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Abstract—Service Oriented Computing (SOC) provides a 

framework for the realization of loosely coupled service oriented 

applications. Web services are central to the concept of SOC. 

Currently, research into how web services can be composed to 

yield QoS optimal composite service has gathered significant 

attention. However, the number and spread of web services 

across the cloud data centers has increased, thereby increasing 

the impact of the network on composite service performance 

experienced by the user. Recently, QoS-based web service 

composition techniques focus on optimizing web service QoS 

attributes such as cost, response time, execution time, etc. In 

doing so, existing approaches do not separate QoS of the network 

from web service QoS during service composition. In this paper, 

we propose a network-aware service composition approach 

which separates QoS of the network from QoS of web services in 

the Cloud. Consequently, our approach searches for composite 

services that are not only QoS-optimal but also have optimal QoS 

of the network. Our approach consists of a network model which 

estimates the QoS of the network in the form of network latency 

between services on the cloud. It also consists of a service 

composition technique based on fruit fly optimization algorithm 

which leverages the network model to search for low latency 

compositions without compromising service QoS levels. The 

approach is discussed and the results of evaluation are presented. 

The results indicate that the proposed approach is competitive in 

finding QoS optimal and low latency solutions when compared to 

recent techniques. 

Keywords—Web Services; Service Composition; QoS; Network 

Latency; Cloud; Fruit Fly Algorithm 

I. INTRODUCTION 

Service Oriented Computing (SOC) is a paradigm for 
building loosely coupled distributed systems [14]. It 
encapsulates the functional units of a distributed system into 
web services which perform specific tasks and are easily 
reusable in other software systems. The true value of SOC lies 
in its ability to compose different services to complete more 
complex user requests. Web services are central to the 
realization of SOC. A web service is defined as a network-
accessible object that provides some functionality [9]. Web 
services are characterized by functional and non-functional 
attributes [13]. The functional attribute dictates what kind of 
task a web service is meant to perform e.g. credit card 
validation. On the other hand, the non-functional attribute, 
also known as Quality of Service (QoS), indicates service’s 
level of quality. The QoS attribute is mainly used to 
differentiate services having similar functional attributes. 
Service providers normally advertise services together with 

their QoS levels as part of a Service Level Agreement (SLA). 
Some service QoS attributes advertised includes cost, response 
time and reputation [15]. 

A. Qos-aware service composition 

QoS-based web service composition has received a lot of 
attention from the research community. It allows organizations 
to share their business processes with other service providers 
to facilitate delivery of service functionalities which satisfy 
complex user requests. 

In many situations, a single service may not be able to 
satisfy a user’s request. For instance, a web service is 
incapable of performing both credit card validation and hotel 
booking for a user attempting to plan a business trip. During 
such situations web services from different service providers 
are combined to meet the user’s requirements. This is where 
service composition comes into play. It is the process of 
aggregating web services having disparate functionalities into 
a composite service. The composition of services is performed 
via their functional and QoS attributes. The functional 
attributes define what a service is capable of doing while QoS 
attributes represent the non-functional or quality aspects of a 
service e.g. service availability, reputation, response time, etc. 
The QoS attributes are used for composition only when the 
services involved have comparable functionalities. The goal of 
service composition is to search for a combination of services 
that leads to optimal QoS levels. During the composition 
process, QoS attributes for services are aggregated according 
to a composition’s workflow pattern [2] into a composite 
service. Once a user request is issued, service composition 
breaks down the request into smaller tasks organized 
according to one of several workflow patterns [2]. Within each 
task, a number of functionally similar services offered by 
different service providers are made available for the 
aggregation process. In the next stage, a service is selected per 
task to form part of a composite service. As a result of the 
high number of services that currently exist on the Internet, 
there are large numbers of possible composition paths that can 
be formed. For example, suppose there exist eight tasks within 
a user request and each task can be executed by twenty 
possible web services. Then the total number of possible 
composition paths will be 20

8 
(or 25.6 Billion. This constitutes 

a research problem of how to compose services in a short time 
such that the resulting composite service presented to the user 
has optimal QoS level and meets QoS constraints. 

