
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

31 | P a g e

www.ijacsa.thesai.org

Scheduling of Distributed Algorithms for Low Power

Embedded Systems

Stanislaw Deniziak

Department of Information Systems

Kielce University of Technology

Kielce, Poland

Albert Dzitkowski

Department of Information Systems

Kielce University of Technology

Kielce, Poland

Abstract—Recently, the advent of embedded multicore

processors has created interesting technologies for power

management. Systems consisting of low-power and high-efficient

cores create new possibilities for the optimization of power

consumption. However, new design methods, dedicated to these

technologies should be developed. In this paper we present a

method of static task scheduling for low-power real-time

embedded systems. We assume that the system is specified as a

distributed algorithm, then it is implemented using multi-core

embedded processor with low-power processing capabilities. We

propose a new scheduling method to create the optimal or

suboptimal schedule. The goal of optimization is to minimize the

power consumption while all time constraints will be satisfied or

the quality of service will be as high as possible. We present

experimental results, obtained for sample systems, showing

advantages of our method.

Keywords—Embedded system; distributed algorithm; task

scheduling; big.LITTLE; low power system

I. INTRODUCTION

Embedded systems are dedicated computer-based systems
that are highly optimized for a given application. Besides the
cost and performance, power consumption is one of the most
important issue considered in the optimization of embedded
systems. Design of energy-efficient embedded systems is
important especially for battery-operated devices. Although the
minimization of power consumption is always important,
because it reduces the cost of running and cooling the system.
It was observed that power demands are increasing rapidly, yet
battery capacity cannot keep up [1].

Embedded systems are usually real-time systems, i.e. for
some tasks time constraints are defined. Therefore, power
optimization should take intconsideration that all time
requirements should be met. In general, higher performance
requires more power, hence, the optimization of embedded
system should consider the trade-off between power,
performance and cost. Performance of the system may be
increased by applying a distributed architecture. The function
of the system is specified as a set of tasks, then during the co-
design process, the optimal architecture is searched [2].
Distributed architecture may consist of different processors,
dedicated hardware modules, memories, buses and other
components. Recently, the advent of embedded multicore
processors has created an interesting alternative to dedicated
architectures. First, the co-design process may be reduced to

task scheduling for multiprocessors systems. Second, advanced
technologies for power management, like DVFS (Dynamic
Voltage and Frequency Scaling) or ARM big.LITTLE [3],
create new possibilities for designing of low-power embedded
systems.

Although there are a lot of synthesis methods for low-
power embedded systems [4], the problem of optimal mapping
of a distributed specification onto the multicore processor is
rather a variant of the resource constrained project scheduling
(RCPSP) [5] one, than the co-synthesis. Since the RCPSP is
NP-complete, only heuristic approach may be applied to real-
life systems. According to the best of our knowledge there is
no synthesis methods taking into consideration ARM
big.LITTLE architecture as a target platform for real-time
embedded systems. Only, some work considering run-time
scheduling were done [6].

The most of RCPSP approaches are dedicated to the task
graph specification of a system. But in many cases, especially
in case of embedded software, more general distributed models
[7] would be more convenient. It was occurred that the
function of a real-time distributed system may be efficiently
specified as a distributed echo algorithm [8]. Moreover, such
specification may also be statically scheduled [9].

In this paper we present the novel method for synthesis of
the power-aware scheduler for real-time embedded systems.
We assume that the function of the system is specified as a
distributed echo algorithm [10] that should be executed by the
multicore processor supporting the ARM big.LITTLE
technology. The goal of the static scheduling is the reduction of
power consumption by moving some tasks to low-power cores
(LPCs), while critical tasks are assigned to high-performance
cores (HPCs), to satisfy all time constraints. The proposed
method is dedicated to high performance embedded computing
systems.

II. RELATED WORK

The problem of design of low-power embedded systems
has attracted researchers for many years. One direction of these
research is finding the low-power architecture by optimizing
the allocation of resources and task assignment according to
the power consumption (e.g. COSYN-LP [11], SLOPES [12],
LOPOCOS [13]). The overview of some power aware
codesign methods is presented in [4]. But all above methods
create the dedicated hardware/software architecture and cannot

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

32 | P a g e

www.ijacsa.thesai.org

be applied to multicore processors.

