
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

1 | P a g e

www.ijacsa.thesai.org

Fruit Fly Optimization Algorithm for Network-Aware

Web Service Composition in the Cloud

Umar SHEHU

Department of Computer Science

and Technology University of

Bedfordshire Luton, UK

Ghazanfar SAFDAR

Department of Computer Science

and Technology University of

Bedfordshire Luton, UK

Gregory EPIPHANIOU

Department of Computer Science

and Technology University of

Bedfordshire Luton, UK

Abstract—Service Oriented Computing (SOC) provides a

framework for the realization of loosely coupled service oriented

applications. Web services are central to the concept of SOC.

Currently, research into how web services can be composed to

yield QoS optimal composite service has gathered significant

attention. However, the number and spread of web services

across the cloud data centers has increased, thereby increasing

the impact of the network on composite service performance

experienced by the user. Recently, QoS-based web service

composition techniques focus on optimizing web service QoS

attributes such as cost, response time, execution time, etc. In

doing so, existing approaches do not separate QoS of the network

from web service QoS during service composition. In this paper,

we propose a network-aware service composition approach

which separates QoS of the network from QoS of web services in

the Cloud. Consequently, our approach searches for composite

services that are not only QoS-optimal but also have optimal QoS

of the network. Our approach consists of a network model which

estimates the QoS of the network in the form of network latency

between services on the cloud. It also consists of a service

composition technique based on fruit fly optimization algorithm

which leverages the network model to search for low latency

compositions without compromising service QoS levels. The

approach is discussed and the results of evaluation are presented.

The results indicate that the proposed approach is competitive in

finding QoS optimal and low latency solutions when compared to

recent techniques.

Keywords—Web Services; Service Composition; QoS; Network

Latency; Cloud; Fruit Fly Algorithm

I. INTRODUCTION

Service Oriented Computing (SOC) is a paradigm for
building loosely coupled distributed systems [14]. It
encapsulates the functional units of a distributed system into
web services which perform specific tasks and are easily
reusable in other software systems. The true value of SOC lies
in its ability to compose different services to complete more
complex user requests. Web services are central to the
realization of SOC. A web service is defined as a network-
accessible object that provides some functionality [9]. Web
services are characterized by functional and non-functional
attributes [13]. The functional attribute dictates what kind of
task a web service is meant to perform e.g. credit card
validation. On the other hand, the non-functional attribute,
also known as Quality of Service (QoS), indicates service’s
level of quality. The QoS attribute is mainly used to
differentiate services having similar functional attributes.
Service providers normally advertise services together with

their QoS levels as part of a Service Level Agreement (SLA).
Some service QoS attributes advertised includes cost, response
time and reputation [15].

A. Qos-aware service composition

QoS-based web service composition has received a lot of
attention from the research community. It allows organizations
to share their business processes with other service providers
to facilitate delivery of service functionalities which satisfy
complex user requests.

In many situations, a single service may not be able to
satisfy a user’s request. For instance, a web service is
incapable of performing both credit card validation and hotel
booking for a user attempting to plan a business trip. During
such situations web services from different service providers
are combined to meet the user’s requirements. This is where
service composition comes into play. It is the process of
aggregating web services having disparate functionalities into
a composite service. The composition of services is performed
via their functional and QoS attributes. The functional
attributes define what a service is capable of doing while QoS
attributes represent the non-functional or quality aspects of a
service e.g. service availability, reputation, response time, etc.
The QoS attributes are used for composition only when the
services involved have comparable functionalities. The goal of
service composition is to search for a combination of services
that leads to optimal QoS levels. During the composition
process, QoS attributes for services are aggregated according
to a composition’s workflow pattern [2] into a composite
service. Once a user request is issued, service composition
breaks down the request into smaller tasks organized
according to one of several workflow patterns [2]. Within each
task, a number of functionally similar services offered by
different service providers are made available for the
aggregation process. In the next stage, a service is selected per
task to form part of a composite service. As a result of the
high number of services that currently exist on the Internet,
there are large numbers of possible composition paths that can
be formed. For example, suppose there exist eight tasks within
a user request and each task can be executed by twenty
possible web services. Then the total number of possible
composition paths will be 20

8
(or 25.6 Billion. This constitutes

a research problem of how to compose services in a short time
such that the resulting composite service presented to the user
has optimal QoS level and meets QoS constraints.

QoS-based web service composition problem (SCP) has

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

2 | P a g e

www.ijacsa.thesai.org

been defined as an NP-Hard problem [5]. The basis for our
research was first presented in [6] where the authors propose
an approach to tackling the service composition problem
based on Linear Integer Programming (LIP). Their approach
makes use of local search techniques in finding services for
each function, and then combines these services into a
composite service. Currently, Heuristic approaches have been
developed to tackle the SCP. One such work is presented in
[7] which introduces a heuristic approach based on genetic
algorithm to solve the SCP. Their genetic algorithm (GA)
encodes composite services as gene and then makes use of
evolutionary selection, crossover and mutation operation to
search for optimal compositions. Another work [8] employs a
different heuristic approach based on particle swarm
optimization algorithm (PSO) to solve the SCP. Their solution
differs from [7] in the way the algorithm covers the search
space in finding optimal compositions. Instead of utilizing
genetic operators, PSO encodes compositions as particles
which travel in the search space by updating their positions
and velocities using the characteristics of the best particle. . In
[19] a heuristic based on ant colony algorithm is presented to
tackle the SCP where the authors consider multiple QoS
attributes in finding composite services that meet user
expectations. Many other heuristic approaches such as in [9]
[10] [17] have been developed. While the service composition
problem can be tackled optimally using meta-heuristics such
as genetic, particle swarm and ant colony optimization
algorithms, we adopt fruit fly optimization (FOA) algorithm to
the SCP. To the best of our knowledge FOA has not been
applied to the SCP before.

