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Abstract—Resource provisioning remains as one of the chal-
lenging research problems in cloud computing, more importantly
when considered together with service reliability. Fault-tolerance
techniques such as fault-recovery is one of the techniques that
can be employed to improve on service reliability. Technically,
fault-recovery has obvious impact on service performance. Such
impact requires detailed studies. Only few works on hybrid cloud
resource provisioning address fault recovery and its impact. In
this paper, we investigate the problem of resource provisioning
in hybrid Clouds, considering the probability of hybrid cloud
resource failure during job execution. We formulate this problem
as an optimization model with operational cost as an objective
function subject to the deadline constraint of jobs. Based on our
proposed optimization model, we design a heuristic-based algo-
rithm called dynamic resource provisioning algorithm (DRPA).
We then perform extensive experiments to evaluate performance
of the proposed algorithm based on a real world set of data.
The results confirm the obvious impact of fault recovery on
the performance metrics (operational cost and deadline violation
rate) and also confirms that DRPA can be useful in minimizing
operational cost.

Keywords—Deadline; fault recovery; hybrid Clouds; resource
provisioning; software-as-a-service

I. INTRODUCTION

Cloud computing is a promising computing paradigm
which has attracted more research attention in both the
academia and the industry [1]. Among its benefit, the Cloud
enables its users to have access to a pool of configurable
computing resources across the internet independently without
reference to its underlying hosting infrastructure.

The resource pool in the Cloud are often deployed in any
of the four well known models, namely: public, private, com-
munity and hybrid deployment models. In the hybrid Cloud
model, the Cloud infrastructure is made up of a combination
of the private and public Cloud infrastructure. Provisioning of
configurable resources with a private Cloud is known for its
main advantage of being more secured than its alternatives.
This is because, data is controlled on servers that no other
company has access to except its users. However, since the
resources in private Clouds are limited, organizations (such
as SaaS providers) are faced with the challenge of capacity
limitation when there is a high demand for resource by users.
Compared to purchasing additional physical servers or building
a new datacenter, many of such organizations prefer to rather

scale up their service capacity to the public Cloud so as to meet
their users’ need. The process where an organization would
leverage both its private Cloud resource and the resource in
the public Cloud to process its user’s workload is called the
hybrid Cloud resource provisioning. Currently, Open Text, a
leading software provider in enterprise information manage-
ment, employs the hybrid Cloud model to demonstrate their
enterprise content management software. Moreover, one of the
world’s leading game companies, SEGA, has adopted hybrid
Cloud to improve its development process [2].

Its worth noting that, Cloud applications tend to be in-
evitably useful in major business operations and so most
users are always bent on having assurance from providers
with respect to service delivery. These assurances are realized
through Service Level Agreements (SLAs) established between
the providers and users. In this way, providers express their
commitment to deliver services to satisfy the user’s require-
ment. To users, it is a warranty. However, to SaaS providers, it
is a challenge to ensure efficient resource provisioning policies.
Moreover, how to optimize the operational cost involved in the
efficient provisioning of resources remains an important and
challenging problem to SaaS providers especially, when there
is a high workload of job requests with QoS constraints.

A. Our Contribution

Over the years, many researchers have done relevant studies
on the problem of resource provisioning in both hybrid and
public Cloud. However, one relevant facet of the problem that
is rarely addressed is on the probability of resource failures.
The tendency of resource failures during the execution of
jobs cannot be overlooked because it has obvious impact on
service performance. Such impact requires detailed studies.
Our previous work [3] in addition to other works such as
[4] [5] [6] happens to be part of the few works that address
this issue. Fault-tolerance techniques such as fault recovery
is one of the techniques that can be employed to improve
reliability. It employs checkpoint and rollback/roll-forward
scheme, that enables a resource to recover from an error
and resume execution [14]. In this paper, we investigate the
problem of resource provisioning in hybrid Clouds considering
the probability of resource failure during job execution. We
employ fault-recovery to address the problem of resource
failure. Our contributions are as follows:
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We present a hybrid Cloud model that enables the scal-
ability of the resource-base of a software-as-a-service SaaS
provider who intends to leverage resources in both private
and public Cloud for job execution. We propose DRPA to
address the problem of operational cost minimization associ-
ated with the leveraging of hybrid Cloud resources, considering
the probability that resources (i.e.Virtual machines (VM) and
communication links) may fail and recover. In addition, we
take into account some practical issues such as communication
cost, cost incurred at local (private cloud) and jobs that are
dynamic in nature. Finally, we perform extensive experiments
to evaluate the performance of the proposed algorithm in terms
of operational cost and deadline violation rate.

The rest of the paper is organized into six sections. Sec-
tion 2 presents related works whiles section 3 presents the
system model and problem formulation. Section 4, presents
the proposed DRPA, and its provisioning policies. In section
5, we discuss the experiments and their results against existing
works. The paper is finally concluded in section 6.

II. RELATED WORKS

The optimal provisioning of the Cloud’s configurable com-
pute resources to meet certain predefined performance criteria
is a complex problem. It has attracted much research attention
[7], [8]. This problem comprise the steps involved in allocating
suitable compute resources to tasks with the aim of optimizing
certain objectives. Some widely known objective functions are;
minimizing cost, minimizing the time of task completion and
maximizing the utilization of resources.

