
Sorting Pairs of Points Based on Their Distances

Mohammad Farshi, Abolfazl Poureidi, Zorieh Soltani
Combinatorial and Geometric Algorithms Lab., Department of Computer Science

Yazd University, Yazd, P. O. Box 89195-741, Iran

Abstract—Sorting data is one of the main problems in com-
puter science which studied vastly and used in several places.
In several geometric problems, like problems on point sets or
lines in the plane or Euclidean space with higher dimensions,
the problem of sorting pairs of points based on the distance
between them is used. Using general sorting algorithms, sorting(
n
2

)
distances between n points can be done in O(n2 logn) time.

Ofcourse, sorting Θ(n2) independent numbers does not have a
faster solution, but since we have dependency between numbers in
this case, finding a faster algorithm or showing that the problem
in this case has Ω(n2 logn) time complexity is interesting. In this
paper, we try to answer this question.

Keywords—Sorting problem; Sorting distances

I. INTRODUCTION

Sorting problem is one of the fundamental problems in
computer science which studied vastly in complexity theory
and several efficient algorithms proposed for it. This problem
has several applications in other problems and any result
on this problem, directly affect the problems using it. Basic
problems, like searching, finding the closest pair, constructing
the minimum spanning tree, computing the convex hull, se-
lecting kth smallest number which has vast applications fields
like implementing search engines, making road maps, air-
traffic control, computer graphics and robotics, all use sorting
algorithms.

As we know, all (compare-based) sorting algorithms has
Ω(n log n) time complexity and therefore, other algorithms
that use sorting, has the same lower bound on their complexity.
The greedy algorithm for constructing geometric spanners is
one of these algorithms [1], [2]. One point in some of these
problems, like the greedy algorithm for computing geometric
spanners, is that they need to sort some numbers that comes
from distances between all pairs of input points. So the lower
bound of sorting problem does not apply for sorting distances.
So in this paper, we introduce a variant of sorting problem
and try to solve it. However, we can not find the answer to
the questions arise about this new problem, but we has a hope
that one can use this technique to answer the questions.

Problem: Given a set S = {p1, p2, . . . , pn} ⊂ Rd, sort all
pairs (pi, pj) based on the Euclidean distance between them.

Using the general sorting algorithms, one can sort these(
n
2

)
= Θ(n2) pairs of points in O(n2 log n) time and the

problem has Ω(n2 logn) lower bound, if the numbers are
independent. But in this case, the numbers are not independent,
they are distances between pairs of n input points. Now the
question is that, is there an o(n2 log n) algorithm to sort the
distances or this problem has Ω(n2 logn) time complexity.

In this paper, we study this problem in its simplest case,
when the point are from one-dimensional Euclidean space, i.e.
real line. We tried to find an o(n2 log n) time algorithm for
this case, but we could not succeed. So, we try to show that
this problem has Ω(n2 log n) time complexity.

II. DECISION TREE FOR SORTING DISTANCES

To show a lower bound for the time complexity of the
problem, we use a usual way as used in textbooks, see [3,
Chapter 8]. In this way, we consider all permutations for
sorting

(
n
2

)
distances between n points on R and then we

construct a decision tree on the permutations. The depth of
the decision tree is the lower bound on the time complexity of
the problem. The major issue in constructing such a decision
problem is the following: because there is dependency between
the distances between pairs of points, some of the permutations
of the distances does not happen at all. This means that we have
to remove them from the set of permutations. If the remaining
permutation still is large enough, then we can show that the
problem has Ω(n2 log n) time complexity, but if the size of
remaining permutation is very low, there is a hope to find an
algorithm with lower time complexity. So, in the following,
we try to construct a decision tree such that, the leaves of the
tree corresponds to the permutations that actually can occur in
sorting distances.

A. Constructing the decision tree

In a decision tree for sorting n numbers, each leaf is
corresponding to a permutation of the input. If the input
numbers are independent, each permutation of the input should
appear in the decision tree as a leaf. This is not the case for
sorting distances, some of the permutations of the distances
does not appear as a leaf of the decision tree. In this section,
we try to remove these permutations from the list of all
permutations.

To make a decision tree, we first consider the distance
matrix and mention some of its properties. This matrix helps
us to ignore unnecessary comparisons in sorting distances and
only perform the comparisons which are necessary. Assume
we have n points p1, . . . pn on the real line sorted from left
to right (increasing order). Obviously, the distance between pi
and all the points after it appear in the sorted list of distances
between pairs of points in order that we meet the points when
we start at pi and walk to the right. In other words, for each
i,

|pipi+1| < |pipi+2| < · · · < |pipn|.

