
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

207 | P a g e

www.ijacsa.thesai.org

A New Hybrid Network Sniffer Model Based on Pcap

Language and Sockets (Pcapsocks)

Azidine GUEZZAZ, Ahmed ASIMI, Yassine SADQI, Younes ASIMI and Zakariae TBATOU

Laboratoire LabSiv: Systèmes d’information et vision

Equipe SCCAM : Sécurité, Cryptographie, Contrôle d'Accès et Modélisation

Department of Mathematics and Computer Sciences

Faculty of Sciences, Ibn Zohr University, B.P 8106, City Dakhla, Agadir, Morocco

Abstract—Nowadays, the protection and the security of data

transited within computer networks represent a real challenge

for developers of computer applications and network

administrators. The Intrusion Detection System and Intrusion

Prevention System are the reliable techniques for a Good

security. Any detected intrusion is based on data collection. So,

the collection of an important and significant traffic on the

monitored systems is an interesting feature. Thus, the first task of

Intrusion Detection System and Intrusion Prevention System is to

collect information’s basis to treat and analyze them, and to

make accurate decisions. Network analysis can be used to

improve networks performances and their security, but it can

also be used for malicious tasks. Our main goal in this article is to

design a reliable and powerful network sniffer, called PcapSockS,

based on pcap language and sockets, able to intercept traffic in

three modes: connected, connectionless and raw mode. We start

with the performances assessment performed on a list of most

expanded and most recently used network sniffers. The study will

be completed by a classification of these sniffers related to

computer security objectives based on parameters library

(libpcap/winpcap or libnet), filtering, availability, software or

hardware, alert and real time. The PcapSockS provides a nice

performance integrating reliable sniffing mechanisms that allow

a supervision taking into account some low and high-level

protocols for TCP and UDP network communications.

Keywords—Network Security; Intrusion Detection; Intrusion

Prevention; Sniffing; Filtering; Network sniffer; Libpcap; Libnet;

Sockets

I. INTRODUCTION AND NOTATIONS

The sniffing is a technique of monitoring every packet that
crosses the network. A packet sniffer is a piece of software or
hardware that monitors all network traffic. Network analysis is
the process of listening and analysis of network traffic. It
controls network communications to identify performance
problems, locates security vulnerabilities, analyzes the
behavior of the application, and performs capacity planning.
The management and the supervision of exchanged data by
network systems are a fundamental task that contributes to a
reliable intrusion detection and analysis of intrusive activities
detected. The sniffing tools are used to listen, monitor, capture,
record, and analyze network traffic. They extract the necessary
information’s to make decision and implement the best
strategies to improve the computer security. Many sniffers are
available to capture packets circulated in wired networks
(Ethernet sniffers, for example) and wireless network. They
help network managers to assess and review the data over their

networks, to indicate the network problems and to identify
some failures monitored network [16]. The sniffing is also
exploited by attackers to gather a database of information on
victims’ networks and hosts that constitute them. They can
intercept the data and even the users’ passwords [28] [31]. The
goal of this paper is to describe a new hybrid sniffer for a
relevant collection of data. For this, we proceed as follows: the
second section cites an art state on the techniques of network
sniffing; a related study will be developed on some sniffers. In
the third section, the performances assessment is performed on
a list of network sniffers based on various parameters to ensure
the computer security objectives, mainly the type of used
library, libpcap or libnet to establish the performances and
limitations of each library and finally validate our choice. A
classification is deducted at the end of the section. The
proposed network sniffer works in raw, connected and
connectionless mode; it will be described in part four. A
detailed description of the new model and its characteristics
will be discussed in fifth section. This work will be finished by
a conclusion and perspectives. Trough this paper we use the
following notations:

IP: Internet Protocol.

IDS: Intrusion Detection System.

IPS: Intrusion Prevention System.

ARP: Address Resolution Protocol.

NIC: Network Interface Cards.

MAC: Media Access Control.

CRC: Cyclic Redundancy Check.

PDU: Protocol Data Unit.

BSD: Berkeley Software Distribution.

BPF: Berkeley Packet Filter.

LSF: Linux Socket Filter.