To address the problem of operational cost minimization
in Cloud resource provisioning context, authors in [9], pro-
posed a new MapReduce Cloud service model called Cura,
which automatically creates the best configuration of clusters
for tasks so as to approach a global resource optimization.
Specifically, the system employs a deadline-awareness method,
which defers the execution of certain tasks, and necessitates
global optimization with reduced cost. Wu et al. [10] proposed
an SLA based resource allocation method, which is compatible
to the heterogeneity of infrastructure and adaptable to the
dynamic change of customer jobs. Their approach seeks to
maximize the profit of the SaaS provider by minimizing the
number of SLA violations and the cost by reusing VMs.
Other related works [9], [11], [12], [13] and [14] also focused
on cost-optimization strategies for resource provisioning. This
paper is also focused on cost optimization and also consider
workloads that are dynamic in nature. However, it is considered
in the hybrid Clouds.

Unlike hybrid Clouds, extensive research work on resource
provisioning has been conducted in public Clouds. Neverthe-
less, many industries have started using Hybrid Cloud for
Cloud businesses [2]. In 2011, Tak et al. [15] did investigate the
economic issues of the application deployment choice in the
hybrid Cloud. The output of their research indicated the need
to research on the solutions for various optimization problems
associated with the hybrid SaaS concept. Subsequently, related
works such as [16] and [17] focused on the design of cost
efficient VM migration algorithms which enables the scale
up of local data center resources to the public Cloud in the
context of Cloud bursting. However, their works considers

workload characteristics as static. In [18], a model that extends
the physical site cluster with Cloud resources elastically was
proposed to adapt to the dynamic demands of applications. The
central component of this model is an elastic site manager
that handles resource provisioning. In [19] Li et al. imple-
ments Lyapunov optimization techniques to develop an online
dynamic provisioning algorithm in the hybrid Cloud setting.
Their algorithm seeks to minimize the operational cost of a
hybrid SaaS provider with a delay-aware optimization. In their
work, they focus on how the SaaS provider can leverage three
types of VMs from the public in addition to the VMs at local
for job execution. However, their work does not consider the
probability of VM and communication link failure.

In contrast, other works such as [5] [6] [3] and [4] do not
overlook the probability of VM or communication link failure.
In [4], Javadi et al. studied on a problem that is comparatively
similar to ours, however, they consider the probability of
failure in the private Cloud only. In addition, they do not
consider failure in communication links as well. Although
we address a similar problem in this paper, we focus on
some practical issues such as communication cost, the cost
incurred at local (private Cloud), jobs that are dynamic in
nature, and the probability that a VM (in both private and
public) and a communication link between the public and
private Cloud may fail. Specifically, this work considers how
the SaaS provider can leverage VM instances at local and
the On-demand VM instances in the public Cloud to process
the job request of its users. Unlike [4] and [19], this paper
proposes a resource provisioning algorithm which relies on
the job runtime estimate, the prices of VM instances, and the
availability-state of rented/local resource to decide what are
the best types of VM instances to run each job and when jobs
should run in the hybrid Cloud setting.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

In this paper, we assume that there is a SaaS provider who
owns a private data center which comprise a finite number
of local servers that implements virtualization concepts to run
user jobs. The SaaS provider is assumed to have the ability
to seamlessly scale up the capacity of its services by renting
for On-demand VM instances from the public Cloud when
there is a spike in resource demand. The provider can as well
scale down the rented VM instances once they are not needed.
Since the rendering of service with VMs at local (private cloud)
and the renting of the public Cloud VMs is associated with
much monetary cost, it is imperative for the SaaS provider
to reduce such cost. The SaaS provider is therefore faced
with the challenge of minimizing total operational cost without
violating the deadline for job completion considering the
probability of VM and communication link failure.

To address the challenge, the SaaS provider needs to decide
on the number of VMs to rent and when to rent them.
Emphatically, a job is first directed to the private Cloud but
once the private VMs are busy, they are directed to a waiting
queue. The SaaS provider decides on the number of VMs to
rent when the waiting time of the job has exceeded a threshold
delay value Wk. The decision of the SaaS provider is based
on the runtime estimate of the job, the availability-state of
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Fig. 1. Hybrid Cloud Architecture

the VMs and their associated prices. Technically, there is the
probability of VM or communication link failure, however,
since we adopt the fault recovery mechanism, it is assumed
that all failures are recoverable. Given that all failures are
recoverable, it is obvious that after some time (recovery time)
VMs and communication links resumes execution [3]. The
occurrence of failures, failure times, and recovery times are
assumed to be mutually s-independent [5]. Table I shows a
list of notations and their descriptions as used in this paper.

VM instances are assumed to be equivalent to the instance
types available at Amazon EC2. Since there are diverse VM
types in the public Clouds, we assume that the VM instances
on public Cloud have similar capacity in terms of memory
size and EC2 compute units (ECUs) as in the private Cloud
[20]. However, for each type of similar instance, there exist an
infinite number of them on the public Cloud whiles that of the
private is limited. One ECU provides a processing capacity
which is equivalent to a CPU capacity of 1.0 to 1.2 GHz
2007 AMD Opteron or 2007 Intel Xeon processor. In this
paper, we consider VM instances with possible ECU values of
{1, 8, 13, 16, and 26} [21]. The EC2 types which are of exact
ECU characteristics are m1.small (1 ECU), c4.large (8 ECUs),
m4.large (13 ECUs), c4.xlarge (16 ECUs), and m4.2xlarge
(26 ECUs). Let Rpriv represent the pool of VM instances
in private Cloud and Rpub the pool of public Cloud VM
instances. The total pool of VM instances Rp = Rpriv∪Rpub.
Thus the union(∪) of the set of private and public VMs.
Emphatically, the number of VMs in Rpub is assumed to be
infinite whiles that of Rpriv is finite. For the purposes of
clarity in representation, we represent the jth VM in either the
public or private Cloud by Rj respectively, where 1 ≤ j ≤ n.
Each Rj has the following parameters, number of ECUs
Uj , availability aj , bandwidth bwj , memory Mej , processor
speed psj and price Pj . Rj={Uj , aj , bwj ,Mej , psj , Pj}. The
availability aj of an instance refers to the state where that
VM instance is not in use by other jobs. It is considered as an
indicator value {0, 1}, which determines whether or not a VM
can be provisioned. If a VM is in use regardless of the number
of free compute units, the value of aj = 0. However, as soon
as a VM has finished processing the current job, aj = 1 which
indicates that VM is now idle for provisioning.

