts," Journal of the Franklin Institute, vol. 350, 2013.

[20] A. Sirohi, A. Pratap, and M. Aggarwal, "Improvised Round Robin
(CPU) Scheduling Algorithm," International Journal of Computer Ap-
plications, vol. 99, pp. 40-43, 2014.