FFPF: Fairly Fast Packet Filter.

CGF: Control Flow Graph.

ATM: Asynchronous Transfer Mode.

ISDN: Integrated Services Digital Network.

FDDI: Fiber Distributed Data Interface.

RFMON: Radio Frequency MONitor.

SSID: Service Set Identifier.

WEP: Wired Equivalent Privacy.

WAP: Wireless Application Protocol.

PSK: Pre-Shared Key.

OSI: Open Systems Interconnection.

LLC: Logical Link Control

https://en.wikipedia.org/wiki/Cyclic_redundancy_check
https://en.wikipedia.org/wiki/Wired_Equivalent_Privacy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

208 | P a g e

www.ijacsa.thesai.org

DOS: Denial of Service.

SOCK_DGRAM: Datagram Sockets.

SOCK_STREAM: Stream Sockets.

SOCK_RAW: Raw Sockets

II. RELATED WORK

In this section, we discuss the sniffing types, components of
the sniffing tools, used libraries to capture network packets and
the used methods to filter the captured traffic.

The network monitoring is a difficult and demanding task.
It is an essential part in the use of network administrators who
are trying to maintain the good operating of their networks and
need to monitor the traffic movements and the network
performances [21] [29]. The sniffing listens to public
conversations in computer networks. It is used by network
managers to manage and ensure the network security. It can
also be used by unauthorized users. Mostly, this device is
placed between the server and the clients web pages, it listens
and analyzes all sent and received requests by the server.
Sometimes, a network sniffer is called a network monitor or a
network analyzer [30]. There are different types of sniffing
packets [3] [30]:

 IP sniffing: collects all IP packets traveled through a
network corresponding to the IP addresses of
supervised entities.

 MAC sniffing: captures the corresponding frames to
supervised interfaces MAC addresses.

 ARP sniffing: intercepts the ARP packets used to query
the ARP cache during network communication.

Generally, the sniffing is divided into two major classes:
passive sniffing that collects raw traffic circulated in the
network without treatments, and active sniffing that intercepts
and treats the collected traffic [3][28]. The sniffers monitor a
wide sent and received information by computer networks.
There are many commercial and no commercial tools,
hardware and software that enable to intercept packets [30].
The copies of captured packets are stored in a temporary
(buffers) or permanent memory (database server). They are
analyzed to extract the useful information or specific models
(patterns). The amount of captured traffic depends on the
location of the controlled host as well a primary server in a
computer network intercepts a significant traffic than isolated
system client. The sniffers operate in two distinct ways: with
filtered way to capture the data containing a specific elements
and an unfiltered way to collect all the raw network traffic.
Some network topologies such as Ethernet are designed so that
all machines connected to a network segment share the same
transmission media, thus, the hosts that are connected to the
same network segment will be able to see all traffic passing
through that segment. Ethernet hardware is designed to filter
the traffic passed, it captures the traffic which concerns it or
has a broadcast addresses and ignores all other traffic. This is

done using the MAC address. To copy all traffic, the host
network cards have to be implemented in promiscuous mode
[3] [16]. The hardware sniffers use the standard adapter’s NIC,
otherwise they may face problems in the CRC error, voltage
and cabling problem. The analysis of captured packets is often
done in real time. The captured traffic may be submitted to a
decoding operation to be descriptive and understandable text
for easy interpretation. Sometimes, the sniffers edit the packets
and transmit them to the network. The security aspect done by
sniffers is represented by their availability to monitor and
capture the traffic in and out of the network taking into account
the clear text passwords and user names [4]. Besides, the
network sniffers participate in detecting and identifying of the
intrusions by monitoring the activities of networks and systems
[14] [16] [31]. They are constituted by the components
described by Clincy & Abi Halaweh in [3] [16]:

 Hardware: is represented by a NIC, activated in sniffing
mode.

 Driver: starts the capturing data from the network cards,
applies a number of filters on traffic and stores it in a
memory.

 Buffer: stores the captured traffic or transfers it to
permanent storage.

 Analyzer: is software responsible for analyzing the
traffic in real time taking into accounts the criteria and
analysis needs.

 Decoder: receives a stream of bits and interprets them
to finally build a descriptive texts format.