User jobs are assumed to contain parallel tasks with av-
erage parallelism (Ak) and a coefficient of the variance of
parallelism as σk [22]. Each job can run on several virtual

TABLE I. NOTATIONS

Symbols Description

ti The ith Task which is a subset of a job
S Scheduler
µr Service rate of task
TW
k The waiting time of job
N The maximum number of jobs

allowed to be in queue
Dk The deadline for the completion of job
T The overall execution time with fault recovery
αkj the runtime estimate of the kth on the jth VM
Wk Threshold waiting time of a job
bw Bandwidth
aj The availability-state of the jth VM instance
Rp The total pool of VM instances (public and private)
Rpriv The set of VM instances in the private Cloud
Rpub The set of VM instances in the public Cloud
Rj The jth VM instance (public or private)
psj Processing speed of a VM instance j

j Failure rate
µj Recovery rate
β The fraction of the maximum power in idle state
ωmax Maximum power consumed in active state
G The communication cost
C Overall cost considering fault recovery
ε Constant price for power consumption in private Cloud
Ak average parallelism of a job
σk coefficient of the variance of parallelism
Skj Speedup of the Kth job on the jth VM

processors(ECU) but restricted to one VM instance. There are
l dynamic jobs that can be submitted to the SaaS provider for
provisioning. Let the kth job in l number of jobs be represented
as jk. Each job Jk, where 1≤k≤ l has ti number of tasks,
number of required processors rck, job length lk and deadline
for job completion Dk.

B. Overall Execution Time

For the processing of each job, a real life situation is
considered, where the VM running tasks has the probability of
failing and recovering. Jobs are made up of parallel tasks and
each kth job has i number of tasks where 1 ≤ i ≥ k. The time
for the execution of a job on VM j without considering the
possibility of VM failure is denoted by T (e)

kj . Mathematically,
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T
(e)
kj can be computed as shown in (1) ;

τij =
length(ti)

psj

T
(e)
kj = max{τij} (1)

Where psj is the processing speed of VM j, length(ti) is
the length of task i and max {τij} is the maximum finish time
of the ith task on j (i.e. the time the last task is completed on
j). Assuming all failures are recoverable, then after some time
(recovery time), the VM resumes execution. The failure rate
on j follows a Poisson process with rate λj . Hence, the total
number of failures Nj(t) during a time interval of (0, t] can
be computed as shown in (2) [6];

Pr{Nj(t) = b} =
(λjt)

b

b!
e−λjt, b = 0, 1, ... (2)

Given that b is the instance for an occurrence of failure.
Moreover, let RT (b)

j represent the bth recovery time on j,
where b = 0, 1, ... Emphatically, all RT (b)

j are exponential
random variables with parameter µj , given that µj is the rate
of recovery on j. Let the total recovery time during a time
interval of (0, t] on j be denoted as RTj(t). RTj(t), can be
computed as in (3) [3].

RTj(t) =

Nj(t)∑
b=1

RT bj (3)

it is obvious that RTj(t) is a compound Poisson process,
whose mean value is;

E[RTj(t)] =
λj(t)

µj
(4)

Hence, the actual execution time of a job denoted by AT (e)
kj ,

with fault recovery, is the sum of T (e)
kj and the recovery time

of job k on j.

AT
(e)
kj = T

(e)
kj +RTkj (5)

With an expectation of

E[AT
(e)
kj ] = E[T

(e)
kj +RTkj ] (6)

The value RTkj is the recovery time of job k on j.
Moreover, based on our scenario jobs can be transmitted from
the private cloud to the public cloud. Hence, there exist a time
for communication. Let Θ(jk) be the set of links that can
be used to transfer jobs. Let the communication time without
considering the possibility of a link failure be denoted by Tc.
Tc, can be computed as shown in (7). Mathematically, Tc is
dependent on the amount of data transferred through link c to
its destination and the bandwidth bw such that c ∈ Θ(jk) [5].

Tc =
datac(jk)

bw
(7)

Assuming all failures are recoverable, then after some time
(recovery time), the communication link gets connected and
allows for data transfer. Let γc be the failure rate on link c [3].