Another direction of research concerning the design for
low-power is to develop methodologies that takes into
consideration dynamic reduction of the power consumption
during runtime. AVR (Average Rate heuristic) [14] is a task
scheduling method for variable speed processor. Dynamic
Power Management [15] tries to assign optimal power saving
states. Other methods reduces power consumption by
efficiently using voltage scale processors [16]. All above
methods are based on power-aware scheduling called YDS.
Above methods schedules dynamically a set of tasks by
selecting the proper speed for each task. ARM big.LITTLE
uses only 2 predefined speeds, thus it is rather not possible to
adopt above methods to this technology.

There are a lot of scheduling methods for real-time
embedded systems. Earliest Deadline First (EDF) [17] or Least
Laxity First (LLF) [18] is ones of the most efficient dynamic
scheduling methods. But above methods are dedicated to
homogeneous architectures (SMP). Discussion concerning the
problems of task scheduling in real-time systems is presented
in [19]. Most of them optimize schedule length.

Embedded software consists of the given set of tasks.
Usually it is possible to estimate the task parameters like
execution time, power consumption, memory requirements.
Most static scheduling methods are based on specification
represented as task graph [20]. But in many cases it is difficult
to specify function as a task graph, some other models e.g.
distributed algorithms [7] are more suitable. It seems that the
echo algorithm [10] would be attractive for this purpose.

According to our best knowledge there is no scheduling
method for real-time systems specified as distributed echo
algorithm, as well as the static scheduling method optimizing
energy consumption in embedded systems based on the
big.LITTLE platform.

III. PRELIMINARIES

We assume that the target embedded system is based on
multi-core processor with LPCs and HPCs. LPC requires less
power to execute tasks but execution times are longer. HPC
executes tasks faster but consumes more energy. We consider
soft real-time systems, i.e. all tasks should be executed before
the specified deadline. But it is acceptable to slightly exceed
the deadline. In this case the quality of service (QoS) decreases
with increasing delay. The goal of optimization is to find
schedule for which the power consumption is minimal while
time constraints are satisfied or QoS is maximal. Since we
consider shared memory architecture, transmissions between
tasks may be neglected

A. Echo algorithms

Echo algorithms [18] are a class of wave algorithms [7]
used for describing distributed computations. The system is
specified as a set of tasks communicating by message passing.
One task is an initiator, which starts all computations. After
finishing its execution the initiator sends explorer messages to
all neighbours. After receiving the first explorer message the
task stores source node as an activator and after execution
sends explorer message to all neighbour nodes except the

activator. After finishing execution of all tasks, all tasks which
were not activators execute again to compute echo message
which is sent to their activators only. Each task, after receiving
echo messages from all activated task, executes again and
sends echo message to its activator. Finally, the initiator should
receive all echo messages and then it computes the final result.

Fig. 1 presents sample echo algorithm consisting of 10
processes. Assume that task 0 is the initiator. Therefore this
task will be executed first. Then, tasks 1, 5 and 4 should be
executed. It should be noted that the order of activation of tasks
depends on times of execution of the following tasks, e.g. task
6 may be activated by task 5 but also it may be activated by
task 7, in case when tasks 1, 2, 3, and 7 will finish their
execution before finishing task 5. Thus, the scheduling on
heterogeneous processors is complex even when the execution
times of all tasks are known e.g. are estimated or when the
worst case execution times are assumed.

Fig. 1. Sample distributed algorithm

B. Functional Specification of Distributed Systems

We assume that the system is specified as a collection of
sequential processes coordinating their activities by sending
messages. Specification is represented by a graph G = {V, E},
where V is a set of nodes corresponding to the processes and E
is a set of edges. Edges exist only between nodes
corresponding to communicating processes. Tasks are activated
when required set of events will appear. As a result, the task
may generate other events. External input events will be called
requests (Q), external output events are responses (O) and
internal events correspond to messages (M). The function of
the system is specified as finite sequences of activation of
processes. There is a finite set of all possible events
 { } . System activity is defined as the
following function:

where C is an event expression (logical expression
consisting of logical operators and Boolean variables
representing events), Ω=[ωL, ωH] are workloads of the
activated process defined for LPC and HPC respectively, and
Π=[πL, πH] defines power consumption.