 Editor: is available in some sniffers, it changes the
traffic using a unified format and then converts it and
retransmits it in the network.

The sniffers can be used effectively for teaching and
learning networking concepts regardless of the technical
context. They are presented to understand the model and
protocols of network layers [26]. They allow to:

 Examine the format of a protocol data unit (PDU) to
each layer in the network model.

 Examine the message exchanges for two TCP or UDP
connections.

 Examine the messages transferred between a client
application and a server.

The simulation with packet sniffers is used in learning of
computer networking, allows a good understanding of network
concepts, topologies and explains the functions and the roles of
a hub, a bridge or switch and a router. It shows how a data
packet is transmitted into LAN and illustrates the encapsulation
and decapsulation operations while going through the protocol
stack [31]. The main capture libraries are libnet and libpcap [1]
[2] [22]:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

209 | P a g e

www.ijacsa.thesai.org

TABLE I. LIBPCAP AND LIBNET LIBRARIES

 Libpcap Libnet

Capture level

 Captures the packets in low level.

 Extracts the packet so raw kernel without
treatments.

 Manipulates a high level traffic.

 Can manipulate a several low level networking routines.

Used mode
 Conected mode (TCP)

 Connectionless mode (UDP)

 Conected mode (TCP)

 Connectionless mode (UDP)

Filtering

 Compatible filtering with the BPF filter.

 Initializes and configures filters.

 Receives the packets using a loop.

 Doses not provide a packet filtering.

Supported protocols Supports almost of networking protocols.

 Injects any kind of an IP packet.

 Manipulates a network firewall (IP filter, ipfw, ipchains, pf,

PktFilter, ...).

 Offers the addresses manipulation functions, the ARP cache and

routing tables.

 Manipulates an IP tunnel (tun BSD / Linux, Universal TUN /

TAP device).

Errors management Provides the functions to manage errors. Provides the functions to manage errors.

Supported platforms Supported by all platforms.
 BSD (OpenBSD, FreeBSD, NetBSD, BSD / OS), Linux (Redhat,

Debian, Slackware, etc.), MacOS X (Windows NT / 2000 / XP),

Solaris, IRIX, HP-UX, Tru64.

The filtering is an essential operation to classify the
captured packets using filters according to the needs of capture.
When the packets are intercepted, a filtering is applied. The
packet that respects the filter is stored. The capture filters are
useful to limit the captured packets when concentrated on a
specific packet type, the packets that meet the filter criteria are
elected [32]. Among the criteria are used to filter a packet, we
find: type packet used (IP, TCP, UDP, ICMP, ...), address of
input or output interface, address of source or destination of
packet, the number of source or destination port of application,
…. The filter is a Boolean function which returns true if the
traffic is accepted; otherwise, returns false (the traffic is
ignored or rejected). For example, to apply the filtering, the
operating system use a packet filter like the BSD Packet Filter
for Open BSD systems [13] and the LSF filter for Unix
platforms. To improve the filtering operation, several filters are
implemented; we cite a result of a recent research on filters
packets, the rapid filter FFPF (Now Streamline) [15]. Multiple
filters can be loaded simultaneously in FFPF. To design a
filter, two basic approaches are available: tree model and direct
acyclic graph (CGF) model used by Berkeley Packet Filter
[13]. The filtering can be classified into two types:

 The static filtering initializes the filter parameters to be
applied in advance. It is provided for example by the
pcap language [6] maintained and developed by
researchers at the Lawrence Berkeley National
Laboratory and enables the use of simple rules to
remove the unwanted packets.

 The dynamic filtering implements the parameters that
change during running. The filter Swift or Fast
Dynamic Packet Filter is an example of dynamic filter
[12] [27].

III. STUDY AND PERFORMANCES ASSESSMENT

This section will study a performance evaluation of a
proposed list of sniffers setting up parameters related to
computer security. It is completed by a classification.

