
Implementation and Evaluation of a Secure and

Efficient Web Authentication Scheme using Mozilla

Firefox and WAMP

Yassine SADQI, Ahmed ASIMI, Younes ASIMI, Zakaria TBATOU,Azidine GUEZZAZ

Departments of Mathematics and Computer Science, Information Systems and Vision Laboratory

(LabSIV), Faculty of Sciences, Ibn Zohr University B.P 8106, City Dakhla, Agadir, Morocco

Abstract— User authentication and session management are

two of the most critical aspects of computer security and privacy

on the web. However, despite their importance, in practice,

authentication and session management are implemented

through the use of vulnerable techniques. To solve this complex

problem, we proposed new authentication architecture, called

StrongAuth. Later, we presented an improved version of

StrongAuth that includes a secure session management

mechanism based on public key cryptography and other

cryptographic primitives. In this paper, we present an

experimental implementation and evaluation of the proposed

scheme to demonstrate its feasibility in real-world scenarios.

Specifically, we realize a prototype consisting of two modules: (1)

a registration module that implements the registration, and (2)

an authentication module integrating both the mutual

authentication and the session management phases of the

proposed scheme. The experimental results show that in

comparison to traditional authentication and session

management mechanisms, the proposed prototype presents the

lowest total runtime.

Keywords— authentication; session management; web security;

cryptographic primitives; computer security and privacy; security

implementation; authentication scheme; Mozilla Firefox; WAMP

I. INTRODUCTION (Heading 1)

Despite its widely studied security problems [1]–[13],
password authentication through an HTML form is the
dominant mechanism for authenticating users in modern web
applications [4], [14], [15]. More specifically, the lack of
authentication standard HTML form and the limited security
background of webmasters have created a set of unique design
and implementation choices that contain multiple security
vulnerabilities [3], [12]. While authentication experts proposed
a wide range of secure alternatives [16][17]–[20], Bonneau et
al. [4] showed that the majority of these schemes offer more
security than passwords, but they are difficult to use and / or
expensive to deploy [4].

In [13] we have proposed a new authentication architecture,
called StrongAuth, to enhance security without sacrificing
usability and deployability. Specifically, our proposal does not
require any additional equipment except a modern web
browser. Later, we presented an improved version of
StrongAuth including a secure session management

mechanism [21]. This version covers the complete cycle of
authentication in the context of web applications, consisting of
mutual authentication phases and the subsequent HTTP
requests authentication [21].

In this paper, we realize a prototype consisting of two
modules: A registration module that implements the
registration phase of the proposed scheme [21], and another
authentication module that integrates both the mutual
authentication and the session management phases. On the one
hand, we integrate the client architecture component as an
extension of Mozilla Firefox that can easily install it using
Mozilla Firefox Add-ons Manager and the server component as
a service of PHP applications within the WAMP platform,
which allows us to avoid recompiling the source code of
Mozilla Firefox and have an independent server component of
the application code; which facilitates the deployment. On the
other hand, we evaluate the performance of registration and
authentication modules to evaluate the theoretical study
presented in [21].

The rest of the paper is organized as follows: in section 2

we briefly review the registration, the authentication and

session management phases of the proposed scheme [21]. In

Section 3 we are particularly interested in the implementation

of our prototype to show the feasibility of the proposed

scheme. Section 4 presents our results and discussions of the

experimental evaluation of the proposed prototype. Section 5

concluded the paper.

In the rest of this paper, we denoted by:

Ui ith User.

IDi Unique identifier of user Ui.

Pi Password of user Ui.

Salti Cryptographic Salt of user Ui .

d Web application domain name.

RWi Random value used at most once within the

scope of a given session generated by the

web application for Ui.

RBi Random value used at most once within the

scope of a given session generated by the

browser for Ui ..

USKi,UPKi Asymmetric key pair for user Ui generated by

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

594 | P a g e
www.ijacsa.thesai.org

the browser using a secure asymmetric key

generation algorithm.

SSK Web application Private Key.

SPK Web application Public Key certificate.

PSKi Pre-Session key shared between Ui and the

web application using HTTPS.

SKi Session Key.

Xi
new Renewal of the parameter Xi.

PBKDF() Password-Based Key Derivation Function.

MKi The master key that is output from an

execution of PBKDF by the browser.

SE(k,b) Encryption of b by k using a secure

symmetric encryption algorithm.

AE(k,b) Encryption of b by k using a secure

asymmetric encryption algorithm.

SD(k,b) Decryption of b by k using a secure

symmetric decryption algorithm.

AD(k,b) Decryption of b by k using a secure

asymmetric decryption algorithm.

H() Cryptographic one way hash function.

HMAC(K,m) Compute the keyed-Hash Message

Authentication Code of message m using the

secret key K.

A || B The concatenation of binary strings A and B.

 XOR operation.

== Comparison.

CCS Client Cryptographic Services.

UACM User Authentication Credentials Manager.

CS Client Storage.

SCS Server Cryptographic Services.

RD Registration Database.

url URL of the resource requested by Ui browser.

II. REVIEW OF THE PROPOSED SCHEME

In this section, we briefly review the registration, the

authentication and session management phases of the

proposed scheme. For all details see [21].