QoS-based web service composition problem (SCP) has 
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been defined as an NP-Hard problem [5]. The basis for our 
research was first presented in [6] where the authors propose 
an approach to tackling the service composition problem 
based on Linear Integer Programming (LIP). Their approach 
makes use of local search techniques in finding services for 
each function, and then combines these services into a 
composite service. Currently, Heuristic approaches have been 
developed to tackle the SCP. One such work is presented in 
[7] which introduces a heuristic approach based on genetic 
algorithm to solve the SCP. Their genetic algorithm (GA) 
encodes composite services as gene and then makes use of 
evolutionary selection, crossover and mutation operation to 
search for optimal compositions. Another work [8] employs a 
different heuristic approach based on particle swarm 
optimization algorithm (PSO) to solve the SCP. Their solution 
differs from [7] in the way the algorithm covers the search 
space in finding optimal compositions. Instead of utilizing 
genetic operators, PSO encodes compositions as particles 
which travel in the search space by updating their positions 
and velocities using the characteristics of the best particle. . In 
[19] a heuristic based on ant colony algorithm is presented to 
tackle the SCP where the authors consider multiple QoS 
attributes in finding composite services that meet user 
expectations. Many other heuristic approaches such as in [9] 
[10] [17] have been developed. While the service composition 
problem can be tackled optimally using meta-heuristics such 
as genetic, particle swarm and ant colony optimization 
algorithms, we adopt fruit fly optimization (FOA) algorithm to 
the SCP. To the best of our knowledge FOA has not been 
applied to the SCP before. 

B. Service composition in the cloud 

Cloud computing provides a platform for enterprises 
(Service providers) to deploy web services on cloud data 
centers so that internet users can access service functionalities. 
Generally, service composition in the cloud takes place across 
three layers: the infrastructure layer, platform layer and 
software layer. Once a user request is made, the request is sent 
to web services which are deployed on the software layer and 
offered by Software-as-a-Service (SaaS) providers. 
Underneath the software layer, service registries and 
composition engine are deployed on the platform layer. The 
service registry functions as a general repository for storing 
web services while the composition engine is responsible for 
aggregating web service into composite services. The 
infrastructure layer houses the datacenters necessary to 
support both platform and software layers. Several web 
services exist on the cloud. For example companies like 
Amazon and Microsoft provide cloud-based infrastructure and 
storage services via Amazon Web Services (AWS) and 
Windows Azure platforms respectively. Within the cloud, 
users can access different web services from literally any part 
of the world. Currently, there exist a large number of cloud-
based data centers located across the globe. This has 
exponentially increased the number of possible network paths 
that can be formed in the search space. Another important 
issue in the cloud is the need for composite services to meet 
the QoS guarantees specified in the SLA between services 
providers and users. This will allow service providers to 
maximize their earnings while ensuring that user experiences 
of their services is optimized. Therefore QoS-aware web 

service composition is critical to the delivery of quality cloud-
based composite services on to customers. 

When cloud-based web services from different locations 
are aggregated into a composite service, QoS of the network 
cannot be ignored. In situations where web services 
participating in a composition process are small in number, 
QoS of the network may not significantly affect the 
performance of a composite service. This is not the case when 
composition is taking place between large numbers of web 
services. QoS of the network usually defines the quality of 
network path between web service data centers. The quality of 
network paths can be measured using different network QoS 
metrics such as network latency or round-trip time (RTT) [3], 
network bandwidth [27], packet loss [25], jitter [26], etc. 
However, network latency is mainly used to represent QoS of 
the network because RTT measurements are easier to obtain 
than other metrics. In addition, occurrences of other metrics 
are relatively rare. In the cloud, the RTT of network path 
between web services is usually obtained using geographical 
location information already stored within each service’s data 
center. Also, the RTT between a web service’s data center and 
a user is obtained simply by measuring the RTT of the 
network path between the user and data center. RTT defines 
the time it takes for packets of data to move from a source to a 
destination and then back to the source. 