B. Service composition in the cloud

Cloud computing provides a platform for enterprises
(Service providers) to deploy web services on cloud data
centers so that internet users can access service functionalities.
Generally, service composition in the cloud takes place across
three layers: the infrastructure layer, platform layer and
software layer. Once a user request is made, the request is sent
to web services which are deployed on the software layer and
offered by Software-as-a-Service (SaaS) providers.
Underneath the software layer, service registries and
composition engine are deployed on the platform layer. The
service registry functions as a general repository for storing
web services while the composition engine is responsible for
aggregating web service into composite services. The
infrastructure layer houses the datacenters necessary to
support both platform and software layers. Several web
services exist on the cloud. For example companies like
Amazon and Microsoft provide cloud-based infrastructure and
storage services via Amazon Web Services (AWS) and
Windows Azure platforms respectively. Within the cloud,
users can access different web services from literally any part
of the world. Currently, there exist a large number of cloud-
based data centers located across the globe. This has
exponentially increased the number of possible network paths
that can be formed in the search space. Another important
issue in the cloud is the need for composite services to meet
the QoS guarantees specified in the SLA between services
providers and users. This will allow service providers to
maximize their earnings while ensuring that user experiences
of their services is optimized. Therefore QoS-aware web

service composition is critical to the delivery of quality cloud-
based composite services on to customers.

When cloud-based web services from different locations
are aggregated into a composite service, QoS of the network
cannot be ignored. In situations where web services
participating in a composition process are small in number,
QoS of the network may not significantly affect the
performance of a composite service. This is not the case when
composition is taking place between large numbers of web
services. QoS of the network usually defines the quality of
network path between web service data centers. The quality of
network paths can be measured using different network QoS
metrics such as network latency or round-trip time (RTT) [3],
network bandwidth [27], packet loss [25], jitter [26], etc.
However, network latency is mainly used to represent QoS of
the network because RTT measurements are easier to obtain
than other metrics. In addition, occurrences of other metrics
are relatively rare. In the cloud, the RTT of network path
between web services is usually obtained using geographical
location information already stored within each service’s data
center. Also, the RTT between a web service’s data center and
a user is obtained simply by measuring the RTT of the
network path between the user and data center. RTT defines
the time it takes for packets of data to move from a source to a
destination and then back to the source.

Ideally, network latency is accounted for in the service
provider’s service level agreement (SLA) [16] as part of
response time QoS attribute. However, this representation can
greatly differ from the true network latency that services are
physically experiencing. As such, this may lead to sub optimal
performance of a composite service from the user’s
perspective even if it has been advertised in the SLA as having
an optimal response time. Therefore network latency is
important in determining the realistic network performance of
a composite service in the cloud. To further illustrate this
point, [4] claims that a network latency of 20ms can lead to a
15 percent decrease in Google cloud service response times.
Similarly, 500ms latency can negatively impact the
performance of Amazon web services. Considering another
example depicted in Fig. 1 in which services are deployed on
different cloud locations. Assuming the network latency
between the locations are the values illustrated in Fig. 1a.
Current service composition approaches do not separate web
service QoS from QoS of the network. Therefore, they will
ordinarily search for a solution having optimal service QoS.
We assume this optimal solution is depicted by the path with a
solid line in Fig. 1b. The end-to-end network latency between
cloud data centers in the optimal solution is 3780ms (i.e.
400ms + 280ms + 3000ms). In comparison, executing services
in the path of the dashed lines will result in a lower end-to-end
latency of 780ms (400ms + 280ms + 0ms). Hence, it is
expected that the composite service indicated in dashed lines
will have a more positive impact on the user’s experience than
the one indicated by the solid lines as long as service QoS
constraints are not compromised in the process. This
constitutes another motivation for our work as most recent
works are incapable in finding optimal latency compositions
without compromising web service QoS as defined by the
cloud service providers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

3 | P a g e

www.ijacsa.thesai.org

Few studies have investigated impact QoS of the network
on performance of service composition in the cloud. One such
study is proposed in [11] where the authors develop a
network-aware genetic algorithm that automatically optimizes
compositions in the cloud. In their work they make use of a
locality-sensitive hashing scheme coupled with a generic
network coordinate system to find services that are close to
certain network locations on the cloud. A similar study [18]
employ an enhanced genetic algorithm which leverages KD-
trees to search for services constituting low latency network
paths within the cloud. Another approach in [23] presents a
genetic algorithm that tackles service composition in a cloud-
based geo-distributed network. In [24] an Ant colony
optimization approach to service composition in cloud is
proposed. Their approach makes use of greedy search coupled
with ant colony algorithm to find minimum number of clouds
that will partake in successful service composition. Our
previous work in [1] introduces two network-aware
composition algorithms for multi-objective QoS optimization
in the cloud. One is based on a GA that utilizes k-means
cluster to perform mutation of composite services by replacing
them with other services in closer network locations. The
second algorithm is based on multi-population PSO. PSO
separates the particles into two populations. One population
operates on web service QoS search space while the other
population operates on network QoS search space. Particles
from both populations then combine their best characteristics
to form new particles.