Using function Φ it is possible to specify various classes of
distributed algorithms. The algorithm from Fig.1 may be

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

33 | P a g e

www.ijacsa.thesai.org

described using 20 actions. Assume that estimation of task
workloads and energy consumption are given (Tab. I). Thus,
actions will be the following:

A0: Φ(v0,{q0}) → ([3,2], [9,20], {m11,m25,m34})

A1: Φ(v1,{m11}) → ([13,8],[34,81],{x1,m42}) |

 Φ(v1,{m101}) → ([13,8],[34,81],{x2,m50})

A2: Φ(v5,{m25}) → ([6,4],[16,40],{x3,m66,m79}) |

 Φ(v5,{m155}) → ([6,4],[16,40],{x4,m80,m79}

A3: Φ(v2,{m42}) → ([10,5],[26,52],{x5,m93})|

 Φ(v2,{m122}) → ([10,5],[26,52],{x6,m101})

A4: Φ(v3,{m93}) → ([7,4],[18,40],{x7,m117}) |

 Φ(v3,{m173}) → ([7,4],[18,40],{x8,m122})

A5: Φ(v6,{m66}) → ([5,3],[13,29],{x9,m137,m148}) |

 Φ(v6,{m166}) → ([5,3],[13,29],{x10,m155,m148}

 A6:Φ(v7,{m117}) → ([9,5],[23,50],{x11,m166}) |

 Φ(v7,{m137}) → ([9,5],[23,50],{x12,m173}

A7: Φ(v4,{m34}) → ([11,6],[28,58],{x13})

A8: Φ(v9,{m79}) → ([12,7],[30,67],{x14})

A9: Φ(v8,{m148}) → ([4,2],[11,22],{x15})

A10:Φ(v0,{(m50|m180)&(m80|m190)&m200)})→([9,5],[23,52],

 {r1})

A11:Φ(v1,{x1&m211}) → ([17,9],[42,93],{m180}) |

 Φ(v1,{x2&m11}) → ([17,9],[42,93],{m222})

A12:Φ(v2,{x5&m232}) → ([7,4],[17,40],{m211}) |

 Φ(v2,{x6&m222}) → ([7,4],[17,40],{m243})

A13:Φ(v3,{x7&m253}) → ([2,1],[4,10],{m232}) |

 Φ(v3,{x8&m243}) → ([2,1],[4,10],{m267})

A14:Φ(v5,{x3&m275&m285}) → ([11,6],[27,59],{m190}) |

 Φ(v5,{x4&m25&m285}) → ([11,6],[27,59],{m326})

A15:Φ(v6,{x9&m296&m306}) → ([6,3],[15,31],{m275}) |

 Φ(v6,{x10&m326&m306}) → ([6,3],[15,31],{m317})

A16:Φ(v7,{x11&m317}) → ([3,2],[8,20],{m253}) |

 Φ(v7,{x12&m267}) → ([3,2],[8,20],{m296})

A17:Φ(v4,{x13}) → ([3,2],[8,21],{m200})

A18:Φ(v8,{x15}) → ([2,1],[4,9],{m306})

A19:Φ(v9,{x14}) → ([5,3],[12,30],{m285})

Each action is activated only once, when the corresponding
condition will be equal to true. Actions A1÷A6, and A11÷A16

contain alternative sub-actions. Only the first action, for which
the condition will be satisfied, will be activated. According to
the echo algorithm specification, process v0 is the initiator,
messages m11, ..., m173 are explorer messages, while m180, ...,
m317 are echo messages (indices are added only for readability,
mxi means that message mx is sent to vi. Events x1, ...,x15 are
internal events, used for storing the state of processes between
successive executions.

TABLE I. TASK CHARACTERISTICS

Since different requests may be processed by distinct

algorithms, the function of a system may be specified using a
set of functions Φ sharing the same processes. Each function
has only one initiator (process activated by the request).
Processes may be activated many times, but the algorithm
should consists of the finite number of actions and infinite
loops are not allowed.

C. ARM big.LITTLE technology

ARM big.LITTLE technology is an architecture where
high-performance CPU cores are combined with the most
efficient ones. In this way the peak-performance capacity,
higher sustained performance, and increased parallel
processing performance, at significantly lower average power,
are achieved. It was shown that using this technology it is
possible to save up to 75% CPU energy in low to moderate
performance systems and it is possible to increase the
performance by 40% in highly threaded workloads.