Ideally, network latency is accounted for in the service 
provider’s service level agreement (SLA) [16] as part of 
response time QoS attribute. However, this representation can 
greatly differ from the true network latency that services are 
physically experiencing. As such, this may lead to sub optimal 
performance of a composite service from the user’s 
perspective even if it has been advertised in the SLA as having 
an optimal response time. Therefore network latency is 
important in determining the realistic network performance of 
a composite service in the cloud. To further illustrate this 
point, [4] claims that a network latency of 20ms can lead to a 
15 percent decrease in Google cloud service response times. 
Similarly, 500ms latency can negatively impact the 
performance of Amazon web services. Considering another 
example depicted in Fig. 1 in which services are deployed on 
different cloud locations. Assuming the network latency 
between the locations are the values illustrated in Fig. 1a. 
Current service composition approaches do not separate web 
service QoS from QoS of the network. Therefore, they will 
ordinarily search for a solution having optimal service QoS. 
We assume this optimal solution is depicted by the path with a 
solid line in Fig. 1b. The end-to-end network latency between 
cloud data centers in the optimal solution is 3780ms (i.e. 
400ms + 280ms + 3000ms). In comparison, executing services 
in the path of the dashed lines will result in a lower end-to-end 
latency of 780ms (400ms + 280ms + 0ms). Hence, it is 
expected that the composite service indicated in dashed lines 
will have a more positive impact on the user’s experience than 
the one indicated by the solid lines as long as service QoS 
constraints are not compromised in the process. This 
constitutes another motivation for our work as most recent 
works are incapable in finding optimal latency compositions 
without compromising web service QoS as defined by the 
cloud service providers. 
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Few studies have investigated impact QoS of the network 
on performance of service composition in the cloud. One such 
study is proposed in [11] where the authors develop a 
network-aware genetic algorithm that automatically optimizes 
compositions in the cloud. In their work they make use of a 
locality-sensitive hashing scheme coupled with a generic 
network coordinate system to find services that are close to 
certain network locations on the cloud. A similar study [18] 
employ an enhanced genetic algorithm which leverages KD-
trees to search for services constituting low latency network 
paths within the cloud. Another approach in [23] presents a 
genetic algorithm that tackles service composition in a cloud-
based geo-distributed network. In [24] an Ant colony 
optimization approach to service composition in cloud is 
proposed. Their approach makes use of greedy search coupled 
with ant colony algorithm to find minimum number of clouds 
that will partake in successful service composition. Our 
previous work in [1] introduces two network-aware 
composition algorithms for multi-objective QoS optimization 
in the cloud. One is based on a GA that utilizes k-means 
cluster to perform mutation of composite services by replacing 
them with other services in closer network locations. The 
second algorithm is based on multi-population PSO. PSO 
separates the particles into two populations. One population 
operates on web service QoS search space while the other 
population operates on network QoS search space. Particles 
from both populations then combine their best characteristics 
to form new particles. 

Cloud A

Cloud B

Cloud C

Cloud D

Cloud location

Task 1 Services

Task 2 Services

Task 3 Services

Task 4 Services  
(a) Service deployments 

QoS optimal 

pattern

Latency optimal 

pattern

Task 1

Task 2

Task 3

Task 4

 
(b) QoS-optimal vs Latency-optimal patterns 

Fig. 1. Service deployments on the cloud 

Both algorithms were fed by state-of-the-art network 
coordinate system to determine network distance estimation 

between services in the cloud. Also, both approaches search 
for low latency compositions while adhering to strict user QoS 
constraints. However they make use of a similar network 
model which decomposes known latency measurements into 
coordinates prior to estimation process. The model then 
converts coordinates back to latency representation after 
estimation process and before they are fed to GA and PSO. 

Despite the development of several meta-heuristic 
algorithms for solving SCP on the cloud, most of these 
techniques are not naturally compatible with network QoS 
metrics. For example previous algorithms [1, 11, 18] had to 
use special structures and computations which allow them to 
work with network models and perform latency-centric QoS 
optimization. This approach adds to the complexity and 
computation cost of the algorithms presented. It is therefore 
necessary to discover algorithms that are better suited to 
working with network latency while performing QoS 
optimization. To this end we present an enhanced fruit fly 
algorithm known as NFOA to search for low latency 
compositions with near optimal QoS. As a new meta-heuristic 
optimization algorithm, FOA is inspired by the behaviour of 
fruit flies in searching for food. FOA is easy to implement and 
consists of few adjustable parameters. Due to these merits, 
FOA has been successfully used in solving several NP-Hard 
optimization problems such as neural network optimization 
[21], financial distress [12] and more recently in scheduling 
problems [22]. A core characteristic of fruit fly optimization 
algorithm is its ability to encode solutions in form of two-
dimensional network coordinates [12]. This property sets FOA 
apart from other meta-heuristic algorithms because it allows 
FOA to seamlessly work with network QoS metrics that are 
correlated to network coordinates such as network latency. 
The network coordinates employed by NFOA are obtained 
from our network model. 