A. Assessment Parameters

Normally, to realize an assessment performances and
classify the various sniffers which use wired and/ or wireless
networks, many criteria are available such as, supported
platforms, operating systems and interfaces, user interface,
number of protocols that the network sniffer can decode,
available utilities to enable the user to personalize capturing
and displaying network packets, support for customized
protocol decodes, readability of captured data, provided
statistical information, decoding captured data, …. Our main
objective in this work is to propose an approach to improve the
security level. So, our study is based on parameters related to
computer security that test the sniffers availability and their
reliability. It is useful to recall that the sniffing requires the
activation of interfaces in promiscuous mode for wired
networks and in rfmon mode for wireless networks.

To compare and evaluate the proposed tools, we focus on
evaluation characteristics dependent on computer security cited
in [16] [28] [33].

 Availability: to test the availability of a sniffer, three
parameters are cited:

- Operating time of the sniffer.

- Memory size allocated to the implementation

of the sniffer (as the size increases, the

treatment requires a lot of time).

- Maximum controlled flow by the sniffer [34].

The table II bellow illustrates the different

network technologies with their supported

maximum flows.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

210 | P a g e

www.ijacsa.thesai.org

TABLE II. NETWORK STANDARDS AND MAXIMUM FLOWS

Network Standard maximum flow

Wired

Networks

Ethernet Megabits, gigabits

ISDN Low flow Services: 64Kbps to 2Mbps

ATM High flow Services: 10Mbps to 622Mbps.

FDDI 100 Mbps

Token

Ring
4 Mbps to 16 Mbps

Wireless

Networks

802.11a 54 Mbit / s with a range of 10 m.

802.11b 11 Mbit / s with a range of 10 0 m.

802.11g 54 Mbit / s with a range of 100 m.

802.11n Frequency 2.4GHz and 5GHz

 Filtering: verifies the existence of a filtering system to
filter the traffic.

 Used library: determines the used library by the sniffer
to capture traffic: libnet or libpcap.

 Supported protocols: means the number of protocols
taken by a sniffer.

 Alert: an alert will be produced, if a problem exists in
the controlled segment,

 Real Time: the treatment in real time is a parameter of
an effective sniffing [3] [25].

B. Classification of the Sniffers

We refer to the study treated in [3] [4] [5] [6] [7] [8] [9]
[10] [11] [16] [17] [18] [19] [25] [26] [28] and [32] and we
deduce the classification of sniffers according to the
characteristics and proposed parameters:

TABLE III. CLASSIFICATION OF SNIFFERS

Network

sniffers

S/

H
Library Filtering Flow Availability Alert

Real

time

Tcpdump S
Libpcap

(Winpcap)
++ Flow of Ethernet networks Very economical installation file size: 484 KB - - - -

Wireshark S
Libpcap
(Winpcap)

++
Flow of Ethernet and wireless
networks.

81 MB after installation. - - ++

PACKETYZER S
Libpcap

(Winpcap)
++

Flow of Ethernet, FDDI, PPP,

Token Ring and wireless
networks.

-supports 483 protocols.

-Decodes and edits packets.

- - ++

Netflow CISCO
S

H
Libpcap ++ High flow networks (Gigabit).

Very high (provides valuable information
about users, network applications, peak hours).

-2GH Dual processor.

-2GO Memory.

++ ++

Colasoft Capsa
S

Libpcap ++

Flow wired and wireless

networks over 802.11a, 802.22b,
802.11g and 802.11n

-No Tolerant with the attacks: ARP, TCP port

scanning,

-Signals DOS attacks
- Free version is available with limited

features.

++ ++

PRTG Network
Monitor

S
H

Libpcap ++ High flow

-653 MB on after windows 7 installation.

-Integrates SNMP, Packet (Sniffing and Net
flow).

-monitors 24/7 network.

- Includes over 200 types of sensors.
-Less than 30 protocols (Free).

- More than 30 protocols (Com)

++ ++

Kismit S Libpcap ++
Flows of wireless networks
802.11n, 802.22b 802.11g and

802.11a

High (supports any wireless card rfmon) ++ ++

Scapy S

Libpcap

and
Libnet

++ Injectes the 802 frames

- Generates and receives quick and accurate

traffic.
- Decodes packets of a number of protocols.