Cloud A

Cloud B

Cloud C

Cloud D

Cloud location

Task 1 Services

Task 2 Services

Task 3 Services

Task 4 Services
(a) Service deployments

QoS optimal

pattern

Latency optimal

pattern

Task 1

Task 2

Task 3

Task 4

(b) QoS-optimal vs Latency-optimal patterns

Fig. 1. Service deployments on the cloud

Both algorithms were fed by state-of-the-art network
coordinate system to determine network distance estimation

between services in the cloud. Also, both approaches search
for low latency compositions while adhering to strict user QoS
constraints. However they make use of a similar network
model which decomposes known latency measurements into
coordinates prior to estimation process. The model then
converts coordinates back to latency representation after
estimation process and before they are fed to GA and PSO.

Despite the development of several meta-heuristic
algorithms for solving SCP on the cloud, most of these
techniques are not naturally compatible with network QoS
metrics. For example previous algorithms [1, 11, 18] had to
use special structures and computations which allow them to
work with network models and perform latency-centric QoS
optimization. This approach adds to the complexity and
computation cost of the algorithms presented. It is therefore
necessary to discover algorithms that are better suited to
working with network latency while performing QoS
optimization. To this end we present an enhanced fruit fly
algorithm known as NFOA to search for low latency
compositions with near optimal QoS. As a new meta-heuristic
optimization algorithm, FOA is inspired by the behaviour of
fruit flies in searching for food. FOA is easy to implement and
consists of few adjustable parameters. Due to these merits,
FOA has been successfully used in solving several NP-Hard
optimization problems such as neural network optimization
[21], financial distress [12] and more recently in scheduling
problems [22]. A core characteristic of fruit fly optimization
algorithm is its ability to encode solutions in form of two-
dimensional network coordinates [12]. This property sets FOA
apart from other meta-heuristic algorithms because it allows
FOA to seamlessly work with network QoS metrics that are
correlated to network coordinates such as network latency.
The network coordinates employed by NFOA are obtained
from our network model.

In summary, we propose an approach to network-aware
service composition in the cloud. Our approach consists of the
following contributions:

i. We adopt a network model that is supplemented by a state

of the art network coordinate system. The model will be

used to predict the network positions of web service data

centers in the cloud.

ii. We present an enhanced fruit fly algorithm by adding

capability to find services whose network positions are

closer to each other and to the users while ensuring QoS

is optimized. Consequently these services will result in

low latency compositions. We compare our algorithm

against current approaches. The results of our experiment

demonstrate that our algorithm is competitive when

compared to recent approaches in finding near optimal

compositions.
The remainder of the paper is organized as follows.

Section 2 formulates the service composition problem. Section
3 presents our network model and fruit fly algorithm for
network-aware web service composition. Section 4 discusses
the evaluation results of our approach. Section 5 concludes
this paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

4 | P a g e

www.ijacsa.thesai.org

II. PROBLEM FORMULATION

Service composition forms its basis from workflow
management systems [2] where a complex user request is
exposed as set of tasks that require one or more services to be
completed. Hence the following definitions are used in this
paper:

Definition 1 (Service). Service is a single unit meant for
solving a particular functionality or task that is part of a user
request. Services are published in the cloud by the service
provider.

Definition 2 (Service class). Service class is a group of
services having similar functionality but different QoS levels.

Definition 3 (Candidate service). Candidate service is a
service that is part of a service class.

Definition 4 (QoS attribute). QoS attribute defines a given
quality aspect of service. Some popular QoS attributes for
services include cost, response time, reputation, reliability, etc.

TABLE I. EXAMPLES OF SERVICE QOS ATTRIBUTES

QoS

Attribute
Description

Cost
Amount payable in monetary value for the

execution of service.

Reputation
Users’ average rank of a service based on their

experiences

Response

time

Time it takes to process a user request from the

point it is made up till the point it is received.

Definition 5 (Network Latency). Defined as RTT from one
source data center to another and then back to the source data
center. In the case of a composite service, network latency is
defined as end-to-end RTT from the first service’s data center
in a given composite service to the last service’s data center
then back to the first service.

Definition 6 (Workflow pattern). Workflow pattern
dictates the direction in which data flows from one service to
another within a composite service. Some major workflow
patterns include sequence, parallel, exclusive choice and loop.

s1 s4s2 s3

(a) Sequence pattern

s1 s4

s2

s3
(b) Parallel pattern

s1

s4

s2 s3

(c) Loop pattern

Fig. 2. Workflow patterns for services s1, s2, s3, and s4

TABLE II. TYPES OF WORKFLOW PATTERNS

Workflow

pattern
Synonym Description

Sequence
Sequential

routing
Executes a set of services sequentially

Parallel AND-split Executes a set of services simultaneously

In Table 3, h represents total number of executions.
Formulas presented in the table are used to obtain end-to-end
values for QoS attributes. For instance, if our workflow
pattern is the example show in Figure 3.