A. Registration Phase

The registration phase is invoked whenever a new user Ui

wants to register within the web application. This registration

process does not ask from Ui more than choosing an IDi and

Pi. It is know that password-based authentication presents

several security problems. For this, the browser transparently

from Ui integrates other cryptographic parameters that are

used to strengthen users‘ authentication. Also in this phase,

the proposed scheme relies on HTTPS to protect UPKi.

confidentiality and integrity. This phase proceeds as follows:

User Ui Browser Web Application

IDi Computes

UIDi=H(IDi ||d)

If UIDi does not exist

IDi

(HTTPS) If IDi does not exist

Salti

(HTTPS)

Generates Salti

Pi

Generates USKi,

UPKi,

Computes

MKi=PBKDF(Pi,

Salti),

ESKi= SE(MKi,

USKi),

EPKi= SE (MKi, UPKi)

Stores UIDi, ESKi,

EPKi, Salti

IDi, UPKi

(HTTPS)

Generates RWi,

Computes SRi= RWi

H(SSK) ,

SUPKi= UPKi SSK

RWi

Stores IDi ,SUPKi, SRi

Fig. 1. Registration phase

B. Mutual authentication and session management phase

Primarily, this phase aims to provide:

 A strong mutual authentication between the
communicating entities without disclosure of the
original authentication settings.

 An agreement on a session key SKi.

 An HMAC signature in each HTTP request from the
browser to the web application using SKi.

Figure 2 describes the protocol steps

User

Ui

Browser Web Application

IDi Computes

UIDi=H(IDi ||d)And

Checks if UIDi exists

IDi

(HTTP) Checks if IDi exists

SPK

(HTTP)

Pi Generates PSKi

Computes Ki =

AE(SPK,PSKi)

Generates RBi

Computes

MKi =PBKDF(Pi, Salti),

USKi = SD(MKi,ESKi),

UPKi = SD(MKi,EPKi),

M2i= RBi PSKi UPKi,

MDi = H(IDi||d||UPKi ||

RBi ||PSKi)),

IAi = AE(USKi ,MDi) Ki M2i,

IAi

(HTTP)

Computes

PSKi = AD(SSK, Ki),

RWi =SRi H(SSK),

UPKi = SUPKi SSK

RWi,

RBi = M2i PSKi

UPKi

MDi’ =H(ID’i||d || UPKi

|| RBi ||PSKi),

MDi = AD(UPKi, IAi)

Compares MDi’== MDi

On success

Generates RWi
new

Computes

M3i = RWi
new PSKi

UPKi,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

595 | P a g e
www.ijacsa.thesai.org

Computes

RWi
new = M3i PSKi

UPKi,

M4i’= H (RBi || RWi
new

||PSKi|| UPKi)

Compares M4i == M4i’

On success

SKi= H(IDi ||d || UPKi||

RBi|| RWi
new || PSKi)

M3i , M4i

HTTP
M4i = H (RBi || RWi

new

||PSKi|| UPKi),

SKi= H(IDi ||d ||

UPKi||RBi || RWi
new ||

PSKi)

Generates RBi
new

Computes

M5i= RBi
new PSKi

UPKi ,

M6i = HMAC(SKi, url||

RBi
new|| RWi

new)

M5i,M6i

HTTP Computes RBi
new =

M5i PSKi UPKi ,

M6’i = HMAC(SKi, url||

RBi
new || RWi

new)

Compares M6’i == M6i

Fig. 2. Mutual authentication and session phases

III. IMPLEMENTATION OF THE PROPOSED PROTOTYPE

To show the feasibility and effectiveness of the proposed
scheme [21], we realize a prototype. Mainly it aims to
experience the registration phase, mutual authentication and
session management phases. Figure 3 shows the different
elements of our prototype, as well as technologies that we
used. Tables I and II show the software solutions used in our
prototype implementation.

Fig. 3. General architecture of the proposed prototype

TABLE I. THE TECHNOLOGIES USED IN THE IMPLEMENTATION OF THE

CLIENT COMPONENT

Entities Technology

Browser

Mozilla Firefox: The implementation of the client

component of our prototype is based on the Mozilla

Firefox browser.

Client

Cryptographic

Services (CCS)

API js-ctypes [22]: Since we are using Firefox, we

choose to use the NSS cryptographic services. To

interact with NSS [23] we use the js-ctypes API.

User

Authentication

Credentials

Manager (UACM)

API Storage [24]: This interface allows the

manipulation of the SQLite database from extensions

or internal component of Firefox.

Client Storage (CS)

SQLite [25]: The main objective of using the

multiplatform engine database SQLite is to overcome

any installation or administration, which facilitates

deployment. Figure 4 shows the client-side

authentication settings.

TABLE II. THE TECHNOLOGIES USED IN THE IMPLEMENTATION OF THE

SERVER COMPONENT

Entities Technology

Web Server

Apache [26]: Apache HTTP Server with the support of

the module Mod_SSL [27] that allows the

implementation of HTTPS.

Web Application Application based on PHP 5.

Server

Cryptographic

Services (SCS)

Hash and OpenSSL : PHP platform provides a set of

cryptographic extensions either as a part of the core PHP

functionalities (without the use of a third-party

program), or relies on other cryptographic libraries. In

our prototype implementation we use two extensions:

 Hash [28]: For the calculation of hash and

message authentication code (HMAC). Hash is a

digital hash engine, part of the core of PHP. That

means we can use these functions in the web

application without installing a third-party library.

 OpenSSL [29]: As opposed to Hash, the use of this

module requires the presence of an equal or higher

version 0.9.6 of OpenSSL cryptographic library.

The purpose of this extension is to present a set of

cryptographic functions that can be used easily in a

PHP script(e.g. asymmetric/symmetric encryption,

generation and verification of digital signatures,

etc.).

Registration

Database (RD)

The relational database management system MySQL

[30]. Figure 5 illustrates the authentication settings on

the web application side.

Fig. 4. Client-side authentication settings

Fig. 5. Web application-side authentication settings

To simplify the implementation and the experimental
evaluation of our prototype, we divide the implementation into
two modules: (1) registration module, (2) and an authentication
module. The following two subsections provide details on each
of these two modules.