++ ++

OmniPeek

S

H

Libpcap ++

Ethernet, Gigabit, 10 Gigabit,

208.11 a / b / g / n / ac wireless,

VoIP, Video, MPLS and VLAN

-captures on multiple networks simultaneously.

- Several hundred protocols
- WPA, WPA2 and PSK

Decoding.

++ ++

ETHERAP S Libpcap ++
Flows of Ethernet, FDDI, Token

Ring, ISDN.
- Is only available for GNU / Linux systems. - - ++

Soft Perfect

Network

Protocol
Analyzer

S Libpcap ++ Flows of Ethernet networks
-Analyzes of fragmented floors.
-defragments and reassembles the packets.

- Size of the installation file 4.87 Mb.

- - ++

Airodump S Libpcap ++
- Wireless networks 802.11.

- Supports 4.2 GHz channels

-Identification the coordinated access points.

-Writes the several files containing details of
all seen access points and clients.

- - ++

Com: Commercial license. Free: Free license. ++: Available. - -: Not available.

H: Hardware. S: Software.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

211 | P a g e

www.ijacsa.thesai.org

C. Discussion of the Results

This section cites the architecture of many sniffers, their
characteristics and their operating. We assess their
performances based on parameters related to security
objectives: authentication, confidentiality, integrity, availability
and rapidity. Really, it’s difficult to meet this assessment,
because normally the goal of sniffing is not to indicate the
problems and attacks but to collect the circulated traffic in the
networks and sometimes to inform the state of the monitored
network excepting some IDS sniffers that can detect intrusions.
The majority of these sniffers use libpcap library to intercept
traffic and include a filtering system. They are highly available
to monitor wired and wireless networks with a high flows
supporting a large number of protocols. The treatments are
often in real time and the detected problems are alerted by
some sniffers. On the other side, this study helps us to discover
certain limitations of those sniffers. They are based on a
passive sniffing. Sometimes, they are exploited for
unauthorized uses, for example, Airodump that is designed to
crack WEP and WPA encryption algorithms; it is used to
encrypt traffic on wireless networks. The implementation of
software sniffer by interpreted languages such as Python
presents a slow in their performance and increases
consequently the system. The encrypted and fragmented
packets are intercepted by sniffers but they are not analyzed.
The hardware sniffers have adaptation and compatibility

problems [3]. In the next section, we describe in detail the new
model of a network sniffer.

IV. OUR PROPOSAL SCHEME PCAPSOCKS

In this section, the proposed model of sniffing is cited. We
prove that our proposal takes into account the benefits of a
reliable collection of traffic to satisfy the current expectations.
It is time to formulate a new proposition of network sniffer.
Our model, called PcapSockS, based on pcap language and
sockets satisfies. It decodes the intercepted traffic to prepare it
for the analysis step and finally built a collection database for
automatic intrusion detection. Specifically, it ensures two
major tasks:

 Collects the data traffic in high and low level.

 Builds a database for the new proposed IDS/IPS.

The new design focuses on the combination of current
performances of high sniffers and minimization of various
limitations. Thus, we propose a distributed model consisted by
two main components:

 The kernel is composed by two processors, the first to
capture the traffic and the second for filtering.

 The operator decodes the elected traffic using the
functions and treatments of normalization.

These components are described in the figure1 below:

Fig. 1. Model of a network sniffer PcapSockS

The above design can be implemented in the Linux and
Windows platforms, for the Berkeley Packet Filtering filter is
an extension of Linux Sockets Filter [23]. So, the provided
functions by the LSF are taken into account by the PBF in the
case of windows. With this new design, we provide an optimal

sniffer for capturing, filtering, optimization and decoding
traffic while enabling the large satisfaction of various
specificities and open the horizons for other works trying to
improve the computer security techniques. The figure2 shows
the flows exchanged between the various processors:

Capture Processor

Librairies

(Libpcap/ Winpcap)

Sockets Raw

(Win/ Linux)

Filtering Processor

Decoding Processor

Link Level Drivers

STREAM and DGRAM
Sockets (Win/ Linux)

 A
p

p
licatio

n
s

L
ev

el

Kernel Space

Berkeley Packet

Filtering

(Win/ Linux)

Linux Sockets

Filtering

Operator Space

Normalization

Recording

Applicative
Capture

Raw

Capture
Collection

Database

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

212 | P a g e

www.ijacsa.thesai.org

Fig. 2. Data flow diagram

Our new model provides different performances:

 Combining libpcap and sockets functions to capture the
packets.