In summary, we propose an approach to network-aware 
service composition in the cloud. Our approach consists of the 
following contributions: 

i. We adopt a network model that is supplemented by a state 

of the art network coordinate system. The model will be 

used to predict the network positions of web service data 

centers in the cloud.  

ii. We present an enhanced fruit fly algorithm by adding 

capability to find services whose network positions are 

closer to each other and to the users while ensuring QoS 

is optimized. Consequently these services will result in 

low latency compositions. We compare our algorithm 

against current approaches. The results of our experiment 

demonstrate that our algorithm is competitive when 

compared to recent approaches in finding near optimal 

compositions. 
The remainder of the paper is organized as follows. 

Section 2 formulates the service composition problem. Section 
3 presents our network model and fruit fly algorithm for 
network-aware web service composition. Section 4 discusses 
the evaluation results of our approach. Section 5 concludes 
this paper. 
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II. PROBLEM FORMULATION 

Service composition forms its basis from workflow 
management systems [2] where a complex user request is 
exposed as set of tasks that require one or more services to be 
completed. Hence the following definitions are used in this 
paper: 

Definition 1 (Service). Service is a single unit meant for 
solving a particular functionality or task that is part of a user 
request. Services are published in the cloud by the service 
provider. 

Definition 2 (Service class). Service class is a group of 
services having similar functionality but different QoS levels. 

Definition 3 (Candidate service). Candidate service is a 
service that is part of a service class. 

Definition 4 (QoS attribute). QoS attribute defines a given 
quality aspect of service. Some popular QoS attributes for 
services include cost, response time, reputation, reliability, etc. 

TABLE I.  EXAMPLES OF SERVICE QOS ATTRIBUTES 

QoS 

Attribute 
Description 

Cost 
Amount payable in monetary value for the 

execution of service. 

Reputation 
Users’ average rank of a service based on their 

experiences 

Response 

time 

Time it takes to process a user request from the 

point it is made up till the point it is received. 

Definition 5 (Network Latency). Defined as RTT from one 
source data center to another and then back to the source data 
center. In the case of a composite service, network latency is 
defined as end-to-end RTT from the first service’s data center 
in a given composite service to the last service’s data center 
then back to the first service. 

Definition 6 (Workflow pattern). Workflow pattern 
dictates the direction in which data flows from one service to 
another within a composite service. Some major workflow 
patterns include sequence, parallel, exclusive choice and loop. 

s1 s4s2 s3
 

(a) Sequence pattern 

s1 s4

s2

s3  
(b) Parallel pattern 

s1

s4

s2 s3

 
(c) Loop pattern 

Fig. 2. Workflow patterns for services s1, s2, s3, and s4 

TABLE II.  TYPES OF WORKFLOW PATTERNS 

Workflow 

pattern 
Synonym Description 

Sequence 
Sequential 

routing 
Executes a set of services sequentially 

Parallel AND-split Executes a set of services simultaneously 

   

In Table 3, h represents total number of executions. 
Formulas presented in the table are used to obtain end-to-end 
values for QoS attributes. For instance, if our workflow 
pattern is the example show in Figure 3. 

TABLE III.  AGGREGATION FORMULAS FOR END-TO-END QOS OF 

COMPOSITE SERVICE 

QoS 

attribute 

Sequence 

pattern 
Parallel pattern 

Response 

time 


n

i

iSRT
1

)(  

 1( ),.., ( )nMin RT S RT S  

OR 

 1( ),.., ( )nMax RT S RT S  

Reputation 
1

(S )
n

i

i

RP

n




 

 1( ),.., ( )nMax RP S RP S  

Cost 


n

i

iSC
1

)(  


n

i

iSC
1

)(  

s1 s2 s5

s3

s4

s6 s7

Segment 1 Segment 2 Segment 3

QP

 
Fig. 3. Example workflow pattern 

End-to-end cost ( PQ ) is computed by adding cost for 

services in each segment of the workflow pattern. End-to-end 
response time on the other hand is computed by adding service 
response times in segments 1 and 3 to service with maximum 
response time in segment 2. 

Definition 7 (Service composition problem). The Service 
composition problem is defined as follows: 

Given a set of n interconnected tasks that are needed to 
satisfy a user requirement, 

 1 2, , , nT t t t  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 2, 2016 

5 | P a g e  

www.ijacsa.thesai.org 

s11

s12

s1k1

s21

s22

s2k2

s31

s32

s3k3

sn1

sn2

snkn

t2t1 tnt3

S1 S2 S3 Sn

 
Fig. 4. Arrangement of candidate services into tasks 

Each i-th task requires ik  number of similar services 

(candidate services) that have the ability to complete the task 
(as seen in Figure 4), 