A. Registration Module

The purpose of this module is to implement the registration
phase of the proposed scheme [21]. We develop the client
component as an extension of Mozilla Firefox to avoid
recompiling the browser source code (no changes were
required to the browser source code). Note that instead of
HTML password form field (<input type = "password"), the
proposed prototype presents the user with a private window to
choose securely passwords (Figure 8). On one hand, in the
proposed scheme the browser does not send the password to
the web application. The password is used only within the
client component to generate a symmetric encryption key (the
application does not need to know the user's password). On the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

596 | P a g e
www.ijacsa.thesai.org

other, Sandler and Wallach [7] discussed in detail that the use
of password field is a serious problem, facilitating password
theft. Our prototype is not the only one using the standard
notification API to create a trusted path to the private password
window. Menalis et al. [14] also used this concept.

In detail, the implementation of our Mozilla Firefox
registration extension required:

 1020 lines of chrome / privileged JavaScript code:
About 600 lines for client cryptographic service
implementation based on the js_ctypes API, which
provides access to the cryptographic library of Firefox
(NSS), and 420 lines to integrate other client
component features and the interaction with the server
component.

 85 lines of XUL code: 70 lines of XUL code to define
the interface of the private window for password
selection and confirmation (Figure 9). Also, we use an
overlay file of about 15 lines of XUL code to integrate
the extension components into the Firefox user
interface.

 Other extension configuration files (chrome.mnifest,
install.rdf).

On the other hand, web application cryptographic
operations side and the communication with the client
component have required 130 lines of custom PHP code.
Also, to support HTTPS, we add 20 lines of code to the
configuration file of the Apache web server. More
importantly, our server component is completely
independent of the application code.

The steps of the registration module proceed as follows:

1) The application presents a registration form based on

HTML and CSS to the user. This preserves the same

user experience. Since users are used to complete

such information (name, email ...) in the registration

phase of current web application. Once the user filled

out the form and click on the "Sign Up" button, the

extensions sends the information to the web

application.

{ "salt":
"MTQxMDUwLjYwOTk0OTAwIDE0MzAyNTkyODWJIE+EEuJ7aaJTCqE7uwm",
"username": "yassine",
"sessionRegID" :"NjAwMzMzNTE4ODAxNTYwNg==",
"regURL" :"https:\/\/wma.local\/wma_reg2.php",
"sitename" :"Test of the Registration Phase",
"description":"Welcome to the test of the Registration prototype. Please
choose a password to finish the registration.",
"imgURL" :"https:\/\/wma.local\/logo.png",
"passwordLabel" :"Password",
"password2Label" :"Confirm your Password",
"failURL" :"https:\/\/wma.local\/registration\/error.php"
}

Fig. 6. JSON response sent by the registration service of the PHP application

2) The web application registration service responds

with a JSON object containing the salt generated

using the Random Generator of a Safe cryptographic

Salt per session (RGSCS [31]) and other settings

used thereafter (Figure 6).

3) The extension displays a notification bar that tells the

user that the application support the registration

protocol (Figure 7).

Fig. 7. Notification bar used to create a trusted path to the private password

window

4) The user clicks the button bar "Private Password

Entry" to display the password private window

(Figure 8). The extension uses the settings (site name,

description, imgURL, passwordLabel,

password2Label, failURL) containing in the JSON

object (Figure 6) to customize the information

displayed in this window.

5) In this step, the user chooses a password, confirm it,

and click on the "OK" button. If there is an error

(e.g., the passwords are different, the user clicks the

button without entering a password, etc.), the

notification bar displays the corresponding error

message and a button "Try again "to try again (Figure

9). Otherwise, the protocol proceeds.

Fig. 8. Private window to choose password safely

Fig. 9. Error message displayed by our extension using the Mozilla Firefox

Notification standard API

6) The CCS extension generates a pair of RSA keys and

sends the public key to the web application (Figure

10).

https://wma.local/wma_reg2.php

POST /wma_reg2.php HTTP/1.1

Host: wma.local

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:37.0)

Gecko/20100101 Firefox/37.0

….

msg=wmaClientRegistrationExchange&version=wma_v1&sessionRegID=Nj

AwMzg4MTY0ODY2ODc3MQ%3D%3D&username=ahmed &

clientPublicKey=-----BEGIN%20CERTIFICATE-----

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

597 | P a g e
www.ijacsa.thesai.org

https://wma.local/wma_reg2.php

%0D%0AMIICOTCCASGgAwIBAgIBFjANBgkqhkiG9w0BAQUFADAi M

QswCQYDVQQGEwJVUzET%0D%0AMBEGA1UECgwKSlMtVEVTVC1

DQTAeFw0xMzA1MDEyMzU5NTlaFw0yMzA1MDEyMzU5%0D%0ANTl

aMCIxCzAJBgNVBAYTAlVTMRMwEQYDVQQDDApUZXN0IFVzZXIx

MIGfMA0GCSqG%0D%0ASIb3DQEBAQUAA4GNADCBiQKBgQDDiEY

DFtsE196LQRrTnjbaOzw7MsPHwHOK9Rh9%0D%0APgMbswFg3Y4eOr4

P0kDsdzG1X7S1M4guAO6BWGYL32ic4q8wl%2BqEOouMgVacSdah%0D

%0An08bAMpWWik7UjOUfaB6T2JTwL6lsA%2BMA86MPO11764d94%2

BLZaF%2BSs1Pf%2Br7WhrU%0D%0ArUT7QQIDAQABMA0GCSqGSIb3

DQEBBQUAA4IBAQBf3rUVlzLf6huxeNQw8Ju%2BCvpH%0D%0AupdUa

266veguVybpFO5vA1sHeIpCi1W0ew75Mh6kLZz6RUUWcBUePoKAQAcF

RVCI%0D%0A%2BM0tzqUksL7C6NR15UhzNpg8nadyjHx7SxRYkH8v9m

NT%2Fse9WtMQvmSlsZcd1b4k%0D%0AumD9kSictyu%2F2ueM4%2F6nG

xuYb2XDj1iC3MP%2FVNn%2FhYqT%2FJelVPGn%2FVQT1INAqIp4%0

D%0Am0%2Fxkjtmmhoy%2FlUtbO%2FeEuI86MuLchT7V0JgkYoSiLvi8Ss

m0xcZEXScojDCpHsx%0D%0AErMcCoA6DHVX0fgtGzSCQrsuUUekLxm

hA6hdCu7ot6YBTpkDbYihzrbqzV0B%0D%0A-----

END%20CERTIFICATE-----%0D%0A

Fig. 10. Message sent by the registration of extension containing the public

key and other parameters related to the current user‘s session

7) To improve performance, our prototype performs

these two operations in parallel:

 On the one hand, CCS uses the "salt" sent by

the application (Step 2) and the password

chosen in the previous step, to generate a

secret symmetric key via PBKDF. This key is

used by the CCS to encrypt RSA keys with

AES algorithm (Figures 11 and 12).

Subsequently, based on the API of Mozilla

Firefox Storage, UCAM recorded in the CS

authentication settings associated with that

specific application (Figure 13). The code of

the insertion function UCAM can create the

file from the embedded SQLite database. This

facilitates the use and deployment.

 On the other, the registration service

calculates and stores in the application

database the identification information

associated with that user (Figure 14).

Fig. 11. The encrypted private key of the user Ahmed

Fig. 12. The encrypted public key of the user Ahmed

Fig. 13. Client-side authentication settings for three users

Fig. 14. Server side authentication settings for three users

8) After the success of previous operations and before

redirecting the user‘s private application, the

extension uses the Mozilla Firefox notification bar to

inform the user of the success of the procedure

(Figure 15).

Fig. 15. Successful message displayed using the Mozilla Firefox Notification

standard API

B. Authentication Module

The authentication module of your prototype integrates two
related phases of our architecture: (1) initial connection and
mutual authentication phase and (2) HTTP requests
authentication or session management phase.

Similar to the registration module, we implement the client
component of this module as an extension of Mozilla Firefox.
For this, we need:

 1270 lines of chrome / privileged JavaScript code:
Approximately 750 lines for client cryptographic
service implementation based on the js_ctypes API,
which provides access to Firefox cryptographic library
(NSS), and 520 lines to include other client component
functionality, as well as interaction with the server
component.

 85 lines of XUL code: 70 lines of XUL code to define
the interface of the private window (Figure 17). Also,
we use an overlay file of about 15 lines of XUL code

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

598 | P a g e
www.ijacsa.thesai.org

to integrate the components of the extension in the
Firefox user interface.

 Other extension configuration files (chrome.mnifest,
intall.rdf).

In addition, the implementation of server cryptographic
services and interaction with the client component has required
about 200 lines of PHP code.

In detail, the implementation of the proposed prototype

contains the following steps:

1) When our extension detects the support of the

proposed protocol. It displays a notification bar

asking the user to click on the "Login" button (Figure

16). As shown in Figure 16 unregistered users should

first create a new account.

Fig. 16. Notification bar indicating the support of the mutual authentication

protocol

2) The user clicks the "Login" button. This displays a

private login window (Figure 17) to enter his

username and password. As we have explained in the

registration module, each application is free to

customize the information to display for their users

(logo, site name ...).

Fig. 17. Private window to safely enter the user‘s password

3) Once the user enters his/her username / password and

click "Login", the UACM checks for authentication

parameters associated with that user. In the normal

case, the extension retrieves the corresponding user‘s

authentication settings. Otherwise, the extension

displays an error message (Figure 18).

Fig. 18. Example of an error message asking the user to retry the

authentication procedure by clicking the button "Try again"

4) The CCS execute a series of cryptographic operations

to identify the user with authentication service

application via a digital signature based on its private

key and established a pre-session key (PSKi). Figure

19 shows a part of the request sent by the extension

to the authentication service.

http://localhost/WebMutualAuth/NativeCode/authentication/wma.php

POST /WebMutualAuth/NativeCode/authentication/wma.php HTTP/1.1

Host: localhost

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:37.0)

Gecko/20100101 Firefox/37.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

…

username=yassine &

encryptedPSK=

qZgN0nXc5xBYsjy5XQwMjCfu%2Bl%2FNp0sRT7qmcqa8Th9C9Wcog

wlaxoQdk1esMTMi9WLANdT67PM

Hs1yrV4Wa0BdUOWpxTfVRJSg2ewn4aBkpuOX52VuxF7IO%2BLdZo

5caJlDSZDJZOS86kP%2F6%2FOYKI6R0m00AeZwrgSk513ornQebd%

2BWY%2FmqJuVgZD4PQVYHa%2Bjr4E2RffLQ4ILZ%2BFxbOoBL%

2BtTkA3Gc6IsyxqL7I7TYzDwcJWejEaaVGHW%2BwGY%2Blxz2Kdh

sqXgcy8zZz78QTUiPH1maXM6oWbhu0PLBZ6%2FZo3k%2FtFsVJOk

CXzp118g0BO8xMaiZ1QnVqu5CVzwy5Q%3D%3D &

 IA = 616a59567655773065584756746c4c4d477139586b352b4b36342

f37566a 36796 97 6594865484b374e583438615

749326269316548664c53516238654f5a784652714d65697a766d6432504

76e55704a4246427a527855436f454e655131345a773149356c735761523

264496b45474f676d385135555952764c513866674857614968327a324f4

e6177422f4235716b39597667667638463870785442736a7253774d536c4

8756d6d6b622f413477713377567341742f784b4c655275455a346751765

1385231667576583858482b52736a384e753946766a572b79433776534e6

76b4d4b3579415651546a39794230493265494e59796f37612b57776e616

e4232724f5044724b734c536a75413333745a626c3672536a595969526f5

342564c7671446e3239594c5a52504e796d625657726c4f39504459726f5

236757546786c4865734c4b73514a34446c4f5237496848334f413d3d

….