The failure rate follows a Poisson process with rate γc. Hence,
the total number of failures Xc(t) during a time interval of (0,t]
can be computed as;

Pr{Xc(t) = b} =
(γct)

b

b!
e−γct, b = 0, 1, ... (8)

Here, b is the instance for an occurrence of failure. More-
over, let the bth recovery time on link c, where b=0,1,... be
denoted as RT (b)

c . All RT (b)
c are exponential random variables

with parameter (δc). Given that δc is the rate of recovery on
link c. Let the total recovery time on link c be denoted as
RTc(t), the total recovery time during a time interval of (0,t]
can be computed as [5];

RTc(t) =

Xc(t)∑
b=1

RT bc (9)

It can be seen that RTc(t), is a compound Poisson process,
whose mean value is

E[RTc(t)] =
γc(t)

δc
(10)

If RTc is the recovery time for communication failure,
then the communication time considering fault and recovery
denoted as T ce can be computed as;

T ce = Tc +RTc (11)

with an expectation of

E[T ce] = E[Tc +RTc] (12)

Finally, there is the probability that an incoming job may
find other jobs in the system on its arrival. At the arrival of a
job, if the queuing system currently has sufficient vacancies,
then the job will enter the queue, else it will be blocked
and the job request fails. Details for computing the blocking
probability can be found in [5]. All jobs that enter the queue
successfully will possibly reach the scheduler S (S refers to
homogeneous schedulers, S > 1) after some waiting time. For
k jobs, the expected waiting time of jobs of size l in a queue
for l ≤ S is given by:

E[TWk ] =

{
0 0 ≤ k ≤ S − l
k−S+l
µrS

S − l ≤ k ≤ N − l (13)

Moreover, the expected waiting time of a job of size l in
a queue given that l > S is given by:

E[TWk ] =
k − S + l

µrS
, 0 ≤ k ≤ N − l (14)

where N, µr is the maximum number of jobs allowed to
be in a queue and the service rate respectively. Details of this
model have been well studied in [5] [23].

Let the overall execution time for each job k on j be denoted
by Tkj . Tkj is therefore the sum of the actual execution time
ATkj , the actual communication time T (ce) and the waiting
time TWk . Moreover, let T denote the overall execution time
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for processing all user jobs considering fault recovery. T and
Tkj can be computed as follows:

Tkj = AT
(e)
kj + T (ce) + TWk

T =
l∑

k=1

n∑
j=1

Tkj (15)

with an expectation of

E[T ] = E[
l∑

k=1

n∑
j=1

Tkj ] (16)

C. Total Operational Cost

1) Cost for Private VMs: The total operational cost refers
to the overall expense the SaaS provider realizes for provision-
ing resources to execute client request. It is worth noting that,
some related works such as [4] and [20], which focused on a
similar problem to that of this paper, do not factor into account
the cost incurred at private Cloud. Similar to [19], we argue
that there is a cost for running local or private datacenters and
such cost has an effect on the total expenditure of the SaaS
provider. The cost incurred at local is therefore modeled as
an energy cost. In the computation of the energy cost, private
servers are assumed to be in two states, namely; idle and active
state. A CPU of a server in its idle state is assumed to consume
averagely 70% of the power consumed by a fully active CPU
[24]. The energy cost is therefore modeled as follows: the
power consumption rate Pu of servers is given by;

Pu(U) = β · ωmax + (1− β) · ωmax · U) (17)

β, refers to a fraction of the maximum power used in an
idle state while ωmax refers to the maximum power consumed
by server in an active state and U is the utilization factor of
the servers. If U=0 then it means the server is in an ideal state.
Hence, the fraction of the maximum power will be the value of
the energy consumed. The utilization of the servers varies with
respect to time due to the workload variability. Accordingly,
the utilization is a function of time and it is represented as U(t).
The total energy consumption on a compute node is given by
[24];

PTU =

∫ 1

0

PuU(t) (18)

Given that the price for the power consumption of a
compute node is a constant ε, as extensively studied in [70].
The price P privj of a private VM is simply considered as the
product of the constant ε and the number of compute units
of that VM instance. That is P privj = ε · Uj where Uj is the
number of ECU in that VM instance. However, if a compute
node is in idle state it is reasonable to consider the price of its
VM as 70% of the active VMs price. That is although it is not
in use but it consumes 70% of the power consumed by a fully
active compute node as studied in [24]. Since in this paper all
idle VMs are released immediately for allocation, the cost of
running jobs on private VMs is considered only for active state
VMs. Hence, the cost Cprivkj for running the kth job on private
VM j where 1 ≤ k ≤ l and 1 ≤ j ≤ n can be computed as:

Cprivkj = P privj · Tkj (19)

Here P privj is the price of the jth VM instance in the
private Cloud, and Tkj is the overall time for the completing
job k on that jth VM instance.

2) Cost for Public VMs: The cost of using public VMs
is modeled to follow the Amazon EC2 billing model. Each
instance runs for a minimum of one hour, hence the cost is
computed per the execution time for job completion. Given
that the price of a VM instance is represented as P pubj , let the
cost for renting a VM at public be denoted as Cpubkj . The cost
for renting a public VM can be computed as:

Cpubkj = P pubj · Tkj (20)

where 1 ≤ k ≤ l and 1 ≤ j ≤ n. Therefore the cost for
running VMs at local and renting On-demand VMs can be
computed as shown in (21), where G is the communication
cost between the VMs across the public and private Cloud. G
is considered to be a constant.

Costkj = Cpubkj + Cprivkj +G (21)

Furthermore, the total operational cost for running all jobs
on available VM instances can be computed as:

C =
l∑
k

n∑
j

Costkj (22)

Here 1 ≤ k ≤ l and 1 ≤ j ≤ n. With an expectation of;

E[C] = E[
l∑
k

n∑
j

Costkj ] (23)

D. Problem Formulation

First, it is expected that a VM or a communication link
may fail during the execution of jobs. The SaaS provider is
challenged to make decisions on the number of VM instances
to rent or instantiate at local such that total operational cost is
reduced. Technically, clients have an estimated time (deadline)
by which they expect their jobs to be completed. That means
although there is the need to reduce total operational cost,
the execution time of a job must not be greater than the
deadline for the job. In this section, we present the optimization
model for this problem. The problem is to minimize the total
operational cost while ensuring that jobs are completed within
its deadline. Formally:

min E[C] (24)

s.t.