 1 2, , ,
ii i i ikS s s s ,  ni ..1  

Where i identifies the service class in which similar 
services are grouped according to their task. Our service 
composition problem assumes that only one candidate service 
is selected per service class and bound to a task. We also 
assume that each service class has the same number of 
candidate services. Once all tasks have been bound a 
composite service C is formed, 

 1 2 3, , ,j j jC s s s ,  kj ..1
 

Each service is advertised with its own QoS level in the 
SLA. In this study we consider the cost QoS attribute. As 
Table 3 shows, the end-to-end cost for a composite service is 
computed by aggregating individual cost for each service that 
forms part of the composite service. Thus, 

1

( ) ( )
n

P ij

i

Q C P s


  (1) 

Where 
PQ

 
represent end-to-end QoS value for 

composition cost. Also P represents candidate service QoS 
value for cost. 

Cost is normalized in the range [0 1] using (2). Where pf

is normalized cost, ( (S ))p iMax P
 

and ( (S ))p iMin P

represent maximum and minimum QoS values for service 
class i respectively. 

1

( (S )) -  ( ( ))
( )

( (S )) ( (S ))

n
p i p ij

p

i p i p i

Max P Q P s
f C

Max P Min P

 
  

  
  (2) 

With respect to the QoS of the network, we assume that 
each web service is deployed on its own cloud data center for 
the sake of simplicity. Then end-to-end network latency for a 
composite service is defined as a vector of network 

coordinates ( )E . 

 1 1 2 2( ) , , , , , ,j j j j nj njE C x y x y x y           

 kj ..1  

Where  ,x y is the network coordinate of a service in the 

Cloud. 

The values of  coordinates are obtained from the 

estimation of RTT by our network model. 

Each service that is part of a composite service is 
represented by two dimensional network position as seen in 

Figure 5. Where 
ijx and 

ijy are x-axis and y-axis coordinates 

of a service 
ijs . 

Y
-a

x
is

X-axis

s12 snjs27 s33

(X12,Y12)

(X27,Y27)

(X33,Y33)

(Xnj,Ynj)

Cloud 1 Cloud 2

Cloud 3

Cloud n

Workflow

 

Fig. 5. Services and their network positions 

We model our optimization problem as a single objective 
optimization problem where the goal is to optimize fitness 

value ( F ); 

(3)( , )pF function f E  

Hence our service composition problem is to find a 
composite service that has optimal cost and near optimal 
network latency between constituent service network paths in 

terms of their network positions ( )E . Ideally this composite 

service will have selected a set of services deployed on Cloud 
locations that have the shortest end-to-end RTT without 
compromising cost QoS. 

III. NETWORK-AWARE SERVICE COMPOSITION ALGORITHM 

A. Basic concept of fruit fly algorithm 

The fruit fly optimization algorithm is a new type of 
evolutionary algorithm proposed in 2011. The algorithm 
mimics the behaviour of a fruit fly when it is searching for 
food as shown in Figure 6. A fruit fly is characterized by its 
acute sensing and perception abilities. This is said to be as a 
result of its osphresis organs [12]. Via the organs, a fruit fly is 
able to perceive food particles from several kilometres away. 
Once a fruit fly smells the presence of food, it closes in on the 
direction of the food in a hoping fashion. Each time the fly 
hops to a possible location, it tries to determine the next 
hoping direction that will take it to closer to the food source. 
Based on the behaviour exhibited by the fruit fly. We describe 
the steps required by the fruit fly optimization algorithm. 

 ,x y
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Y
-a

x
is

X-axisOrigin (0,0)

Smell area

Hop direction
(X1,Y1)

(X2,Y2)
Fly position

Fly distance 

from origin

Food

Fruit Fly

 
Fig. 6. Food searching pattern of fruit fly 

1) Initialize population 

X and Y axes ( x , y ) for a fruit fly swarm are first 

initialized; 

( )

(4)

( )

axis

axis

x Init X

y Init Y





 

Then individual positional coordinates of each fruit fly is 
initialized. For a fruit fly i, 

()

(5)

()

i

i

x x rand

y y rand

 

 
 

2) Estimate Distance and Smell concentration judgment 

value 
Given that the exact position of the food is initially 

unknown, each fruit fly computes its distance (g) from origin 
(0,0) using (6), then the smell concentration judgment value 
(v) for every fruit fly is computed as the inverse of distance. 

2 2 (6)i i ig x y 
 

1
i

i

v
g

 (7)  

3) Determine fitness value 
The fitness value, also known as Smell concentration 

judgment function, is calculated as a function of smell 
concentration value (g). 