Fig. 19. Part of the HTTP request sent by the authentication extension to the

web application authentication‘s service

5) The SCS verifies the cryptographic settings of user

authentication, and uses the user public key and other

session parameters to authenticate mutually with the

browser.

6) The extension checks the authenticity of the web

application and displays a message indicating that

mutual authentication is successful (Figure 20).

Fig. 20. Message in Mozilla Firefox notification bar tells the user that the

mutual authentication is executed successfully

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

599 | P a g e
www.ijacsa.thesai.org

http://localhost/WebMutualAuth/NativeCode/authentication/wma.php

After mutual authentication both parties establish a session
key (SKi). Since this shared key is known only by the
authentication extension and the web application, it cannot be
obtained by an attacker. This key is used in the session
management phase of the proposed scheme [21]. Specifically,
our authentication extension includes an HMAC signature [32],
[33] in each HTTP request for the web application. Before
sending the requested resources, the application must first
validate the HMAC signature using SKi.

Taking inspiration from cookies that use special HTTP
headers [34], we decided to create a new HTTP header called
"WMA" using the Mozilla Firefox setRequestHeader function.
It is a part of the Mozilla Firefox nsIHttpChannel interface
[35], which allows to modify the HTTP requests and responses.
Figure 21 illustrates an example of a secure session
management mechanism. In this example, the user Yassine
wants to access the web page "authors.php". For each request
that requires authentication, our extension attaches HMAC
signature, as well as other parameters in our new HTTP header
"WMA". The Web application checks the HMAC signature to
authorize or deny access to the requested resources.

Mozilla Firefox HTTP Request

http://auth.local/authors.php

GET / authors.php HTTP/1.1

Host: auth.local

User-Agent: Mozilla/5.0 (Windows NT 6.1; WOW64; rv:37.0)

Gecko/20100101 Firefox/37.0

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Accept-Language: fr,fr-FR;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

….

WMA:

NjAwNDE2MDM1OTU3ODc5Mg==;yassine;OTMsODksMTAzLDE5M

CwxMTEsNDAsMTY4LDYzLDEwOCwyNDksOTIsMjM3LDEwNSwx

MzMsMTg4LDMyLDQyLDIzOCwxMzAsMTU3LDE5MCwxNDEsMjEs

MTQzLDI1MywxNzgsMTg4LDIwOSw1MCw3NCwxNTQsMTAy;weB9

2PeFzMz6Y0IfcnPC3g==

Connection: keep-alive

….

PHP Application HTTP Response

HTTP/1.1 200 OK

…

Server: Apache/2.2.21 (Win32) mod_ssl/2.2.21 OpenSSL/0.9.8t PHP/5.3.10

X-Powered-By: PHP/5.3.10

….

Fig. 21. Successful HTTP request authentication

IV. EXPERIMENTAL EVALUATION

In this section, we present the results of the experimental
evaluation of our prototype. Indeed, in [21], the authors
performed a comparative and theoretical evaluation of the
proposed scheme regarding computational complexity.
Specifically, they showed that in comparison of related
schemes, the proposed scheme is efficient and present the
lowest computational complexity. On the one hand, HTTPS is
only required in the user registration phase. After that, the other
phases are running on HTTP. On the other, as we discussed,

even if the initial mutual authentication phase requires
expensive cryptographic operations (especially asymmetric
cryptography) increasing the computing time, the session
management phase will need only a negligible overhead. Thus,
the main objective of this evaluation is to confirm the results
above by conducting performance tests on our prototype. This
performance depends on several parameters; including the
ability of the processor and memory, the cryptographic
algorithms, and the bandwidth of the network.

A. Materials and Algorithms

The material used in our experiments consists of a server;
HP Intel (R) Core (TM) i5-3230M CPU 2.60 GHz with 4 GB
RAM running on Windows 7 and a client; laptop Accent
Genuine Intel (R) CPU 1.3 GHz with 2 GB RAM Windows 7
Professional Version.

TABLE III. SUMMARY OF CRYPTOGRAPHIC ALGORITHMS USED IN OUR

TESTS AT THE SERVER, THE PHP APPLICATION, AND MOZILLA FIREFOX

Apache web

server

(HTTPS)

Application

PHP

Mozilla Firefox

Asymmetric

Cryptography
RSA-2048 bits RSA-2048 bits RSA-1024 bits

Symmetric

Cryptography
AES-128 AES-128 AES-128

Hash

function
SHA-256 SHA-256 SHA-256

HMAC

Function
HMAC_SHA256

HMAC_SHA1

HMAC_SHA2

56

HMAC_SHA1

HMAC_SHA256

Key

derivation

function

- -
PBKDF 2 with

1000 iterations.

We use a default configuration for all server and client
software (i.e., no performance optimizations). All tests are
performed in the context of a Fast Ethernet local area network
(flow rates up to 100 Mbit / s). The average ping time on the
network was 35.25 ms with a standard deviation of ± 20.013
ms. The cost of the cryptographic processing is evaluated by
considering an implementation of the algorithms listed in Table
III.