 Filtering traffic taking into account the capture needs.

 All treatments are in real-time.

 Encryption of transactions between the sniffer and
Collection database.

The next section details the decoding operations used by
the PcapSockS, it shows the performances provided by this

new probe by comparing it with the Scapy and Wireshark
which are considered the most famous sniffers in the moment.

V. DETAILLED DESCRIPTION

A. Processing Operations

The libpcap library is an open source library written in C
that provides a programming interface from which the packets
are intercepted [22]. It relies on a low level language, includes
the functions that can be associated with the user request and
provides a powerful and abstract interface for the capture
process [24]. The process used by libpcap is defined by the
following figure:

Fig. 3. Capture process provided by libpcap

The Sockets are the objects for sending and receiving
messages between processes. They were developed by
Berkeley in 1982 as part of the Berkeley version of Unix. The
Sockets are the specific original Unix systems; they ensure the
communication between various processes, applications and
network layers. The main socket types are:

 SOCK_DGRAM: connectionless sockets (UDP
messages).

 SOCK_STREAM: connection oriented sockets (TCP
packets).

 SOCK_RAW or Raw sockets (frames and bits): The
IEEE 802.2 protocol defines the sub layer LLC of the
data link layer.

The sockets in connectionless and connection oriented
mode are inserted between the layers 3 and 4 of the OSI model.
The raw sockets are positioned in layers 1 and 2 [23].

The filtering is an essential process of checking the
integrity of the kernel traffic. The copies of the collected traffic
can be minimized by deploying a kernel agent called a packet
filter that rejects unwanted packets [13]. The traffic can be
ignored and blocked using one of the techniques used for the
blocking of data [20].

Data link level

Applications Level

Libcap/ Winpcap SOCK_RAW SOCK_DGRAM SOCK_STREA

M

BPF LSF

Normalization and Recording

Légend

e

Processor

Storage
Collection

Database

High

capture
Low

capture

Initialization and inclusion of functions

de capture

Introduction of filters Capture loop execution

Data Extraction

Finish running

Data /packets

Flow

Frames /bits

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

213 | P a g e

www.ijacsa.thesai.org

B. Description of Solutions

The PcapSockS Sniffer integrates libpcap to intercept
traffic from the low-level, physical and data link layers of the
OSI model. This traffic is composed of a set of bits and frames,
it’s saved in a temporary basis to apply the BPF filter and then
meet adequate collection conditions. Libpcap provides the
possibility to introduce the filters to filter traffic: PBF, SWIF
[12]. It applies the filters on traffic in the basis in order to
choose the elected packets. This latter is redirected to the
operator space. The decoding processor normalizes and stores
the chosen traffic in the collection Database. In the high level,
we use the sockets mechanism to ensure a reliable collection.
The TCP and UDP sockets are implemented for this purpose.
Raw sockets are used to reinforce the interception to the low
level with libpcap. The collected traffic is saved in a temporary
basis to apply the filter LSF and redirected directly to
Collection Database. So, our sniffer collects data in three
modes:

 Connection oriented mode requires a prior connection
establishment between communicating entities; this
connection is defined by a logical relationship between
the parts which exchange data.

 Connectionless mode cannot guarantee a reliable
connection, insertion errors, wrong delivery,
duplication, or non sequencing delivery packets. These
faults can be reduced by providing a reliable
transmission service to a protocol layer of the highest
level.

 Raw mode can provide both services in connection
oriented and connectionless mode.

The filtering provides a considerable gain; it avoids the
congestion and the saturation of memory. The filtering is a
very useful to meet the various network services using mainly
in intrusion detection [14] [31]. The PcapSockS Sniffer
implements the filtering operations on collected traffic taking
into account the parameters and attributes characterizing the
monitored entities. The treatments are in real time. Take into
account the time constraints which are as important as the
accuracy of the results for this system synchronizes multiple
tasks that take place and the possibility of including several
shorter threads in a single process [25].