Three different methods of applying big.LITTLE
technology for minimizing the power consumption were
proposed [3]:

1) In the cluster switching, LPCs are grouped into “little

cluster", while HPCs are arranged into “big cluster". The

system uses only one cluster at a time. If at least one HPC core

is required then the system switches to the “big cluster",

otherwise the “little cluster" is used. Unused cluster is

powered off.

2) In CPU migration approach, LPCs and HPCs are

paired. At a time only one core is used while the other is

switched off. At any time it is possible to switch paired cores.

3) The most powerful model is a Global Task Scheduling

(GTS). In this model all cores are available at the same time

i.e. tasks may be scheduled on all HPC as well as LPC cores.
Different configurations of LPC/HPC core are available.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

34 | P a g e

www.ijacsa.thesai.org

For example Samsung Exynos 5 Octa consists of 4 LPCs
(Cortex-A7) and 4 HPCs (Cortex-A15), Exynos 5 Hexa uses
2LPC/4HPC configuration, while the MediaTek MT8173
contains only 2 LPCs (Cortex-A53) and 2 HPCS (Cortex-A72).
Big.LITTLE technology is applied also in Qualcom
Snapdragon, NVidia Tegra X1, Apple A10 Fusion and
HiSilicon processors.

Our approach is dedicated to the global task scheduling
model. GTS is the most flexible and the most efficient method
of applying big.LITTLE architecture. Moving tasks between
HPCs and LPCs is fast, it requires less time than a DVFS state
transition or SMP load balancing action.

IV. POWER-AWARE SCHEDULING

The draft of our algorithm of power-aware scheduling is
given in Fig.2. First, a list of schedulable tasks (Slist) consists of
the initiator, only. Then time marker (T) is initialized to 0. The
main loop schedules the successive tasks, ordered according to
their priorities. Priority of each task is based on the laxity (L),
defined as a difference between task start times, obtained using
ALAP (As Late As Possible) and ASAP (As Soon As Possible)
methods, assuming the deadline (TL). These methods are
applied assuming non limited number of cores. The Sort()
method orders all schedulable tasks according to increasing
laxity.

Tasks with the lowest laxity are scheduled first. If the laxity
is higher than the difference between task execution times for
LPC and HPC, then the task is scheduled on the LPC (if any
LPC is available). If the laxity is lower than above difference,
then the task is scheduled on the HPC (if any HPC is
available). If no HPC is available, the task is scheduled on the
LPC (if any LPC is available). If the difference between the
time limit (deadline) and the time maker is higher or equal the
system execution time obtained from ASAP method (in version
for LPC), then the task is scheduled on the LPC. If none of the
above conditions is fulfilled, the task stay in Slist and will be
attempted to schedule in the next time frame.

Finally, all scheduled tasks are removed from the Slist.
Before starting the next iteration of the main loop, the next
tasks are added to the Slist using NextReadyTasks() method. The
tasks are chosen according to rules of distributed echo
algorithm. When all cores are busy or Slist is empty, the time
marker is moved to the next time frame (function
NextAvailableTimeFrame()), i.e. the nearest time when any
core will finish executing task.

The presented algorithm is a greedy approach. First, it tries
to reduce the power consumption by assigning tasks to LPC
whenever it is possible. Although it is heuristic, we observed
that in most cases it is able to find the solution for which all
time constraints are satisfied.

Fig. 2. Power-aware scheduling algorithm

Slist = all source nodes;
T=0;
while Slist≠φ do
{
 ASAPh scheduling of all unscheduled tasks (HPC);
 ALAPh scheduling of all unscheduled tasks (HPC);
 ASAPl scheduling of all unscheduled tasks (LPC);
 for each ti
 {
 Li = ALAPh (ti)- ASAPh (ti);
 }
 Sort(Slist);

 for each tiSlist{
 if Li > lti-hti and available(T,LPC) then
 {
 Assign ti to LPC;
 Mark ti as scheduled;
 }
 else
 if systemExecutionTime(ASAPl) ≤ TL – T
 and available(T,LPC) then