( ) (8)i iF function v  

4) Determine best fruit fly 
Compare fitness values of all fruit flies in swarm and 

determine fruit fly with the best fitness value. 

[ ] max( ) (9)F indexbest best F  

5) Store attributes of best fruit fly 
In order to compare fitness of best fruit fly against other 

fitness values subsequent iterations, the best fitness is stored in 
memory, 

(10)best FFit best  

Then the positions of the best fruit fly are stored as new X 
and Y axes for the fruit fly swarm, 

( )

(11)

( )

index

index

x X best

y Y best





 

Best positions are used to update each fruit fly in the 
swarm according to equation (5). In the next iteration, steps 2 
to 5 are repeated until either the maximum number of 
iterations is reached, or optimization is achieved. 

B. Fruit fly algorithm for network-aware service composition 

We proposed an enhanced network-aware fruit fly 
optimization algorithm called NFOA. Before we discuss our 
algorithm, we introduce the network model that feeds the 
algorithm with the network positions of web services that will 
take part in the composition process. 

1) Network model 
Traditionally, RTTs of network paths between a number of 

data centers are measured by physically sending ping packets 
between the data centers. This can be both time and resource 
intensive. For instance, given T number of interconnected 
tasks within a composite service (as seen in Figure 7), there 
exists O (n

2
) network paths that can be formed between them. 

Some research has been done to discover more efficient 
techniques for determining RTT between Internet nodes. 
Some of the techniques are based on Euclidean distance 
models (EDM) [29, 30] while others are based on matrix 
factorization models (MF) [31, 32]. 

 

a1

Task 1

Task 2

Task 3

Task T

a2

ai

b1

b2

bj

c1

c2

ck

f1 

f2 

fl 

O(n
2
) Paths

 
Fig. 7. Network of n web service nodes and O (n2) paths for a sequence of T 

sub-tasks in a workflow 

EDM employs central landmark servers which are 
responsible for making direct RTT pings and measuring path 
latencies. MF on the other hand employ a more accurate and 
decentralized method which allows each Internet node to 
estimate its path RTTs. 
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We adopt a network model based on MF that efficiently 
estimates network latency between services in a cloud 
network. The model consists of a state of the art MF-based 
network coordinate system [31] that predicts RTT between 
web services on the cloud. The adopted network coordinate 
system works by only measuring RTT from each service 
location to a small subset of k neighbouring service locations 
on the cloud e.g. from S11’s data center (Cloud 1) to S21’s data 
center (Cloud 2) in Figure 8. The measurements are then used 
to estimate un-measured RTT to other locations in the form of 
network positions e.g. from S11’s data center (Cloud 1) to S23’s 
data center (Cloud 3). In mathematical terms, MF finds 
estimates of row matrix X and transposed column matrix Y 
that minimizes estimation error ( ) which is the difference 

between measured RTT values and predicted RTT values. The 
X and Y matrices represent two dimensional network positions 
of services in the cloud. 

i. 

( * ) (12)TD X Y  
 Where D defines an RTT matrix of both know and 

unknown measurements, while (X*Y
T
) defines predicted RTT 

in the form of network positions. Once RTT between all 
service locations have been determined, X and Y network 
positions are fed to our fruit fly algorithm to find low latency 
and QoS optimal compositions. The MF algorithm for RTT 
estimation is outlined below. 

Algorithm 1 MF Algorithm 

Input: D, max_iter, k 

Ouput: Dnew 

1:  [X, Y] = function MF(D) 

2:  { for(i =1: maxIter) 

3:                     for(j =1: maxCS) 

4:                          X  rand(x) 

5:                             Y  rand(y) 

6:                              w [D – (X * Y
T
)]

 2 

7:                          if (  is minimised) 

8:                                  Dnew  X * Y
T
 

9:                                   return 

10:                           endif 

11:                  endfor 

12:           endfor 

13:  } 
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Fig. 9. Encoding a composite service as a fruit fly using NFOA 
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2) NFOA Algorithm 
In this section we present network-aware fruit fly 

algorithm to tackle our service composition problem. 

a) Initialize population 

Firstly, each fruit fly in the swarm is initialized as a 
possible composite service. In this case, a fruit fly is encoded 
as a set of service coordinates where each service coordinate 
represents the network position of service within the cloud as 
seen in Figure 9. 

b) Determine end-to-end Vector of network coordinates 

and Cost QoS 

Instead of randomly assigning coordinates to each service 
(as seen in step 1 of basic fruit fly algorithm), NFOA assigns 
network coordinates fed by our network model to each 
service. These coordinates will be a representation of the RTT 
between each service location in the cloud. Hence, 

(13)
i

i

x X

y Y





 

Where X and Y represent network coordinates for a service 
obtained from MF algorithm. 