TABLE III. AGGREGATION FORMULAS FOR END-TO-END QOS OF

COMPOSITE SERVICE

QoS

attribute

Sequence

pattern
Parallel pattern

Response

time 


n

i

iSRT
1

)(

 1(),.., ()nMin RT S RT S

OR

 1(),.., ()nMax RT S RT S

Reputation
1

(S)
n

i

i

RP

n





 1(),.., ()nMax RP S RP S

Cost 


n

i

iSC
1

)(


n

i

iSC
1

)(

s1 s2 s5

s3

s4

s6 s7

Segment 1 Segment 2 Segment 3

QP

Fig. 3. Example workflow pattern

End-to-end cost (PQ) is computed by adding cost for

services in each segment of the workflow pattern. End-to-end
response time on the other hand is computed by adding service
response times in segments 1 and 3 to service with maximum
response time in segment 2.

Definition 7 (Service composition problem). The Service
composition problem is defined as follows:

Given a set of n interconnected tasks that are needed to
satisfy a user requirement,

 1 2, , , nT t t t

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

5 | P a g e

www.ijacsa.thesai.org

s11

s12

s1k1

s21

s22

s2k2

s31

s32

s3k3

sn1

sn2

snkn

t2t1 tnt3

S1 S2 S3 Sn

Fig. 4. Arrangement of candidate services into tasks

Each i-th task requires ik number of similar services

(candidate services) that have the ability to complete the task
(as seen in Figure 4),

 1 2, , ,
ii i i ikS s s s ,  ni ..1

Where i identifies the service class in which similar
services are grouped according to their task. Our service
composition problem assumes that only one candidate service
is selected per service class and bound to a task. We also
assume that each service class has the same number of
candidate services. Once all tasks have been bound a
composite service C is formed,

 1 2 3, , ,j j jC s s s ,  kj ..1

Each service is advertised with its own QoS level in the
SLA. In this study we consider the cost QoS attribute. As
Table 3 shows, the end-to-end cost for a composite service is
computed by aggregating individual cost for each service that
forms part of the composite service. Thus,

1

() ()
n

P ij

i

Q C P s


 (1)

Where
PQ

represent end-to-end QoS value for

composition cost. Also P represents candidate service QoS
value for cost.

Cost is normalized in the range [0 1] using (2). Where pf

is normalized cost, ((S))p iMax P

and ((S))p iMin P

represent maximum and minimum QoS values for service
class i respectively.

1

((S)) - (())
()

((S)) ((S))

n
p i p ij

p

i p i p i

Max P Q P s
f C

Max P Min P

 
  

  
 (2)

With respect to the QoS of the network, we assume that
each web service is deployed on its own cloud data center for
the sake of simplicity. Then end-to-end network latency for a
composite service is defined as a vector of network

coordinates ()E .

 1 1 2 2() , , , , , ,j j j j nj njE C x y x y x y           

 kj ..1

Where  ,x y is the network coordinate of a service in the

Cloud.

The values of coordinates are obtained from the

estimation of RTT by our network model.

Each service that is part of a composite service is
represented by two dimensional network position as seen in

Figure 5. Where
ijx and

ijy are x-axis and y-axis coordinates

of a service
ijs .

Y
-a

x
is

X-axis

s12 snjs27 s33

(X12,Y12)

(X27,Y27)

(X33,Y33)

(Xnj,Ynj)

Cloud 1 Cloud 2

Cloud 3

Cloud n

Workflow

Fig. 5. Services and their network positions

We model our optimization problem as a single objective
optimization problem where the goal is to optimize fitness

value (F);

(3)(,)pF function f E

Hence our service composition problem is to find a
composite service that has optimal cost and near optimal
network latency between constituent service network paths in

terms of their network positions ()E . Ideally this composite

service will have selected a set of services deployed on Cloud
locations that have the shortest end-to-end RTT without
compromising cost QoS.

III. NETWORK-AWARE SERVICE COMPOSITION ALGORITHM

A. Basic concept of fruit fly algorithm

The fruit fly optimization algorithm is a new type of
evolutionary algorithm proposed in 2011. The algorithm
mimics the behaviour of a fruit fly when it is searching for
food as shown in Figure 6. A fruit fly is characterized by its
acute sensing and perception abilities. This is said to be as a
result of its osphresis organs [12]. Via the organs, a fruit fly is
able to perceive food particles from several kilometres away.
Once a fruit fly smells the presence of food, it closes in on the
direction of the food in a hoping fashion. Each time the fly
hops to a possible location, it tries to determine the next
hoping direction that will take it to closer to the food source.
Based on the behaviour exhibited by the fruit fly. We describe
the steps required by the fruit fly optimization algorithm.

 ,x y

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

6 | P a g e

www.ijacsa.thesai.org

Y
-a

x
is

X-axisOrigin (0,0)

Smell area

Hop direction
(X1,Y1)

(X2,Y2)
Fly position

Fly distance

from origin

Food

Fruit Fly

Fig. 6. Food searching pattern of fruit fly

1) Initialize population

X and Y axes (x , y) for a fruit fly swarm are first

initialized;

()

(4)

()

axis

axis

x Init X

y Init Y





Then individual positional coordinates of each fruit fly is
initialized. For a fruit fly i,

()

(5)

()

i

i

x x rand

y y rand

 

 

2) Estimate Distance and Smell concentration judgment

value
Given that the exact position of the food is initially

unknown, each fruit fly computes its distance (g) from origin
(0,0) using (6), then the smell concentration judgment value
(v) for every fruit fly is computed as the inverse of distance.

2 2 (6)i i ig x y 

1
i

i

v
g

 (7)

3) Determine fitness value
The fitness value, also known as Smell concentration

judgment function, is calculated as a function of smell
concentration value (g).