∀k ∈ {1...l},∀j ∈ {1...n} (25)

E[Tkj ] ≤ Dk (26)

(24): This is the optimization objective. It refers to the
decision to minimize the total or overall operational cost. For
instance, assuming there are five instance types of ECU values
{1, 8, 13, 16, and 26}, and the runtime in seconds for running
job 1 on a standard VM instance of 1 ECU is 2, then the
runtime in seconds for running job 1 on all the other VM
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instances are {16, 26, 32, and 52} respectively. To achieve (24),
the choice of VM instance chosen to run job 1 should satisfy
the constraint (25) and (26).

(25): This constraint indicates that a job is restricted to one
VM during execution.

(26): An SLA contract is signed between the SaaS provider
and users specifying the deadline for each job. The provider
must therefore ensure that the overall execution time for each
job does not exceed the clients’ estimated deadline.

IV. DYNAMIC RESOURCE PROVISIONING ALGORITHM

The VMs and communication links across the hybrid Cloud
is considered to be failure prone. Therefore, the problem
of minimizing operational cost without deadline violation is
non-trivial. Based on our optimization model we are able to
address this problem with two provisioning policies, namely:
the private and public provisioning policies. These policies are
implemented by an efficient algorithm (DRPA). Fig.1 gives
an overview of the framework of DRPA. First, jobs arrive at
the Cloud management system (CMS). The CMS maintains
queue and computes the runtime estimate of jobs based on the
information provided by the resource pool manager (RPM).
The RPM handles the peering arrangement between Datacenter
1 (DC1) manager and Datacenter 2 (DC2) manager. It verifies
whether or not a job must be transferred to the public Cloud for
execution based on the runtime estimate of the incoming jobs,
the availability state of the VMs and their associated prices.
Once verified, the scheduler then schedules the job on the VM
of choice. The VM of choice refers to the VM which satisfies
the objective in (24) with respect to its constraint in (25) and
(26).

A. Runtime Estimation

Studies have shown that Cloud provisioning strategies
based on user supplied runtime estimate of job sometimes
leads to overestimation or overprovisioning of resources [25],
[26]. Several works have proposed approaches to predict job
runtime [25], [27], [28], where the system computes the
estimated runtime of a job and uses it rather than the users’
only. Moreover, as indicated by [26], no single method of
runtime estimation has proven to work well in all scenar-
ios. The runtime estimation technique is popularly used in
backfilling service techniques. However, we employ it to aid
the decision making involved in efficiently leveraging VM
instances across the hybrid Cloud. Without loss of generality,
four approaches for computing runtime of jobs are considered
in this paper. The four approaches are generated by adjusting
the user supplied runtime estimate. The models are namely:
user supplied, fraction of user supplied, user runtime with
error and recent average runtime estimation models. Based
on each VM instance comprising a number of compute units,
we compute the runtime estimate of each job. We employ
the speedup model of Downey [29] which was also used by
[27] and [30]. Downey’s model [29] depends on two important
factors, namely; the degree of parallelism of a job (Ak) and
the coefficient of the variance of parallelism σk. The values
of Ak and σk are modeled based on the job characteristics
provided by users using the model of Cirne & Berman [31].
This model [31] was also adopted in [27].Given the speedup

of kth job on the jth VM as Skj , the runtime estimate αkj of
a job k on VM j is computed as shown in (27). Uj refers to
the number of ECUs in the jth VM.

αkj =
Uj
Skj

(27)

In the computation of the user supplied runtime, the job
length used is assumed to be the job length given by the user
at job submission. Since studies have shown that the user-
supplied values leads to overestimation, an alternate approach
have been proposed. Thus the fraction of user supplied runtime
estimation. This approach uses a value equal to 1/3 of original
value of the job length as used in the user supplied approach. In
computing the user runtime with error, the estimate is obtained
by using a slightly modified value of the job length as used in
the user supplied runtime estimate. The modification is done by
adding up a uniformly distributed random percentage between
0 and ten percent (10%) to the job length. Finally, in computing
the recent average runtime, the average runtime of at least
two completed jobs are used to generate the runtime of the
next incoming job. At the extent of decision-making, if there
exists less than two completed jobs, then the estimated value
is assumed to be given by the user supplied approach [27],
[32].

B. Provisioning Policies

1) Private Provisioning Policy: In our scenario, the SaaS
provider intends to first run the incoming jobs on the private
VMs. However, the provider can scale up for more VMs from
the public Cloud when the need arises, i.e. public Cloud VMs
are rented only when the waiting time of a job has exceeded
its’ threshold delay value Wk such that no other VM instance
at local is available (i.e. aj=0). The threshold delay value Wk

of a job k is the maximum estimated time the job can wait
for a VM to be provisioned such that its due deadline is still
met. Incoming jobs may eventually be redirected to the public
Cloud once its waiting time for the VM of Choice exceeds the
threshold delay value and all other VMs at local are busy (i.e.
aj=0). Wk is computed as shown in (28), where Dk is the
deadline of the waiting job, T ark is the arrival time of the job,
αkj is the runtime estimate of the job on its VM of Choice
and % is the modifying factor. That means, Dk−T ark refers to
the time until the deadline of the job.