 {
 Assign ti to LPC;
 Mark ti as scheduled;
 }
 else
 if Li ≤ hti-lti then
 if available(T,HPC) then
 {
 Assign ti to HPC;
 Mark ti as scheduled;
 }
 else if available(T,LPC) then
 {
 Assign ti to LPC;
 Mark ti as scheduled;
 }
 if scheduled(ti) then
 remove ti from Slist;
 }
 add NextReadyTasks() to Slist;
 T=NextAvailableTimeFrame();
}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

35 | P a g e

www.ijacsa.thesai.org

V. EXAMPLE

Assume that the target embedded system is based on multi-
core processor with 2 LPCs and 4 HPCs. The sample system
specification (Fig.1) consists of 10 tasks that are executed
twice, first time in the exploration phase and the second time
during the echo phase. The initiator is defined as task 0. It
starts the computations in the exploration mode and it returns
the final result after execution in the echo mode. Assume that
the soft deadline is equal 37 ms.

The algorithm starts with Slist={0} and T=0. During the first
pass all tasks are initially scheduled using the ASAP and
ALAP methods. Results are given in Tab. II.

TABLE II. INITIAL TASK SCHEDULING

During the exploration phase tasks are identified by the task
number, for the echo mode tasks are identified by adding suffix
“e” to the task number. It may be observed that according to
the ASAPL method scheduling on LPCs, the minimal system
execution time is equal 61 ms and it requires 5 cores. The
energy consumption equals 368 mJ. Initial ASAPL scheduling
gives an information about minimal execution time using LPCs
only. It gives also the solution with minimal energy
consumption. The initial ASAPH scheduling returns the
following results: execution time=35 ms, energy
consumption=824 mJ, and requires 5 HPCs. Above results
specifies the fastest solution, which consumes the maximal
power.

The algorithm proceeds as follows:

1. T=0: Slist={0}
Task 0: L0=1, lt0-ht0=1, (65<37-T) =false, 0→ HPC1

2. T=3: Slist={5,1,4}
Task 5: L5=1, lt5-ht5=2, (64<37-T)=false, 5→ HPC1

Task 1: L1=4, lt1-ht1=5, (64<37-T)=false, 1→ HPC2

Task 4: L4=22, lt4-ht4=5, 4 → LPC1

3. T=6: Slist={6,9}
Task 6: L6=1, lt5-ht5=2, (62<37-T)=false, 6→ HPC1

Task 9: L9=10, lt9-ht9=5, 9→ LPC2

4. T=9: Slist={7,8}
Task 7: L7=1, lt7-ht7=4, (60<37-T)=false, 7→ HPC1

Task 8: L8=11, lt8-ht8=2, LPC not available

5. T=10: Slist={2,8}
Task 2: L2=4, lt2-ht2=5, (60>37-T)=false, 2→ HPC2

Task 8: L8=10, lt8-ht8=2, LPC not available

6. T=13: Slist={8,4e}
Task 8: L8=8, lt8-ht8=2, 8 → LPC1

Task 4e: L4e=22, lt4e-ht4e=1, LPC not available

7. T=14: Slist={3,4e}
Task 3: L3=1, lt3-ht3=3, (56<37-T)=false, 3→ HPC1

Task 4e: L4e=21, lt4e-ht4e=1, LPC not available

8. T=15: Slist={4e}
Task 4e: L4e=20, lt4e-ht4e=1, LPC not available

9. T=17: Slist={8e,4e}

Task 8e: L8e=11, lt8e-ht8e=1, 8e → LPC1

Task 4e: L4e=18, lt4e-ht4e=1, LPC not available

10. T=18: Slist={3e,2e,9e,4e}

Task 3e: L3e=1, lt3e-ht3e=1, (53<37-T)=false, 3e→ HPC1

Task 2e: L2e=1, lt2e-ht2e=1, (53<37-T)=false, 2e→ HPC2

Task 9e: L9e=10, lt9e-ht9e=2, 9e→ LPC2

Task 4e: L4e=17, lt4e-ht4e=1, LPC not available

11. T=19: Slist={7e,4e}

Task 7e: L7e=1, lt7e-ht7e=1, 7e→ LPC1

Task 4e: L4e=16, lt4e-ht4e=1, LPC not available

12. T=22: Slist={1e,6e,4e}

Task 1e: L1e=1, lt1e-ht1e=8, (52<37-T)=false, 1e→ HPC1

Task 6e: L6e=1, lt6e-ht6e=3, (52<37-T)=false, 6e→ HPC2

Task 4e: L4e=13, lt4e-ht4e=1, 4e→ LPC1

13. T=25: Slist={5e}

Task 5e: L5e=1, lt5e-ht5e=5, (49<37-T)=false, 5e→ HPC2

14. T=31: Slist={0e}

Task 0e: L0e=1, lt0e-ht0e=4, (6<37-T)=false, 0e→ HPC1

The final schedule is presented in Fig. 3. After executing
ASAP and ALAP initial scheduling, task 0 has laxity equal 1
and difference between execution time for LPC and HPC
equals to 1. Since the first two conditions specified in if

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

36 | P a g e

www.ijacsa.thesai.org

Fig. 3. Sample schedule for algorithm from Fig.1

statements evaluate to false, task 0 is scheduled on the
HPC1.Next, tasks 1, 4 and 5 are added to the list to be
scheduled in the next time frame. Tasks 1 and 5 have lower
laxity than the difference between LPC and HPC, therefore
they are assigned to HPC. Otherwise, the laxity of task 4 is
significantly greater than the above difference, thereby the task
is scheduled on the LPC. Similar cases take place for tasks 9, 8,
8e, 7e, 9e and 4e. All other tasks are scheduled on HPCs in
order to fulfil given time constraint. The energy used by the
processor is equal to 698 mJ. It gives 15% power saving, in
comparison with the fastest solution. We observed that for
lower time constraints our method can give even 55% of
energy savings.

VI. EXPERIMENTAL RESULTS

The efficiency of our method was evaluated using the
example from Fig.1 as well as using other examples consisting
of 25 and 45 tasks. Unfortunately there is no standard
benchmark sets for echo algorithms. There is also no similar
approaches of scheduling that may be compared with our
approach. Therefore for comparison the classical list
scheduling and ASAP methods were chosen.

Tables III, IV and V present results obtained for all sample
algorithms using our method (EchoLPS) and list scheduling.
Two different big.LITTLE architectures were examined, the
first consists of 4 LPCs and 2 HPCs, the second one consists of
2 LPCs and 4 HPCs. For each architecture 4 different deadlines
were examined. The mildest constraint was chosen in such a
way that all tasks may be scheduled on LPCs. Such systems are
found for reference, as the most power savings systems.
Experimental results show how the tightening of time
constraints affects the energy consumption. It should be noted
that, nevertheless that our method is heuristic, in all cases
solutions satisfying the deadline were found. But of course
EchoLPS does not guarantee the fulfilment of hard real-time
constraints.

For comparison the results obtained using classical list
scheduling was given. List scheduling, first assigns tasks to
HPCs i.e. it tries to find the fastest solution. Lists of tasks are
ordered according to priority that is based on ALAP-ASAP
values. We may observe that for comparable results (as far as
the execution time is concerned) the solution found using the
List Scheduling consumes significantly more energy than
solutions obtained using our method.

For reference we also performed scheduling of all sample
systems using List Scheduling, ASAP and ALAP methods.
Table VI presents the results. For each solution the minimal
number of LPC or HPC cores was found. Using List
Scheduling it was possible to find the lowest energy consuming
solutions. In some cases solutions are faster than obtained our
method, but more LPC cores are required. Solutions found
using ASAP/ALAP methods usually found the fastest
solutions, but these methods do not minimize the number of
cores required to execute task.

VII. CONCLUSIONS

In this paper a power-aware static scheduling method for
embedded systems was presented. The method schedules real-
time tasks on multi-core processor with power management
capabilities. We applied our method to processors supporting
ARM big.LITTLE technology, but the method may be adopted
also to DVFS. The method gives better results than classical
scheduling methods adopted to low-power embedded systems.

The method assumes the specification of the system in the
form of a distributed echo algorithm. Such specification is
more general than task graphs used in the most of existing
static scheduling methods for real-time embedded systems.
According to our best knowledge this is the first static
scheduling method for real-time embedded software specified
as the echo algorithm.