() (8)i iF function v

4) Determine best fruit fly
Compare fitness values of all fruit flies in swarm and

determine fruit fly with the best fitness value.

[] max() (9)F indexbest best F

5) Store attributes of best fruit fly
In order to compare fitness of best fruit fly against other

fitness values subsequent iterations, the best fitness is stored in
memory,

(10)best FFit best

Then the positions of the best fruit fly are stored as new X
and Y axes for the fruit fly swarm,

()

(11)

()

index

index

x X best

y Y best





Best positions are used to update each fruit fly in the
swarm according to equation (5). In the next iteration, steps 2
to 5 are repeated until either the maximum number of
iterations is reached, or optimization is achieved.

B. Fruit fly algorithm for network-aware service composition

We proposed an enhanced network-aware fruit fly
optimization algorithm called NFOA. Before we discuss our
algorithm, we introduce the network model that feeds the
algorithm with the network positions of web services that will
take part in the composition process.

1) Network model
Traditionally, RTTs of network paths between a number of

data centers are measured by physically sending ping packets
between the data centers. This can be both time and resource
intensive. For instance, given T number of interconnected
tasks within a composite service (as seen in Figure 7), there
exists O (n

2
) network paths that can be formed between them.

Some research has been done to discover more efficient
techniques for determining RTT between Internet nodes.
Some of the techniques are based on Euclidean distance
models (EDM) [29, 30] while others are based on matrix
factorization models (MF) [31, 32].

a1

Task 1

Task 2

Task 3

Task T

a2

ai

b1

b2

bj

c1

c2

ck

f1

f2

fl

O(n
2
) Paths

Fig. 7. Network of n web service nodes and O (n2) paths for a sequence of T

sub-tasks in a workflow

EDM employs central landmark servers which are
responsible for making direct RTT pings and measuring path
latencies. MF on the other hand employ a more accurate and
decentralized method which allows each Internet node to
estimate its path RTTs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

7 | P a g e

www.ijacsa.thesai.org

We adopt a network model based on MF that efficiently
estimates network latency between services in a cloud
network. The model consists of a state of the art MF-based
network coordinate system [31] that predicts RTT between
web services on the cloud. The adopted network coordinate
system works by only measuring RTT from each service
location to a small subset of k neighbouring service locations
on the cloud e.g. from S11’s data center (Cloud 1) to S21’s data
center (Cloud 2) in Figure 8. The measurements are then used
to estimate un-measured RTT to other locations in the form of
network positions e.g. from S11’s data center (Cloud 1) to S23’s
data center (Cloud 3). In mathematical terms, MF finds
estimates of row matrix X and transposed column matrix Y
that minimizes estimation error () which is the difference

between measured RTT values and predicted RTT values. The
X and Y matrices represent two dimensional network positions
of services in the cloud.

i.

(*) (12)TD X Y  
 Where D defines an RTT matrix of both know and

unknown measurements, while (X*Y
T
) defines predicted RTT

in the form of network positions. Once RTT between all
service locations have been determined, X and Y network
positions are fed to our fruit fly algorithm to find low latency
and QoS optimal compositions. The MF algorithm for RTT
estimation is outlined below.

Algorithm 1 MF Algorithm

Input: D, max_iter, k

Ouput: Dnew

1: [X, Y] = function MF(D)

2: { for(i =1: maxIter)

3: for(j =1: maxCS)

4: X  rand(x)

5: Y  rand(y)

6:   w [D – (X * Y
T
)]

 2

7: if ( is minimised)

8: Dnew  X * Y
T

9: return

10: endif

11: endfor

12: endfor

13: }

s11 s12 s13 s1k1t1

t2

tn

Tasks

Candidate services per

task

Fruit fly

s21 s22 s23 s2k2

sn1 sn2 sn3 snkn

Fruit fly representation of a

composite service with n = 3

x11,y11 s11

s23

s31

x23,y23

x31,y31

Fruit fly
Composite

Service
Fig. 9. Encoding a composite service as a fruit fly using NFOA

Cloud 1

Cloud 2

Cloud 3

Cloud 4

(x1,y1)

(x2,y2)

(x3,y3)

(x4,y4)

S11, S31

S21, S32,S12

S23, S33,S22

S13 d1-2 d’1-3 d1-4

RTT Matrix (D)

Cloud 1

Cloud 2

Cloud 3

Cloud 4

Cloud 1 Cloud 2 Cloud 3 Cloud 4

d2-1 d2-3 d2-4

d3-1 d3-2 d’3-4

d4-1 d4-2 d4-3

x1 ... x4X =

y1…
…

.

y4

Y T=*

Measured RTT(d)

Predicted RTT(d’)X-axis

R
T

T
 P

re
di

ct
io

n

R
T

T
 M

ea
su

re
m

en
tCloud network

Network coordinate system

Network positions

Fig. 8. RTT estimation process

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

8 | P a g e

www.ijacsa.thesai.org

2) NFOA Algorithm
In this section we present network-aware fruit fly

algorithm to tackle our service composition problem.

a) Initialize population

Firstly, each fruit fly in the swarm is initialized as a
possible composite service. In this case, a fruit fly is encoded
as a set of service coordinates where each service coordinate
represents the network position of service within the cloud as
seen in Figure 9.

b) Determine end-to-end Vector of network coordinates

and Cost QoS

Instead of randomly assigning coordinates to each service
(as seen in step 1 of basic fruit fly algorithm), NFOA assigns
network coordinates fed by our network model to each
service. These coordinates will be a representation of the RTT
between each service location in the cloud. Hence,

(13)
i

i

x X

y Y





Where X and Y represent network coordinates for a service
obtained from MF algorithm.