Wk = max(0, Dk − T ark − αkj · %) (28)

The modifying factor introduced in the computation of
Wk supports the decision making for renting VM resources
from the public Cloud. Algorithm 1 becomes more conven-
tional when the value of the modifying factor % is greater.
Specifically, Wk approaches 0 with higher values of %. A
value of Wk=0 indicates that a resource must be provisioned
immediately from the public Cloud to complete the job within
the given deadline. On the other hand, lower values of %
indicates that the value of Wk would be greater than 0, leading
to postponement of provisioning actions and a high probability
of running jobs on private VMs which are comparatively
cheaper than VMs in the public Cloud but associated with
deadline violations. The provisioning of VM for incoming job
k at local must satisfy (29), such that (25) and (26) holds. Thus
the minimum resulting value that is yielded when the price of
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each VM in the private Cloud is multiplied by the runtime
estimate αk of the kth job.

P1 = min(P privj · αkj) (29)

Let the private provisioning policy problem be called P1
2) Public Provisioning Policy: Public Cloud VMs are

rented only when the waiting time of a job has exceeded the
threshold delay value Wk. A job may wait to be assigned to a
VM of choice if the VM is expected to be free soon. However,
if the waiting time of the job exceeds its threshold delay value
Wk, then the SaaS provider must decide on the VM to rent
from the public Cloud. The VM to rent from the public Cloud
can be determined by solving (30). The VM of choice, with
respect to the public provisioning policy, refers to the VM
which satisfies the objective in (30)) whiles constraint in (25)
and (26) holds.

P1 = min(P pubj · αkj) (30)

P pubj , is the price of the jth VM instance in the public
Cloud and αkj is the runtime estimate of the job k on that
instance. Let the public Cloud provisioning be called P2.

To achieve the optimization objective, we designed
a heuristic-based dynamic resource provisioning algorithm
DRPA as shown in Algorithm 1 to solve P1 and P2. Each
job is considered to have a number of parallel tasks. Jobs are
either transferred to the public Cloud or run on the private
Cloud based on its runtime estimate, deadline, waiting time as
against the threshold value, the availability state and the prices
of the VMs. Initially, no VM is rented from the public Cloud.
For each job k that arrives at the CMS, its runtime estimate αkj
is computed. Given that the pool of VM instance is Rp, the
job is first directed to the private Cloud on the condition that
the available VMs in the private Cloud are free and satisfies
P1 (Step 1-8). The determination of the VM of choice in the
private cloud is initiated by solving P1. The result of P1 is
simply the minimum resulting value that is yielded when the
price of each VM in the private Cloud is multiplied by the
runtime estimate αkj of the kth job. The VM of choice is then
scheduled to run the kth job. (step 9). Next, the availability-
state of the VMs in the private cloud are updated (step 10). If
the VM of choice is not available (i.e aj=0) then the job jk
must wait provided that its’ waiting time does not exceed the
delay threshold factor Wk. If the job can wait, then it is added
to the waiting list W and scheduled (added to the waiting list
W) to run on the VM expected to be free or idle soon (Steps
12-14). As indicated in (steps 25-30), for each job found in
W, the algorithm will first search for other VMs in the private
Cloud which may be free and satisfies P1 to complete the
job. Otherwise, the VM instance in the public Cloud which
satisfies P2 will be rented On-demand to run the job (steps
16-18). The solution of P2 is is simply the minimum resulting
value that is yielded when the price of each VM rented from
the public Cloud is multiplied by the runtime estimate αk of
the kth job. After the job is completed, the VM is shut down
to avoid extra billing (step 19). The queue is updated and the
next job follows (Step 34). The application of methods such as
job runtime estimation, job postponing, and idle VM instance
termination assures that the provisioning policy keeps an all
encompassing view of the incoming jobs which are dynamic
in nature.

Algorithm 1 Dynamic Resource Provisioning
Input: set of jobs, VM prices, VM instances
Output: Dynamic provisioning of VM resources with mini-

mum cost
1: for each job jk do
2: αkj ← compute runtime estimate on all instances;
3: Rp ← resource pool (Rpriv ∪Rpub);
4: Rpub ← ∅;
5: decision ← selectRpriv;
6: compute Wk;
7: for each VM resource Rj in private Cloud do
8: if (aj = 1) then
9: solve P1;

10: Update VMs aj state;
11: else
12: if (Wk > 0) then
13: Delay job until Wk;
14: Add job to waiting list W;
15: else
16: decision ← select Rpub;
17: for each VM resource Rj in public Cloud do
18: Solve P2;
19: VMidle.Shutdown;
20: end for
21: end if
22: end if
23: end for
24: end for
25: for each job Jk ∈W do
26: decision ← select Rpriv;
27: for each VM resource Rj in private Cloud do
28: if (aj=1) then
29: Solve P1;
30: Remove job Jk from W;
31: end if
32: end for
33: end for
34: Update queue;

V. PERFORMANCE EVALUATION

In this section, we study the performance of the proposed
DRPA. We run a set of experiments using a real world work-
load log obtained from the Distributed ASCI Supercomputer
2 (DAS2 fs4) available at the Parallel Workloads Archive
[33]. The original workload is composed of a total of 33,795
with parallel tasks submitted over a period of 11 months
by a total of 40 users. This workload is suitable for the
simulation in this work because of its property of parallelism
and varied job lengths. It contains an information about the
user supplied runtime estimate. However, as stated earlier, we
shall conduct a further evaluation of the DRPA using other
runtime estimation methods namely: user runtime estimate
with error, fraction of user supplied runtime estimate and
the recent average runtime estimate. The objective of our
experimental study is to evaluate the performance of DRPA
based on two metrics; cost and deadline violation rate in the
presence of VM and communication link failure. In order to
capture the performance of the proposed algorithm, our results
are averaged on 50 simulation runs with varying number of
jobs between 3,000 and 33,000.
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In the first part of our experiments, we study the effects of
the four runtime estimation approaches on the DRPA in two
cases: first, considering fault and recovery; second, without
considering fault and recovery. The objective is to determine
the kind of runtime approach which works better as against our
performance metrics. In the second part of our experiment, we
conduct a comparative study with two benchmark approaches
namely: the best and worse case approaches [19] [27] and also
with a recent algorithm called Size-based Selective-backfilling
hybrid Cloud provisioning policy [4]. The objective of such
comparison is to demonstrate the efficiency of the proposed
algorithm.