Using this procedure, a vector of network positions ( )E  is 

obtained for each fruit fly by aggregating the network 
positions of each service within the fruit fly. Then each fruit 
fly determines its end-to end smell concentration value (G) by 
combining individual smell concentration values (g) for all n 
services in a fruity fly. 

1

(14)
n

i

i

G g


  

The next step involves determination of end-to-end cost (

pf ) by aggregating individual service QoS levels according 

to Equation (2). 

c) Estimation of end-to-end smell concentration 

judgment function 

Smell concentration judgment function is estimated for 
each service in a fruit fly (according to (7)) and then combined 
into end-to-end smell concentration judgment function for the 
composite service. 

1

(15)
n

i

i

V v


  

d) Computation of fitness value 

Both end-to-end smell concentration judgment function 
and end-to-end cost are used to compute the fitness value (F) 
for a fruit fly thus; 

(16)
p

V
F

f
  

The last step involves storing the fruit fly with best fitness 
and then updating the coordinates of the each fly in the 

population with that of the best fly. The process is repeated 
until maximum number of iteration is reached. Below outlines 
our NFOA algorithm. 

Algorithm 2 NFOA Algorithm 

Input: T, C, O, maxgen, pop_size, D 

Ouput: bestFly 

1:  Randomly generate fruit fly positions  pop 

2:  pop  MF (D) 

3:  while (gen  maxgen) 

4:      { 

4:           G  Dist (pop) 

5:           V  Smell (pop) 

6:           fp  Smell_Function (pop)
 

7:           F V/ fp   

8:           bestFly  pop[min (F)] 

9:           pop bestFly + rand() 

10:         endwhile 

11:     } 

IV. EXPERIMENTAL RESULTS 

Evaluations were run on a PC with Intel Core i7 processor 
with 2.8 GHZ CPU and 8GB RAM. Our algorithm and 
simulations were done on MATLAB 2014 environment. 
Meridian RTT dataset [20] was used to simulate a network of 
650 unique data centers spread out in the cloud. Each location 
represents a web service position on the cloud. For the sake of 
simplicity, a sequence workflow pattern of 13 tasks and 20 
candidate services per task is considered. This pattern 
considered is meant to simulate a realistically large service 
environment. Also, a single user location is considered in our 
cloud network. In our simulation, we consider the cost QoS 
attribute, although any other QoS attribute could be 
considered as this will not affect our experiments. Cost QoS 
values for every service is generated randomly with a 
Gaussian distribution within the range [1, 40]. 

NFOA algorithm is compared against state of the art 
service composition methods based on Genetic Algorithm 
(GA) [5] and Particle swarm optimization algorithm (PSO) 
[21]. Both GA and PSO are fed by our network model in order 
to estimate RTT of their solutions for the sake of comparing 
their optimality against NFOA. Table 4 presents the 
environment settings for our test algorithms. 

TABLE IV.  ALGORITHM SETTINGS 

Parameters GA PSO NFOA MF 

Population size 200 200 200 260 

Number of generation 200 200 200 50 

Crossover probability 0.9 - - - 

Mutation probability 0.5 - - - 

Tour size 2 - - - 

Network model -MF MF MF - 

Distribution index 20 - - - 

Crossover operator 
Single 
crossover 

- - - 

Mutation operator 
Standard 

mutation 
- - - 
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Number of Tasks 13 13 13 13 

Number of Candidate 

services 
20 20 20 20 

Number of neighbours 

that measure RTT with 

each service 

   5 

1) Fitness 
We run our test algorithms over 200 generations. From 

Figure 10, we discover that the fitness value for NFOA 
converges after 100 generations. Also NFOA finds solution 
with the best fitness among the three test algorithms. This 
shows that NFOA’s natural ability to work with network 
coordinates makes it an ideal choice in searching for solutions 
with low latency and optimal QoS. The Figure also shows that 
NFOA has the ability to find a global solution and avoid being 
trapped in local optimum. This is attributed to the update 
strategy employed by NFOA which ensures that updates to x 
and y network coordinates are widely distributed across the 
network coordinate search space. Table 5 shows the best 
fitness values obtained over five runs. The result demonstrates 
that NFOA obtained the best fitness in three of the five runs as 
highlighted by the bold values. 