To show the performances provided by the PcapSockS
Sniffer, it is very useful to compare it with other sniffers which
have demonstrated their reliability, we cite Scapy and
Wireshark.

TABLE IV. COMPARISON OF PCAPSOCKS WITH SCAPY AND WIRESHARK

Sniffer Platforms Low capture High capture Low filtering High filtering Network

Scapy

-Win

-Linux

-Mac OS

-Libpcap
-Libnet

-Python Functions
-PBFfilter -No

-Wired

-Wireless

Wireshark
-Win

-Linux
-Libpcap -No -PBF Filter -No

-Wired

-Wireless

Pcap.Sock Sniffer
-Win

-Linux

-Libpcap

-Raw Sockets

- Sock_Stream

-Sock_Dgram
-PBF Filter -LSF Filter

-Wired

VI. CONCLUSION AND PERSPECTIVES

There are many available tools used to capture network
traffic that researchers use in their work, but there is a
limitation in their functions. Some tools capture network traffic
only without analysis. Therefore, the researchers have to use
another tool for analysis to get the traffic feature like it is need
of his work. In this article, we studied in detail the discipline of
sniffing which is an interesting task but is difficult to put in
place taking into account the various needs. The sniffing
enables improved security of computer networks and systems
that compose them.

This study provides a list of popular sniffers to evaluate and
to deduct the existed limits. Thus, a classification is provided
based on the parameters cited in the second section, related to
computer security: availability, traffic filtering, real time, used
library and flow.

We propose this software for the data collection part of our
new intrusion prevention system approach based on neural
network. So, we describe in detail its objectives, roles of its
various components and nature of modes used for sniffing. Our
future work is to implement and validate the steps of
PcapSockS Sniffer and integrate this sensor in IDS/IPS.

REFERENCES

[1] Yan Grunenberger, Thesis “Réseaux sans fil de nouvelle génération :
architectures spontanées et optimisations inter-couches”, 7 Jun 2010.

[2] http ://libdnet.sourceforge.net/.

[3] ms.sonali, a.karale, ms.punam, p.harkut, “packet sniffing” international
journal of pure and applied research in engineering and technology
IJPRET, 2014; Volume 2 (9): 654-661.

[4] Pallavi Asrodia and Hemlata Patel, “Analysis of Various Packet Sniffing
Tools for Network Monitoring and Analysis”, Department of Computer
Science and Engineering, Jawaharlal Institute of Technology, Borawan,
Khargone, (M.P.), International Journal of Electrical, Electronics and
Computer Engineering 1(1): 55-58(2012).

[5] All about Wireshark [Online] Available http://www.wireshark.org/.

[6] All about Tcpdump [Online] Available http:// www.tcpdump.org/.

[7] http://www.colasoft.com/capsa/.

[8] https://www.kismetwireless.net/.

[9] http://www.paessler.com/prtg.

[10] http://www.secdev.org/projects/scapy/.

[11] David Rideau, “Outils de collecte pour réseaux gigabits Une alternative
à la technologie Cisco Netflow”, Département Réseau du CICG (Centre
Inter-Universitaire de Calcul de Grenoble).

[12] Zhenyu Wu, Mengjun Xie, Member, IEEE, and Haining Wang, Senior
Member, IEEE “Design and Implementation of a Fast Dynamic Packet
Filter”, IEEE/ACM TRANSACTIONS ON NETWORKING, 2011.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

214 | P a g e

www.ijacsa.thesai.org

[13] S. McCanne and V. Jacobson, “The BSD packet filter: A new
architecture for user-level packet capture,” in Proc. Winter USENIX
Tech. Conf., 1993, pp. 259–269.

[14] V. Paxson, “Bro: A system for detecting network intruders in Real-
Time”, vol. 31, no. 23–24, pp. 2435–2463, Dec. 1999.

[15] H.Bos, W.de Bruijn, M. Cristea, T. Nguyen, and G. Portokalidis,“FFPF:
Fairly fast packet filters,” in Proc. USENIX OSDI, 2004, pp. 347–363.