A. Experimental Setup

We performed all our experiments on a Pentium(R) Dual-
Core processor with a processor speed of 2.8GHz and a
memory of 4GB. The CloudSim toolkit [34] was used to
simulate a Cloud system consisting of two datacenters, namely
datacenter1 and datacenter2. datacenter1 is the datacenter
for the public Cloud and datacenter2 is the datacenter for
the private Cloud. The NetworkTopology component of the
CloudSim was modified to represent the communication be-
tween the Datacenters. Five instance types were simulated in
the experiments. They were modeled after the characteristics
of Amazon EC2 types [21]. The set of possible values of
ECU is Uj : 1, 8, 13, 16, and 26. The EC2 types which
are of the exact ECU characteristics are m1.small (1 ECU),
c4.large (8 ECUs), m4.large (13 ECUs), c4.xlarge (16 ECUs),
and m4.2xlarge (26 ECUs). The five VM instance types are
hosted on each datacenter with distinguishing properties with
respect to their ECUs. Since the public Cloud is perceived to
have unlimited resources, five times of the VM instance type
in the datacenter1 are hosted on datacenter2. However, this
number increases as may be required for renting. Moreover,
to obtain the values of the processor speeds and prices in
the public Cloud, we adopt a similar method as applied
in [35], because their approach was modeled after Amazon
EC2 services. The processor speed of each host is uniformly
distributed within the range [100, 1000] with the average speed
of 550 MIPS. Without loss of generality, the price of a VM
have roughly linear relationship with its processor speed, so
as to generally ensure that a faster host yields more execution
cost than a slower host in executing the same job. The method
to derive the processor speed in the private Cloud is generated
in the same way as in the public. However, its prices are
generated according the energy cost model. The value of the
constant ε as used in the experiment is 0.04 (ε is the constant
price assumed for energy consumption). The failure rates of
the VMs and communication links are randomly generated
from the interval of [0.01, 0.1] [5] [6]. All recovery rates
are randomly generated from the interval of [0.05, 0.15]. The
average bandwidth between the compute nodes is set to 10
Mbps as used in [4], and finally, the modifying factor % is a
uniformly distributed random values between 0 and 2.

B. Effects of the Four Runtime Estimation Approaches

First, we evaluated DRPA using each of the runtime esti-
mation approach against the performance metrics considering
fault and recovery. The results in Fig. 2a and Fig.2b, shows
the behavior of DRPA after job execution. It can be seen

that, the Total operational cost increases slowly when the
workload is relatively small. This is attributed to the fact
that at such point most of the jobs are run on the private
Cloud. However, when the workload shoots up there is a
relative increase in total operational cost due to the cost
for renting resources from the public Cloud. Moreover, the
peak cost for each of the approach varies. The fraction of
user supplied runtime approach yields the cheapest cost with
comparatively, the worst deadline violation as can be shown
in Fig.2b. This is due to the underestimation of the user
job length. This underestimation resulted in the acquisition
of relatively minimum runtime estimate which led to the
deployment of VMs with cheap cost, hence causing its total
operational cost to be the cheapest. However, this caused much
deadline violation, hence causing its deadline violation rate to
be 25.46%. According to Fig.2a and Fig.2b, it is obvious that
the user runtime with error approach achieved the best results
with respect to the two performance metrics; Total operational
cost and deadline violation rate. It comparatively achieved a
total operational cost of $3,749.00 which is about 14.4% better
than the total operational cost of the user supplied runtime
approach. Moreover, it yielded a deadline violation rate of
5.34% which is approximately 13% greater than the deadline
violation rate of the user supplied runtime approach. The user
runtime with error approach of the proposed ODPA performed
consistently better.

Secondly, we evaluate DRPA using the four runtime ap-
proaches as against the performance metrics without con-
sidering fault and recovery. Fig.3a and Fig. 3b, shows the
comparative results of the four approaches as against Total
cost and deadline violation with and without fault recovery
respectively. First, it is obvious to point out that without
considering fault and recovery the various runtime approaches
performs relatively better against cost and deadline violation
than the case where fault and recovery is considered. In
essence, this demonstrates the impact of fault recovery on
service performance. It can be deduced that, it is relevant to
develop a Cloud system that factors into account fault recovery,
since it has relative impact on the cost and the execution time
for job completion.

In summary, it can be observed that, for a given workload,
having a perfect runtime estimate does not actually translate
into a more efficient provisioning, especially in terms of cost.
This is due to the fact that all of the approaches had a
relatively low or high deadline violation. This can be attributed
to moderate over or under estimations, which caused cheaper
or relatively expensive instances to be requested. Analytically,
the user runtime with error approach in this work appears to
be comparatively better than the rest of the approaches against
the two performance metrics (cost and deadline violation).