Using this procedure, a vector of network positions ()E is

obtained for each fruit fly by aggregating the network
positions of each service within the fruit fly. Then each fruit
fly determines its end-to end smell concentration value (G) by
combining individual smell concentration values (g) for all n
services in a fruity fly.

1

(14)
n

i

i

G g




The next step involves determination of end-to-end cost (

pf) by aggregating individual service QoS levels according

to Equation (2).

c) Estimation of end-to-end smell concentration

judgment function

Smell concentration judgment function is estimated for
each service in a fruit fly (according to (7)) and then combined
into end-to-end smell concentration judgment function for the
composite service.

1

(15)
n

i

i

V v




d) Computation of fitness value

Both end-to-end smell concentration judgment function
and end-to-end cost are used to compute the fitness value (F)
for a fruit fly thus;

(16)
p

V
F

f


The last step involves storing the fruit fly with best fitness
and then updating the coordinates of the each fly in the

population with that of the best fly. The process is repeated
until maximum number of iteration is reached. Below outlines
our NFOA algorithm.

Algorithm 2 NFOA Algorithm

Input: T, C, O, maxgen, pop_size, D

Ouput: bestFly

1: Randomly generate fruit fly positions  pop

2: pop  MF (D)

3: while (gen  maxgen)

4: {

4: G  Dist (pop)

5: V  Smell (pop)

6: fp  Smell_Function (pop)

7: F V/ fp

8: bestFly  pop[min (F)]

9: pop bestFly + rand()

10: endwhile

11: }

IV. EXPERIMENTAL RESULTS

Evaluations were run on a PC with Intel Core i7 processor
with 2.8 GHZ CPU and 8GB RAM. Our algorithm and
simulations were done on MATLAB 2014 environment.
Meridian RTT dataset [20] was used to simulate a network of
650 unique data centers spread out in the cloud. Each location
represents a web service position on the cloud. For the sake of
simplicity, a sequence workflow pattern of 13 tasks and 20
candidate services per task is considered. This pattern
considered is meant to simulate a realistically large service
environment. Also, a single user location is considered in our
cloud network. In our simulation, we consider the cost QoS
attribute, although any other QoS attribute could be
considered as this will not affect our experiments. Cost QoS
values for every service is generated randomly with a
Gaussian distribution within the range [1, 40].

NFOA algorithm is compared against state of the art
service composition methods based on Genetic Algorithm
(GA) [5] and Particle swarm optimization algorithm (PSO)
[21]. Both GA and PSO are fed by our network model in order
to estimate RTT of their solutions for the sake of comparing
their optimality against NFOA. Table 4 presents the
environment settings for our test algorithms.

TABLE IV. ALGORITHM SETTINGS

Parameters GA PSO NFOA MF

Population size 200 200 200 260

Number of generation 200 200 200 50

Crossover probability 0.9 - - -

Mutation probability 0.5 - - -

Tour size 2 - - -

Network model -MF MF MF -

Distribution index 20 - - -

Crossover operator
Single
crossover

- - -

Mutation operator
Standard

mutation
- - -

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

9 | P a g e

www.ijacsa.thesai.org

Number of Tasks 13 13 13 13

Number of Candidate

services
20 20 20 20

Number of neighbours

that measure RTT with

each service

 5

1) Fitness
We run our test algorithms over 200 generations. From

Figure 10, we discover that the fitness value for NFOA
converges after 100 generations. Also NFOA finds solution
with the best fitness among the three test algorithms. This
shows that NFOA’s natural ability to work with network
coordinates makes it an ideal choice in searching for solutions
with low latency and optimal QoS. The Figure also shows that
NFOA has the ability to find a global solution and avoid being
trapped in local optimum. This is attributed to the update
strategy employed by NFOA which ensures that updates to x
and y network coordinates are widely distributed across the
network coordinate search space. Table 5 shows the best
fitness values obtained over five runs. The result demonstrates
that NFOA obtained the best fitness in three of the five runs as
highlighted by the bold values.

Fig. 10. Fitness versus Generation

TABLE V. EXPERIMENTAL RESULT FOR FITNESS

Runs NFOA. GA PSO

1 0.3467 0.4341 0.3273

2 0.4502 0.3520 0.2264

3 0.4458 0.3099 0.2065

4 0.4679 0.45207 0.2686

5 0.4336 0.3690 0.3966

2) Network latency
In this experiment, we evaluate the network latency (RTT)

solutions for each generation. Typically, the best algorithm
will indicate the lowest RTT. From Figure 11, it is observed
that the RTT converged at100-th iteration for NFOA which
represents the best RTT while it converges at much higher
values for GA and PSO. This further demonstrates NFOA’s
superiority to other algorithms to in finding low latency
solutions.

Fig. 11. Network latency versus Iterations

3) Best Fruit fly path
Figure 12 shows the best fruit fly’s path to optimization.

Each point on the plot reflects the network positions of each
web service that forms part of the best composite service. The
graph demonstrates that, upon reaching the 200-th generation,
QoS-optimal services that have shorter RTT from each other
are constituted into the best fruit fly.