 RSA keys with 1024 bits and 2048 bits as asymmetric
cryptography algorithm: Since RSA is based on the
difficult problem of factoring large numbers, RSA key
size is often a very controversial subject. Officially the
largest factored number is 768 bits. Therefore, the use
of 1024-bit RSA key is considered sufficient to
guarantee practical security [36]. Nevertheless, not to
be placed just outside the known attack capabilities,
security agencies such as NIST and ANSSI
recommend in their latest reports using RSA with 2048
bit [36], [37]. Therefore, in our prototype, the PHP
application, and the web server uses RSA-2048 bit. In
return, we chose a RSA-1024 bit for the users. Indeed,
in the proposed architecture, the RSA public key of the
user is neither transmitted nor stored in clear during
registration and user‘s authentication. In the client and
server sides, the public key is stored encrypted, and its
transmission to the web application requires a secure
connection (HTTPS). This complicates brute force

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

600 | P a g e
www.ijacsa.thesai.org

http://auth.local/authors.php

attacks which require the knowledge of the public part
of the RSA key.

 AES-128 as symmetric encryption algorithm: Today,
AES specified in FIPS 197 [38] is the standard used in
most security protocols (TLS, IPsec, etc.). The ANSSI
and NIST recommend at least a 100-bit key for data to
be protected until 2020, but ANSSI indicates in their
report [38] that the use of a 128-bit key is preferable.

 SHA-256 as a hash function: Following multiple
attacks against the SHA1 algorithm, the majority of
applications decided to move to SHA-256 [39].

 HMAC_SHA1 and HMAC_SHA256 as HMAC
function: While hash functions such as MD5 and SHA-
1 are not longer considered safe due to reported
collision attacks [40, p. 1], [41]. They may be used in
the HMAC functions. HMAC does not require a
collision-resistant hash function for its formal security
proof [42], [43]. The use of more robust functions like
SHA-2 [39] give more security guaranteed, but at a
price in the performance level.

 PBKDF 2 with 1000 iterations as key derivation
function: The use of a key derivation function that
requires N iterations to get key increases the
calculation cost to perform a dictionary attack on a
password with t bits entropy form 2t operations to 2t *
N operations. Therefore, it makes dictionary attacks
and brute force more difficult. However, the
computation required for the key derivation by
legitimate users also increases with the number of
iterations. Thus, there is an obvious compromise: A
large number of iterations makes attacks more
expensive, but affects performance for the authorized
user. PBKDF Version 2 is defined in RFC 2898 [44].
NIST recommends a minimum of 1000 iterations [45].

B. Results and Discussion of the Registration Module

Table IV summarizes the execution time of our registration

module, compared with the traditional registration (based on a

username and password on HTTPS). The time reported is the

average of 10 timings. The total run time includes the time of

round trips and networks latency. We calculated the time

needed to perform cryptographic operations both client side

(Mozilla Firefox registration extension) and PHP applications

side. This allowed us to assess the impact of these calculations

on performance. As we can see in Table 4, the average total

time performance of our proposal is 544.347 ms (with a

standard deviation of 113.16 ms). This time is calculated

starting the moment the user clicks the Sign up button (Figure

8), after entering their password to the success of this phase

(Figure 15). It is clear that our registration module requires

more time compared to the traditional registration of users

(172.680 ± 32.085 ms). Of course, this is due to the operations

integrated into our solution to enhance the security of this

phase. Specifically, client-side cryptographic operations

require 303.303 ms (± 80.607).

TABLE IV. AVERAGE EXECUTION TIME IN MS (± STANDARD DEVIATION)

OF OUR REGISTRATION MODULE, COMPARED WITH THE TRADITIONAL USER‘S

REGISTRATION

Operation
Our Registration

Module

Traditional

Registration

(Passwords over

HTTPS)

Client cryptographic

computations
303,303 ± 80,607 -

PHP application

cryptographic

computations

0,185± 0,018 0,127 ± 0,012

Total runtime 544,347 ± 113,16 172,680 ± 32,085

Figure 22 shows that over 96% of the client time is spent

for the RSA key pair generation. Accordingly, the more we

increase RSA keys length and the numbers of iterations of

PBKDF, performances are affected. At the application side,

we obtained almost similar performance to traditional

registration. The origin of this small difference is the addition

of a generation of a random value and two concatenation

operations in our proposal. These are used to avoid storing the

unencrypted public key of the user in the application database.

Fig. 22. Comparison of the generation time of 1024 bits RSA keys pair and

the time required for other client-side operations

C. Results and Discussion of the Authentication Module

Table V summarizes the results of run time of our

authentication module in comparison with traditional

authentication (HTML form + HTTPS) and SSL / TLS client

certificate authentication. From this table, we can clearly

notice that compared to other mechanisms, our authentication

module has the lowest total run time (about 148.415 ms

20.315 ms ±) and client certificate authentication SSL / TLS

has the highest time (2923.5 ± 350.589). These results confirm

those obtained during the theoretical performance analysis in

[21].

Indeed, as we have already explained, the authentication
phase of the proposed architecture does not require HTTPS,
but relies on cryptographic parameters to enhance user
authentication over an HTTP connection such as symmetric
and asymmetric cryptography. The calculation of these
parameters on the client side of our prototype takes 43.862 ms
(2,376 ms ± standard deviation) and 15.268 ms (5,701 ms with
standard deviation) on the web application side. While the
proposed solution has an impact on performance that we think

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

601 | P a g e
www.ijacsa.thesai.org

is acceptable the performance compared to password
authentication that requires only 0.065 ms in the application-
side and no client-side computing; but security always has a
cost, and we believe that the price of insecurity is much higher.
Also, these calculations are not likely to affect the user
experience.

TABLE V. AVERAGE EXECUTION TIME IN MS (± STANDARD DEVIATION)

OF OUR AUTHENTICATION MODULE COMPARED WITH AUTHENTICATION BASED

ON AN HTML FORM AND A PASSWORD OVER HTTPS AND WITH THE CLIENT

SSL / TLS CERTIFICATE AUTHENTICATION.