C. Comparative Analysis

In this experiment, we simulated three other algorithms
namely: Size-based selective-backfilling algorithm [4], Best
case algorithm [19], and worst case [27] algorithm. In the worst
case, it is assumed that all jobs are processed with VMs rented
form the public Cloud in an On-demand fashion. However, the
information for each job is known. Jobs are run on the most
efficient VMs. Similar to [19], in the best case scenario, it
is assumed that there is an oracle that knows all the future
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TABLE II. COMPARATIVE ANALYSIS OF DRPA WITH OTHER ALGORITHMS

Algorithms Number of Jobs Cost for Renting($) Private Cost($) Total Operational Cost($) Deadline Violation Rate (%)

Best Case [19] 33, 000 0 2, 937.00 2, 937.00 0

Worst Case [27] 33, 000 7, 764.00 0 7, 764.00 0
SBSB [4] 33, 000 3892.00 NC 3892.00 9.938

DRPA(USRWE) 33, 000 3, 531.00 218.00 3, 749.00 5.34

DRPA(USRWE)- Dynamic resource provisioning algorithm with User runtime with error approach, NC- not considered

information and can use the most efficient VM instance for
each job to achieve an ideal solution. It is worth noting that,
the best case scenario is not real. However, it is hypothetically
considered as a lower bound implemented to evaluate the cost-
effectiveness of the proposed policy. The Size-based selective-
backfilling algorithm (SBSB) [4] was proposed by Javadi et al.
They considered a similar hybrid Cloud resource provisioning
problem to ours. However, they do not consider the cost
incurred at the private Cloud as well as the probability of
failure in both the private and public Cloud. They assumed
that only the VMs in the private Cloud are failure prone.

To evaluate our proposed algorithm, we adopt the user
runtime with error approach (USRWE) as the base policy of
DRPA and compare its result to the simulation results of the
Best Case, Worst Case and the SBSB algorithms. The result in
Fig. 4a, Fig. 4b and in Table II shows the behavior of the four
algorithms after running 33,000 jobs. Comparing the results
obtained in Table II for the cost of renting VMs in the case
of each algorithm, the proposed DRPA(USRWE) outperforms
the size-based selective backfilling (SBSB) and the Worse Case
algorithms by a percentage of approximately 9.3% and 54.52%
respectively. However, the Best Case algorithm yields a result
that outperforms all the other three algorithms including our
algorithm. It yielded no cost all ($0.00), because in the Best
Case scenario all jobs are run on the private Cloud.

On the other hand, our proposed DRPA(USRWE) outper-
forms the Best Case algorithm in terms of the operational
cost at the private Cloud. The Worst Case yielded no cost
at all ($0.00) since in this scenario all jobs are run with
VMs in the public Cloud. Hence, it outperformed both our
DRPA(USRWE) which yielded a cost of $218.00 and the Best
Case which yielded a cost of $2,937.00. In contrast, the SBSB
algorithm does not factor into account the operational cost at
the private Cloud. It must be noted that the cost of the Best
case is high because in this scenario all the 33,000 jobs were
run on the private Cloud. Moreover, considering the results of
our proposed DRPA(USRWE) in terms of the cost for renting
and the cost at the private Cloud, it can be observed that the
cost for renting is fairly larger than the cost at private. This
can be attributed to two factors: first, the assigned price for a
VM at the private Cloud was fairly lower than that of the cost
in the public Cloud. Second, about 55% of the jobs were run
with VMs on the public Cloud due to the need to satisfy the
deadline constraint of jobs.

Considering the total operational cost of all the algorithms,
the proposed DRPA(USRWE) yielded $3,749.00 which is
approximately 51.71% better than the Worse Case. However,
when compared with the Best Case, it is approximately 28%
worse. Also it is 3.71% better than the SBSB algorithm.
There was no deadline violation in the Best and Worst Case
comparatively. Unlike Best and the Worst Case, the deadline

violation rate of the proposed DRPA(USRWE) is 5.34% which
is 46.27% better than the SBSB algorithm.

In summary, the obtained results show that, by the adoption
of the proposed DRPA(USRWE), SaaS providers can save
51.71% of total cost compared to the Worst Case scenario, even
in the presence of VM and communication link failures, with
a relatively low deadline violation rate of 5.34%. Moreover,
the proposed DRPA(USRWE) performs better than SBSB by
a percentage of 9.3% with respect to the cost for renting VM
instances.

VI. CONCLUSION

In the hybrid Cloud paradigm, SaaS providers are faced
with the challenge of minimizing cost without sacrificing
resource provisioning service performance. The probability of
VM and communication link failure is a real life factor which
has an effect on service performance. This paper focuses on
the problem of minimizing total operational cost involved in
hybrid Cloud resource provisioning considering fault recovery.
Specifically, we propose a heuristic-based algorithm which ap-
plies methods such as job runtime estimation, job postponing,
and idle VM instance termination to assure that the provision-
ing policy keeps an all encompassing view of the incoming
jobs which are dynamic in nature. The results obtained from
our experimental study show that, by the adoption of the
proposed DRPA(USRWE), SaaS providers can save 51.71%
of total cost compared to the Worst Case scenario, even in
the presence of VM and communication link failures, with a
relatively low deadline violation rate of 5.34%. Moreover, the
proposed DRPA(USRWE) outperforms the recently proposed
SBSB by a percentage of 9.3% with respect to the cost for
renting VM instances.
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Fig. 2. Simulation results using the four approaches
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Fig. 3. Simulation results depicting the impact of Fault Recovery on DRPA
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Fig. 4. Simulation results depicting the performance of DRPA against other Algorithms
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