Our future work will concentrate on extending our method
to systems specified using other classes of distributed
algorithms, systems using other power management
technologies as well as adaptive systems [21], considering the
dynamic power optimization. Other direction of our work is to
perform scheduling of the set of applications on the same
system. Another interesting result may be obtained by
developing quasi-static or quasi-dynamic scheduling method
for distributed specifications. Such methods may be applicable
to systems where the time of execution for tasks is not known
or it is difficult to estimate.

The presented method uses simple heuristic to find the best
tradeoff between the power consumption and efficiency of the
system. Although the method gives quite good results, we will
consider to apply more sophisticated optimization methods like
constraint logic programming, mathematical programming [22]
and developmental genetic programming [23].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

37 | P a g e

www.ijacsa.thesai.org

TABLE III. RESULTS FOR 10 TASKS

System size 10 10

Architecture 2 HPC and 4 LPC 4 HPC and 2 LPC

Algorithm EchoLPS
List

Scheduling
EchoLPS

List

Scheduling

Time constraint 65 56 46 37 NO 79 65 51 37 NO

Execution time 65 56 45 36 37 79 65 51 36 37

Energy consumption 368 499 637 698 716 368 458 570 698 813

Power increase 100% 136% 173% 190% 195% 100% 124% 155% 190% 221%

Time decrease 100% 86% 69% 57% 57% 100% 82% 65% 47% 47%

TABLE IV. RESULTS FOR 25 TASKS

System size 25 25

Architecture 2 HPC and 4 LPC 4 HPC and 2 LPC

Algorithm EchoLPS
List

Scheduling
EchoLPS

List

Scheduling

Time constraint 201 168 143 117 NO 357 280 204 127 NO

Execution time 194 167 142 117 125 357 279 202 127 99

Energy consumption 1672 2033 2280 2604 2864 1672 2165 2631 3177 3431

Power increase 100% 122% 136% 156% 171% 100% 129% 157% 190% 205%

Time decrease 100% 86% 73% 60% 64% 100% 78% 57% 36% 28%

TABLE V. RESULTS FOR 45 TASKS

System size 45 45

Architecture 2 HPC and 4 LPC 4 HPC and 2 LPC

Algorithm EchoLPS
List

Scheduling
EchoLPS

List

Scheduling

Time constraint 246 215 185 154 NO 466 368 271 171 NO

Execution time 246 215 185 154 133 466 363 271 171 130

Energy consumption 2169 2559 2900 3313 3630 2169 2821 3437 4169 4537

Power increase 100% 118% 134% 153% 167% 100% 130% 158% 192% 209%

Time decrease 100% 87% 75% 63% 54% 100% 78% 58% 37% 28%

TABLE VI. RESULTS FOR LIST SCHEDULING, ASAP AND ALAP

System size 10 25 45 10 25 45 10 25 45

Architecture 6 LPC 5 HPC 9 HPC 15 HPC 4 HPC 8 HPC 13 HPC

Execution time 65 193 230 37 109 130 37 109 130

Energy consumption 368 1672 2169 824 3864 5202 824 3864 5202

Algorithm List Scheduling ASAP ALAP

REFERENCES

[1] M. Ditzel, R.H.Otten, W.A.Serdijn, Power-Aware Architecting for data-
dominated applications, Springer, 2007.

[2] S. Deniziak, Cost-efficient synthesis of multiprocessor heterogeneous
systems. Control and Cybernetics, vol.33, 2004, pp.341-355.

[3] big.LITTLE Processing with ARMCortexTM - A15 & Cortex-A7,
ARM Holdings, http://www.arm.com/files/downloads/
big.LITTLE_Final.pdf, September 2013,

[4] L.Benini, A.Bogliolo, G. De Michelli, A Survey of Design Techniques
for System-Level Dynamic Power Management, IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol.8, no.3, June 2000,
pp.299-316.

[5] S. Hartmann, D. Briskorn, A survey of variants and extensions of the
resource-constrained project scheduling problem, European journal of

operational research : EJOR. - Amsterdam : Elsevier, Vol. 207., 1
(16.11.), 2010, pp. 1-15.

[6] L. Costero, F. D. Igual, K. Olcoz, S. Catalán, R. Rodríguez-Sánchez and
E. S. Quintana-Ortí, "Refactoring Conventional Task Schedulers to
Exploit Asymmetric ARM big.LITTLE Architectures in Dense Linear
Algebra," 2016 IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW), Chicago, IL, 2016, pp. 692-701.