[16] Clincy; Abu Halaweh. “A taxonomy of free network snifers for teaching
and research”, Journal of Computing Sciences in Colleges, Volume 21 ,
Issue 1, pp 64-75, 2005.

[17] All about soft perfect network protocol analyzer [Online] Available
http://www.softperfect.com/products/networksniffer/

[18] http://etherape.sourceforge.net/

[19] http://www.aircrackng.org/doku.php?id=airodump-ng

[20] B.Suneel Kumar, S.V.V.D Venu Gopal, M.Satish Kumar, “Blocking
Technique of Dataflow in Networks”, ASR Engineering College,
Tanuku, W.G Dist, and Andhra Pradesh.

[21] AlishaCecil, “A Summary of Network Traffic Monitoring and
AnalysisTechniques”, acecil19@yahoo.com

[22] Alejandro L´opez Monge , “Aprendiendo a programar con Libpcap”,
kodemonk@emasterminds.net, 20 de Febrero de 2005

[23] Christophe Gimenez,“MiniSniff Application de capture de trames,V.A.E
Algorithmique N1/N2 – Réseaux”, DESS C.C.I. 2003-2004

[24] Fulvio Risso and Loris “An Architecture for High Performance Network
Analysis”, Degioanni Dipartimento di Automatica e Informatica –
Politecnico di Torino Corso Duca degli Abruzzi, 24 – 10129 Torino,
Italy

[25] Manas Saksena, “Conception de logiciel en temps réel – Progrès actuels
et défis à venir”, Université Concordia, et Bran Selic, ObjecTime
Limited

[26] Bruce P. Tis , “Using packet sniffing to teach networking concepts”,
Simmons College, Boston Ma Journal of Computing Sciences in
Colleges, Volume 30 Issue 6, June 2015, Pages 67-74

[27] Zhenyu Wu, Mengjun Xie and Haining Wang “Swift: A Fast Dynamic
Packet Filter”, The College of William and Mary, NSDI ’08:5th
USENIX Symposium on Networked Systems Design and
Implementation

[28] Dr. Charu Gandhi, Gaurav Suri, Rishi P. Golyan3, Pupul Saxena,
Bhavya K. Saxena, “A Packet Sniffer – A comparative study”, VOL. 2,
NO. 5, MAY 2014, 179–187 Available online at: www.ijcncs.org ISSN
2308-9830

[29] SB .A. Mohammed, Dr.S.M Sani, Dr. D.D. DAJAB, “Network Traffic
Analysis: A Case Study of ABU Network”, Computer Engineering and
Intelligent Systems, ISSN 2222-1719 (Paper) ISSN 2222-2863 (Online),
Vol.4, No.4, 2013

[30] Rupam, Atul Verma, Ankita Singh, “An Approach to Detect Packets
Using Packet Sniffing”, International Journal of Computer Science &
Engineering Survey (IJCSES) Vol.4, No.3, June 2013

[31] X.Yuan, P.Vega, Jinsheng Xu, Huiming Yu, and Stephen Providence
“An animated simulator for packet sniffer”, , Department of Computer
Science, North Carolina A&T State University, 1601 East Market St.,
Greensboro, NC 27411

[32] L.Chappell, “Wirehark Network Analysis”,The Official Wireshark
Certified Network Analyst™ Study Guide Second Edition San (Version
2.1b).

[33] Y.Farhaoui, A.Asimi, “Performance method of assessment of the
intrusion detection and preventionsystems”, International Journal of
Engineering Science and Technology (IJEST), ISSN : 0975-5462, Vol. 3
No. 7 July 2011.

[34] Claude Duvallet, “Les réseaux informatiques”, Université du Havre
UFR Sciences et Techniques 25 rue Philippe Lebon - BP 540 76058 LE
HAVRE CEDEX Claude.Duvallet@gmail.com.

mailto:acecil19@yahoo.com
http://dl.acm.org/author_page.cfm?id=81100012380&coll=DL&dl=ACM&trk=0&cfid=683283676&cftoken=34220890
http://dl.acm.org/inst_page.cfm?id=60006186&CFID=683283676&CFTOKEN=34220890
http://www.ijcncs.org/