(a) At 5th generation

(b) At 50th generation

(c) At 100th generation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

10 | P a g e

www.ijacsa.thesai.org

(d) At 200th generation

Fig. 12. Path of the best fruit fly

4) Computation time
As for computational efficiency, Table 6 shows that

NFOA has the fastest average computation time when
compared to GA and PSO. This is because since NFOA is
already naturally built to handle optimization using network
coordinates, it does not require additional structures and
computations to work with our network model. This is not the
case with PSO and GA which require additional computations
that further worsen their execution times.

TABLE VI. AVERAGE COMPUTATION TIMES (IN SECONDS) OF THE FOUR

ALGORITHMS

NFOA. PSO GA

48.42s 60.055s 109.24s

5) Number of RTT-measured neighbours
This experiment evaluates the impact of number of RTT-

measured neighbours (k) on estimation error (), computation

time and quality of NFOA’s solutions. The estimation error
will give us an idea of how accurate our compositions’
predicted RTTs are compared to their actual RTTs. In this
experiment, we vary the value of k between 5 and 50
neighbours per service. In Figure 13(a), it is observed that as k
is increased (i.e. the more neighbours each service measures
its RTT to) the higher the latency value of the compositions.
The reason for this effect can be seen from Figure 13 (b)
which shows the variation of estimation error () with k.

When the value of k is set to 5, it means that each service will
measure RTT with small number (5) of its neighbours and
then predict RTT with all the other services. This will
ultimately reduce the prediction accuracy (i.e. increase the
estimation error) for each composite service. On the other
hand, setting k to 50 means increasing the number of the
measured RTT paths to 50. This will lead to a higher
prediction accuracy (i.e. lower estimation error) for each
composite service. This result means that even if composite
service latencies are lower when k is set at values below 20,
they are the least accurate representations of true network
latency of the compositions when compared to values above
20.

(a) k vs Network latency

(b) k vs Estimation error

(c) k vs Computation time

Fig. 13. Effect of k on network latency, estimation error, and computation

time

Figure 13 (c) shows the linear variation between k and
Computation time. If k is too high then computation time for
NFOA algorithm will increase and vice versa. Based on these
observations, the best setting for k should be between 20 and
35.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

11 | P a g e

www.ijacsa.thesai.org

V. CONCLUSIoN

In this paper we propose an enhanced fruit fly optimization
algorithm called NFOA that performs network-aware web
service composition in the cloud. Fruit fly optimization a new
approach for finding best solutions by mimicking the
behaviour of the fruit fly. The number of services distributed
on the Cloud has increased. Therefore the QoS of network has
become important in determining performance of a composite
service. We define a network model that estimates network
latency in the form of service network positions with the aid
of a network coordinate system based on matrix factorization
called MF. MF measures RTT between a service and a small
number of its neighbours then estimates the unknown RTT
with other services in the cloud. MF feeds network positions
of services to NFOA which uses them directly to find
composite services with low latency and near-optimum web
service QoS. Experimental simulations have shown that
NFOA is superior to other meta-heuristic techniques in finding
solutions with optimum fitness and latency.

REFERENCES

[1] U. Shehu; G. Ali Safdar; G. Epiphaniou; “Network-aware Composition
for Internet of Thing Services” in Transactions on Networks and
Communications vol.3, no.1, pp 45-58 February 2015

[2] Jaeger, M.C.; Rojec-Goldmann, G.; Muhl, G., "QoS aggregation for
Web service composition using workflow patterns," Enterprise
Distributed Object Computing Conference, 2004. EDOC 2004.
Proceedings. Eighth IEEE International , vol., no., pp.149,159, 20-24
Sept. 2004

[3] Rony Kay; “Pragmatic Network Latency Engineering Fundamental
Facts and Analysis,” cPacket Networks on vol., no., pp.1-13, 2009

[4] http://www.wired.com/2012/09/layers-of-latency/

[5] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani. An approach
for QoS-aware service composition based on genetic algorithms. In
GECCO ’05: Proceedings of the 2005 conference on Genetic and
evolutionary computation, vol., no., pp 1069–1075, New York, NY,
USA, 2005. ACM

[6] L. Zeng; B. Benatallah; M. Dumas; J. Kalagnanam; Q. Z. Sheng;,
”Quality Driven Web Services Composition,” In WWW '03:
Proceedings of the 12th international conference on World Wide Web,
vol., no., pp., 2003.

[7] Yilmaz, A.E.; Karagoz, P.; "Improved Genetic Algorithm Based
Approach for QoS Aware Web Service Composition," Web Services
(ICWS), 2014 IEEE International Conference on , vol., no., pp.463,470,
2014

[8] W. Yang; C. Zhang; ”A Hybrid Particle Swarm Optimization Algorithm
for Service Selection Problem in the Cloud” International Journal of
Grid Distribution Computing, vol.7, no.4, pp.1-10, 2014

[9] A. Sawczuk da Silva; H. Ma; M. Zhang; “A GP Approach to QoS-
Aware Web Service Composition and Selection” in Springer
Simulated Evolution and Learning vol.8886, no., pp.180-191 2014

[10] X. Wu; T. Wang; X. Qian; C. Zeng; “Multi-QoS aware automatic
service composition” in Springer Wuhan University Journal of
Natural Sciences, vol.19, no.4, pp. 307-314, August 2014

[11] Adrian, K.; Fuyuki I.; Shinichi Honiden,"Towards network-aware
service composition in the cloud," In Proceedings of the 21st
international conference on World Wide Web (WWW '12). ACM, New
York, NY, USA, on, vol., no., pp.959-968, 2012.