[7] G. Tel, “Introduction to Distributed Algorithms” Cambridge University
Press, 2nd edition, 2001.

[8] S. Bąk, R. Czarnecki, S. Deniziak "Synthesis of real-time cloud
applications for Internet of things" Turkish Journal of Electrical
Engineering and Computer Sciences, vol.23, no.3, 2015, pp. 913- 929.

[9] S. Bąk, S. Deniziak "Synthesis of real-time distributed applications for
cloud computing", IEEE Federated Conference on Computer Science
and Information Systems, IEEE, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 12, 2016

38 | P a g e

www.ijacsa.thesai.org

[10] Ernest J.H. Chang: Echo Algorithms: Depth Parallel Operations on
General Graphs. IEEE Transactions on Software Engineering, Vol. 8,
No. 4, July 1982.

[11] B. P. Dave, G. Lakshminarayana and N. K. Jha, "COSYN: Hardware-
software co-synthesis of heterogeneous distributed embedded systems,"
in IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 7, no. 1, March 1999, pp. 92-104.

[12] L.Shang. R. P. Dick. N.Jha. SLOPES: Hardware/Software Cosynthesis
of Low-Power Real-Time Distributed Embedded Systems With
Dynamically Reconfigurable FPGAs, IEEE Trans on Computer-Aided
Design of Integrated Circuits and Systems, vol.26, no.3, 2007, pp.508-
526.

[13] M. T. Schmitz, B. M. Al-Hashimi, P. Eles, System-Level Design
Techniques for Energy-Efficient Embedded Systems, Kluwer Academic
Publishers, 2004.

[14] F.F. Yao, A.J. Demers and S. Shenker. A scheduling model for reduced
CPU energy. Proc. 36th IEEE Symposium on Foundations of Computer
Science, 1995, pp.374–382.

[15] J.Luo, N.K. Jha, Low Power Distributed Embedded Systems: Dynamic
Voltage Scaling and Synthesis, Proc. 9th Int. Conference High
Performance Computing - HiPC 2002, Lecture Notes in Computer
Science, vol. 2552, 2002, pp. 679-693.

[16] C.Steger, C.Bachmann, A. Genser, R. Weiss, J, Haid, Power-aware
hardware/software codesign of mobile devices, e & i Elektrotechnik und
Informationstechnik, vol.127, no. 11, 2010.

[17] J. Anderson, V. Bud, and U. C. Devi. An edf-based scheduling algorithm
for multiprocessor soft real-time systems. In IEEE ECRTS, July 2005,
pp. 199-208.

[18] Han, Sangchul and Park, Minkyu, Predictability of Least Laxity First
Scheduling Algorithm on Multiprocessor Real-Time Systems, Proc. of
EUC Workshops, Lecture Notes in Computer Science, vol.4097, 2006,
pp.755-764.

[19] Li Jie, Guo Ruifeng and Shao Zhixiang, "The research of scheduling
algorithms in real-time system," 2010 International Conference on
Computer and Communication Technologies in Agriculture Engineering,
Chengdu, 2010, pp. 333-336.

[20] Abusayeed Saifullah, David Ferry, Jing Li, Kunal Agrawal, Chenyang
Lu, Christopher Gill, "Parallel Real-Time Scheduling of DAGs," IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 12, Dec.,
2014, pp. 3242-3252.

[21] S.Deniziak, L.Ciopinski, "Synthesis of power aware adaptive schedulers
for embedded systems using developmental genetic programming",
Proc. Federated Conference on Computer Science and Information
Systems (FedCSIS), 2015, pp.449-459.

[22] P. Sitek, J. Wikarek, “A Hybrid Programming Framework for Modeling
and Solving Constraint Satisfaction and Optimization Problems”,
Scientific Programming, vol. 2016, Article ID 5102616, 2016.

[23] S. Deniziak, L. Ciopinski, G. Pawinski, K. Wieczorek, and S. Bak, “Cost
optimization of real-time cloud applications using developmental genetic
programming”, in IEEE/ACM 7th International Conference on Utility
and Cloud Computing (UCC 2014), December 2014, pp.774-779.