 
Fig. 10. Fitness versus Generation 

TABLE V.  EXPERIMENTAL RESULT FOR FITNESS 

Runs NFOA. GA PSO 

1 0.3467 0.4341 0.3273 

2 0.4502 0.3520 0.2264 

3 0.4458 0.3099 0.2065 

4 0.4679 0.45207 0.2686 

5 0.4336 0.3690 0.3966 

2) Network latency 
In this experiment, we evaluate the network latency (RTT) 

solutions for each generation. Typically, the best algorithm 
will indicate the lowest RTT. From Figure 11, it is observed 
that the RTT converged at100-th iteration for NFOA which 
represents the best RTT while it converges at much higher 
values for GA and PSO. This further demonstrates NFOA’s 
superiority to other algorithms to in finding low latency 
solutions. 

 
Fig. 11. Network latency versus Iterations 

3) Best Fruit fly path 
Figure 12 shows the best fruit fly’s path to optimization. 

Each point on the plot reflects the network positions of each 
web service that forms part of the best composite service. The 
graph demonstrates that, upon reaching the 200-th generation, 
QoS-optimal services that have shorter RTT from each other 
are constituted into the best fruit fly. 

 
(a)  At 5th generation 

 
(b)  At 50th generation 

 
(c)  At 100th generation 
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(d)  At 200th generation 

Fig. 12. Path of the best fruit fly 

4) Computation time 
As for computational efficiency, Table 6 shows that 

NFOA has the fastest average computation time when 
compared to GA and PSO. This is because since NFOA is 
already naturally built to handle optimization using network 
coordinates, it does not require additional structures and 
computations to work with our network model. This is not the 
case with PSO and GA which require additional computations 
that further worsen their execution times. 

TABLE VI.  AVERAGE COMPUTATION TIMES (IN SECONDS) OF THE FOUR 

ALGORITHMS 

NFOA. PSO GA 

48.42s 60.055s 109.24s 

5) Number of RTT-measured neighbours 
This experiment evaluates the impact of number of RTT-

measured neighbours (k) on estimation error ( ), computation 

time and quality of NFOA’s solutions. The estimation error 
will give us an idea of how accurate our compositions’ 
predicted RTTs are compared to their actual RTTs. In this 
experiment, we vary the value of k between 5 and 50 
neighbours per service. In Figure 13(a), it is observed that as k 
is increased (i.e. the more neighbours each service measures 
its RTT to) the higher the latency value of the compositions. 
The reason for this effect can be seen from Figure 13 (b) 
which shows the variation of estimation error ( ) with k. 

When the value of k is set to 5, it means that each service will 
measure RTT with small number (5) of its neighbours and 
then predict RTT with all the other services. This will 
ultimately reduce the prediction accuracy (i.e. increase the 
estimation error) for each composite service. On the other 
hand, setting k to 50 means increasing the number of the 
measured RTT paths to 50. This will lead to a higher 
prediction accuracy (i.e. lower estimation error) for each 
composite service. This result means that even if composite 
service latencies are lower when k is set at values below 20, 
they are the least accurate representations of true network 
latency of the compositions when compared to values above 
20. 

 
(a) k vs Network latency 

 
(b) k vs Estimation error 

 
(c) k vs Computation time 

Fig. 13. Effect of k on network latency, estimation error, and computation 

time 

Figure 13 (c) shows the linear variation between k and 
Computation time. If k is too high then computation time for 
NFOA algorithm will increase and vice versa. Based on these 
observations, the best setting for k should be between 20 and 
35. 
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V. CONCLUSIoN 

In this paper we propose an enhanced fruit fly optimization 
algorithm called NFOA that performs network-aware web 
service composition in the cloud. Fruit fly optimization a new 
approach for finding best solutions by mimicking the 
behaviour of the fruit fly. The number of services distributed 
on the Cloud has increased. Therefore the QoS of network has 
become important in determining performance of a composite 
service. We define a network model that estimates network 
latency in the form of service network positions with the aid 
of a network coordinate system based on matrix factorization 
called MF. MF measures RTT between a service and a small 
number of its neighbours then estimates the unknown RTT 
with other services in the cloud. MF feeds network positions 
of services to NFOA which uses them directly to find 
composite services with low latency and near-optimum web 
service QoS. Experimental simulations have shown that 
NFOA is superior to other meta-heuristic techniques in finding 
solutions with optimum fitness and latency. 
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