[12] Wen-Tsao Pan; “A new Fruit Fly Optimization Algorithm: Taking The
Financial Distress Model As An Example” In Elsevier Knowledge-
Based Systems vol 26 no. pp.69-74 2012

[13] J. O’Sullivan; D. Edmond; A. T. Hofstede; “What’s in a service?” In
Distrib. Parallel Databases, vol. 12, nos. 2–3, pp. 117–133, 2002

[14] L. Wengin; “Towards a Resilient Service-Oriented Computing based on
Ad-hoc web Service Compositions in Dynamic Environments”, INSA
Lyon, vol., no., pp.4-5, March 2014

[15] U.Shehu; G. Epiphaniou; G. Safdar;”A Survey of QoS-Aware Web
Service Composition Techniques”, In International Journal of Computer
Applications vol.89, no.12, march 2014

[16] Landi, G.; Metsch, T.; Neves, P.M.; Mueller, J.; Edmonds, A.; Secondo
Crosta, P., "SLA Management And Service Composition of Virtualized
Applications In Mobile Networking Environments," Network In
Operations and Management Symposium (NOMS) IEEE , vol., no.,
pp.1,8, 5-9 May 2014

[17] A. Younes; M. Essaaidi; A. Moussaoui;”SFL Algorithm for QoS-based
Cloud Service Composition”, In International Journal of Computer
Applications, vol.97, no.17, pp.42-49, July 2014

[18] Klein, A.; Ishikawa, F.; Honiden, S., "SanGA: A Self-Adaptive
Network-Aware Approach to Service Composition," in Services
Computing, IEEE Transactions on , vol.7, no.3, pp.452-464,
July-Sept. 2014

[19] Hui Liu; Dong Xu; Huaikou Miao, "Ant Colony Optimization Based
Service Flow Scheduling with Various QoS Requirements in Cloud
Computing," in Software and Network Engineering (SSNE), 2011 First
ACIS International Symposium on , vol., no., pp.53-58, 19-20 Dec. 2011

[20] Wong, B.; Slivkins, A.; Sirer, E.; “Meridian: A lightweight network
location service without virtual coordinates,” In: Proc. the ACM
SIGCOMM., vol., no., pp., 2005

[21] Ludwig, S.A., "Applying Particle Swarm Optimization to Quality-of-
Service-Driven Web Service Composition," Advanced Information
Networking and Applications (AINA), 2012 IEEE 26th International
Conference on , vol., no., pp.613,620, 26-29 March 2012

[22] W.T. Pan; “Using Modified Fruit Fly Optimization Algorithm To
Perform The Function Test And Case Studies,” Connect. Sci., vol.25,
no., pp. 151–160, 2013

[23] X. Zheng; L. Wang; S. Wang;”A Novel Fruit Fly Optimization
Algorithm For The Semiconductor Final Testing Scheduling problem”
Tsinghua National Laboratory for Information Science and Technology,
vol.57, no., pp.95-103, 2014

[24] D. Wang; Y. Yang; Z. Mi;”A Genetic-based Approach to Web Service
Composition in Geo-distributed Cloud Environment,” In Elsevier
Journal of Computers and Electrical Engineering, vol., no.,pp.1-12, 2014

[25] Q. Yu; L. Chen; B. Li;”Ant Colony Optimization Applied to Web
Service Compositions in Cloud Computing,” In Elsevier Journal of
Computers and Electrical Engineering, vol.41, no.,pp.18-27, 2015

[26] Guohui Wang; Ng, T.S.E., "The Impact of Virtualization on Network
Performance of Amazon EC2 Data Center," INFOCOM, 2010
Proceedings IEEE , vol., no., pp.1,9, 14-19 March 2010.

[27] Kyoung Shin Park; Kenyon, R.V., "Effects of network characteristics on
human performance in a collaborative virtual environment," Virtual
Reality, 1999. Proceedings., IEEE , vol., no., pp.104,111, 13-17 Mar
1999

[28] Cong Ding; Yang Chen; Tianyin Xu; Xiaoming Fu, "CloudGPS: A
scalable and ISP-friendly server selection scheme in cloud computing
environments," Quality of Service (IWQoS), 2012 IEEE 20th
International Workshop on , vol., no., pp.1,9, 4-5 June 2012.

[29] Hyuk Lim, Jennifer C. Hou, Chong-Ho Choi; “Constructing internet
coordinate system based on delay measurement,” IEEE/ACM
Transactions on Networking, vol.13, no.3, pp.513-525, 2005

[30] Hyuk Lim, Jennifer C. Hou, Chong-Ho Choi; “Constructing internet
coordinate system based on delay measurement,” IEEE/ACM
Transactions on Networking, vol.13, no.3, pp.513-525, 2005

[31] Liao, Yongjun. "Learning to predict end-to-end network performance.",
PhD Thesis University of Liege Belgium, vol, no., pp.38-43, 2013.

[32] Y. Mao, L. Saul, J. M. Smith, IDES: An Internet Distance Estimation
Service for Large Network, IEEE Journal on Selected Areas in
Communications (JSAC), vol., no., pp.2273 – 2284, 2006.