Operation

Our

Authentication

Module

SSL/TLS client

certificate

authentication

Client cryptographic

computations
43,862 ± 2,376 -

PHP application

cryptographic

computations

15,268 ± 5,701 -

Total runtime 148,415 ± 20,315 2923,5±350,589

Also, as discussed in [21], to create a secure session
management mechanism, the proposed scheme attaches an
HMAC signature in each HTTP request from the browser to
the web application. This ensures the integrity and authenticity
of HTTP requests. To assess the impact of this mechanism, we
measured the time required to generate an HTTP request
signed and time to validate it by the application. Table 6
presents the average time and standard deviations of our
prototype in ms when using an HMAC_SHA1 and
HMAC_SHA256 functions, compared with traditional session
management (the use of cookies sent over HTTPS).

Again, the results in Table VI reaffirm those in [21]. In
particular, it is clear to see that the computation time added by
generating and validating a HMAC_SHA1 or HMAC_SHA2 is
negligible compared to the total execution time (page load
time). In other words, the user experience is not affected. Also,
despite the cookies by session management requires no
cryptographic operations on both the client side and the
application side, but the use of HTTPS increases the total
execution time required to load a requested page in a user
(about 175.680 ms).

TABLE VI. COMPARING THE RESULTS OF BOTH HMAC_SHA1 AND

HMAC_SHA256 FUNCTIONS APPLIED DURING THE SESSION MANAGEMENT

Our authentication Module:
Session management phase

HTTP cookies
authentication
over HTTPS Operation HMAC_SHA1 HMAC_SHA256

Client

cryptographic

computations

1,846±0,246 1,974±0,24 -

PHP

application

cryptographic

computations

0,0744± 0,036 0,098±0,0283 -

Total runtime 61,64±19,832 65,3593 ± 33,04
175,680 ±

42,124

V. CONCLUSION

In this paper, we demonstrated the implementation
feasibility and experimental evaluation of a secure and efficient
authentication scheme. We first presented the details of our

proposed prototype implementation. Specifically, we separated
the prototype in two modules to simplify the implementation
process: A registration module that implements the registration
phase and an authentication module which incorporates both
mutual authentication and session management phases. In each
module, the client component of the proposed prototype is
developed as an extension of Mozilla Firefox browser that can
easily install and the server component as a service of a PHP
web application. This allowed us to avoid recompiling the
source code of Mozilla Firefox and have an independent server
component of the application code; which also facilitated the
deployment procedure. After that, we focused on the
experimental evaluation of the proposed prototype. Our
experimental results confirmed the proposed scheme-
theoretical analysis. In fact, even if the registration phases and
mutual authentication of our prototype require expensive
cryptographic operations (especially asymmetric cryptography)
increasing the computing time, the session management phase
will need only a negligible overhead. Compared to the related
scheme, we showed that the proposed scheme not only
improves the usability and deployability, but also improves the
user authentication performances.

REFERENCES

[1] K. Fu, E. Sit, K. Smith, and N. Feamster, ―The Dos and Don‘ts of

Client Authentication on the Web.,‖ in USENIX Security Symposium,

2001, pp. 251–268.

[2] M. Weir, S. Aggarwal, M. Collins, and H. Stern, ―Testing metrics for

password creation policies by attacking large sets of revealed

passwords,‖ 2010, pp. 162–175.

[3] J. Bonneau and S. Preibusch, ―The Password Thicket: Technical and

Market Failures in Human Authentication on the Web.,‖ presented at

the The Ninth Workshop on the Economics of Information Security,

2010.

[4] J. Bonneau, C. Herley, P. C. van Oorschot, and F. Stajano, ―The quest

to replace passwords: A framework for comparative evaluation of web

authentication schemes,‖ presented at the 2012 IEEE Symposium on

security and privacy, San Francisco, 2012, pp. 553–567.

[5] J. Bonneau, ―The science of guessing: analyzing an anonymized

corpus of 70 million passwords,‖ presented at the 2012 IEEE

Symposium on Security and Privacy, San Francisco, 2012, pp. 538–

552.

[6] B. Grawemeyer and H. Johnson, ―Using and managing multiple

passwords: A week to a view,‖ Interact. Comput., vol. 23, no. 3, pp.

256–267, May 2011.

[7] D. Sandler and D. S. Wallach, ―<input type=‗password‘> must die,‖

presented at the Web 2.0 Security & Privacy, 2008.

[8] D. Florencio and C. Herley, ―A large-scale study of web password

habits,‖ presented at the the 16th international conference on World

Wide Web, New York, 2007, pp. 657–666.

[9] E. Grosse and M. Upadhyay, ―Authentication at Scale,‖ Secur. Priv.

IEEE, vol. 11, no. 1, pp. 15 – 22, 2013.

[10] D. Florêncio, C. Herley, and B. Coskun, ―Do strong web passwords

accomplish anything,‖ presented at the 2nd USENIX Workshop on

Hot Topics in Security, Boston, 2007.

[11] S. Grzonkowski, W. Zaremba, M. Zaremba, and B. McDaniel,

―Extending web applications with a lightweight zero knowledge proof

authentication,‖ New York, 2008, pp. 65–70.

[12] D. Stuttard and M. Pinto, The web application hacker’s handbook

finding and exploiting security flaws. Indianapolis: Wiley, 2011.

[13] Y. Sadqi, A. Asimi, and Y. Asimi, ―A Cryptographic Mutual

Authentication Scheme for Web Applications,‖ Int. J. Netw. Secur. Its

Appl., vol. 6, pp. 1–15, 2014.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

602 | P a g e
www.ijacsa.thesai.org

[14] M. Manulis, D. Stebila, and N. Denham, ―Secure Modular Password

Authentication for the Web Using Channel Bindings,‖ in Security

Standardisation Research, vol. 8893, L. Chen and C. Mitchell, Eds.

Springer International Publishing, 2014, pp. 167–189.

[15] Y. Sadqi, A. Asimi, and Y. Asimi, ―A Lightweight and Secure Session

Management Protocol,‖ Lect. Notes Comput. Sci., vol. 8593, pp. 319–

323, 2014.

[16] IETF, ―RFC 5246 - The Transport Layer Security (TLS) Protocol

Version 1.2,‖ 2008. [Online]. Available:

http://tools.ietf.org/html/rfc5246.

[17] M. Wu, S. Garfinkel, and R. Miller, ―Secure web authentication with

mobile phones,‖ presented at the DIMACS workshop on usable

privacy and security software, 2004, pp. 9–10.

[18] B. Parno, C. Kuo, and A. Perrig, ―Phoolproof phishing prevention,‖

presented at the Financial Cryptography and Data Security (FC‘06),

Anguilla, British West Indies, 2006.

[19] Google, ―About 2-step verification - Accounts Help.‖ [Online].

Available:

https://support.google.com/accounts/answer/180744?hl=en&ref_topic

=1099588.

[20] Mozilla, ―Mozilla Persona — simple sign-in with email —

mozilla.org.‖ [Online]. Available: http://www.mozilla.org/en-

US/persona/.

[21] Y. Sadqi, A. Asimi, and Y. Asimi, ―A Secure and Efficient User

Authentication Scheme for the Web,‖ Int. J. Internet Technol. Secur.

Trans., vol. 5, no. 1, pp. 43–63, 2015.

[22] Mozilla, ―js-ctypes - Mozilla | MDN.‖ [Online]. Available:

https://developer.mozilla.org/en-US/docs/Mozilla/js-ctypes.

[23] Mozilla, ―NSS - Mozilla | MDN.‖ [Online]. Available:

https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS.

[24] Mozilla, ―Storage | MDN.‖ [Online]. Available:

https://developer.mozilla.org/en-US/docs/Storage.

[25] SQLite, ―SQLite.‖ [Online]. Available: https://www.sqlite.org/.

[26] Apache Foundation, ―Apache HTTP Server Project.‖ [Online].

Available: http://httpd.apache.org/.

[27] Apache Foundation, ―mod_ssl - Apache HTTP Server Version 2.2.‖

[Online]. Available:

http://httpd.apache.org/docs/2.2/mod/mod_ssl.html.

[28] PHP, ―Hash: Hash - Manual.‖ [Online]. Available:

http://php.net/manual/en/book.hash.php.

[29] PHP, ―OpenSSL: PHP OpenSSL - Manual.‖ [Online]. Available:

http://php.net/manual/en/book.openssl.php.

[30] Oracle, ―MySQL :The world‘s most popular open source database.‖

[Online]. Available: https://www.mysql.com/.

[31] Y. Asimi, A. Amghar, A. Asimi, and Y. Sadqi, ―New Random

Generator of a Safe Cryptographic Salt per session (RGSCS),‖ Int. J.

Netw. Secur., vol. 18, no. 3, pp. 445–453, 2016.

[32] M. Bellare, R. Canetti, and H. Krawczyk, ―Message authentication

using hash functions: The HMAC construction,‖ RSA Lab.

CryptoBytes, vol. 2, no. 1, pp. 12–15, 1996.

[33] RFC 2104, ―HMAC: Keyed-Hashing for Message Authentication,‖

1997. [Online]. Available: https://www.ietf.org/rfc/rfc2104.txt.

[34] IETF, ―RFC 6265 - HTTP State Management Mechanism,‖ 2011.

[Online]. Available: http://tools.ietf.org/html/rfc6265. [Accessed: 08-

May-2015].

[35] Mozilla, ―nsIHttpChannel - Mozilla | MDN.‖ [Online]. Available:

https://developer.mozilla.org/en-

US/docs/Mozilla/Tech/XPCOM/Reference/Interface/nsIHttpChannel.

[Accessed: 08-May-2015].

[36] ANSSI, ―Référentiel Général de Sécurité: Règles et recommandations

concernant le choix et le dimensionnement des mécanismes

cryptographiques,‖ 2014.

[37] E. Barker and A. Roginsky, ―Transitions: Recommendation for

transitioning the use of cryptographic algorithms and key lengths,‖

NIST Spec. Publ., vol. 800, p. 131A, 2011.

[38] NIST, ―FIPS 197: ADVANCED ENCRYPTION STANDARD

(AES),‖ Process. Stand. Publ., Nov. 2001.

[39] NIST, ―FIPS 180-4: Secure Hash Standard (SHS),‖ Process. Stand.

Publ., 2012.

[40] X. Wang, Y. L. Yin, and H. Yu, ―Finding collisions in the full SHA-

1,‖ in Advances in Cryptology–CRYPTO 2005, 2005, pp. 17–36.

[41] X. Wang and H. Yu, ―How to break MD5 and other hash functions,‖

in Advances in Cryptology–EUROCRYPT 2005, Springer, 2005, pp.

19–35.

[42] S. Turner and L. Chen, ―RFC 6151 - Updated Security Considerations

for the MD5 Message-Digest and the HMAC-MD5 Algorithms,‖

2011. [Online]. Available: https://tools.ietf.org/html/rfc6151.

[43] M. Bellare, ―New proofs for NMAC and HMAC: Security without

collision-resistance,‖ in Advances in Cryptology-CRYPTO 2006,

Springer, 2006, pp. 602–619.

[44] RSA Laboratories, ―PKCS #5 v2.1: Password-Based Cryptography

Standard,‖ 2000. [Online]. Available:

https://www.ietf.org/rfc/rfc2898.txt.

[45] M. S. Turan, E. Barker, W. Burr, and L. Chen, ―Recommendation for

password-based key derivation,‖ NIST Spec. Publ., vol. 800, p. 132,

2010.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

603 | P a g e
www.ijacsa.thesai.org