We define the distance matrix D = (di,j)n×n such that di,j =
|pipj |. Obviously the distance matrix D is symmetric. So the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

626 | P a g e
www.ijacsa.thesai.org

matrix entry

An entry that can be selected as next entry

entry that selected before

Fig. 1: The Decision tree on a set of 4 points.

matrix D is as follows (the entries below the diagonal removed
because of its symmetry):

D =

p1 p2 p3 p4 · · · pn
p1 0 d1,2 d1,3 d1,4 · · · d1,n
p2 0 d2,3 d2,4 · · · d2,n
p3 0 d3,4 · · · d3,n
...

...
pn−1 0 dn−1,n

pn 0

Since the points are on real line, the matrix D has the following
properties:

• entries of each row increases as one one moves from
left to right,

• entries of each column decreases as one one moves
from top to bottom.

So in sorting distances, we do not need to compare entries
that are in a row or a column, because we know their position
in the sorted list based on their position in the matrix. As we
will see in the next section, there are some other unnecessary
comparison that does not have this property. Note that one can
merge the rows of the matrix to get the sorted list of distances.
This will gives us an O(n2 log n) algorithm because we have
n lists and a total of Θ(n2) numbers. In the rest of paper,
we denote entities of the distance matrix by dots, because its
value is clear from the position of the point in the matrix (see
Fig. 2).

Because of the properties of the matrix D, the smallest
(non-zero) entry of each row is the first element of the row
after the entry on the diagonal of the matrix. So to find the
smallest distance between pairs of points, it is sufficient to
find the smallest element between these entries. We remove

D =

0 d1,2 d1,3 d1,4 d1,5

0 d2,3 d2,4 d2,5
0 d3,4 d3,5

0 d4,5
0

Fig. 2: Representing the entries of matrix D.

the smallest element from the list of candidates and report it
as the first element of the sorted list and add the entry right
after it to the candidate list. An important point here is that
an entry of the matrix can be the next element of the sorted
list, if there was no unselected entry on the left and below the
entry.

As we mentioned before, leaves of a decision tree corre-
spond to permutations of the (pairs of points) input such that
this permutation of input can happen as a sorted list of the
input. Obviously, all permutations of distances between the
input points can not happen in the procedure of sorting. For
example, any permutation that has d1,3 before d1,2 can not
happen in sorting of distances, because d1,3 > d1,2.

To bound the number permutation that may happen in
sorting the distances, we construct a tree as follows. In the
root of the tree, we do a comparison on the first entry of each
row, which makes a list of O(n) elements. We choose the
smallest element in the root and based on the element chooses
in the root, we goes to the second level of the tree. Since any
of the n − 1 element of the first list can be the smallest one,
we add n−1 children to the root. The second smallest element
recognizes in the second level of the tree. The rest of the tree
is constructed in a similar way. Fig. 1 shows the tree for a set
of 4 points on the real line.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

627 | P a g e
www.ijacsa.thesai.org

p4p3p2p1

(p3p4 < p1p2) =⇒ (p2p4 < p1p3)

(d3,4 < d1,2) =⇒ (d2,4 < d1,3)
d2,3, d2,4

d3,4

d1,2, d1,3, d1,4

d2,3, d2,4

d1,2, d1,3, d1,4

d2,4

d1,2, d1,3, d1,4 d2,3, d2,4
d3,4

d1,3, d1,4

d3,4

d2,3, d2,4
d1,3, d1,4

d2,4
d1,3, d1,4

d1,3, d1,4

d2,4
d1,4

d1,4d1,4

Fig. 3: One unnecessary branch of the decision tree.

It is easy to see that we have all the possible permuta-
tions that can come-up at the end of sorting process in the
decision tree. At the first view, one may claim that all the
permutations that we have in this tree can happens in sorting
distances, but this is not correct. As one can see in Fig. 3, for
sorting distances between 4 points on the real line, after the
comparison of d3,4 < d1,2, we can conclude d2,4 < d1,3 and
so we do not need to compare them. So the red branch of the
tree in Fig. 3 is not necessary. If we carefully check these red
branches and then remove them from the tree, we can have
only the necessary permutations.

In short, one should remove all unnecessary permutations
of distances from the tree and find the number of remaining
permutations. If this number is big enough, it gives the
desired lower bound. Otherwise, one can have a hope that an
o(n2 log n) algorithm exists for sorting all distances between
n points on the real line.

B. Computing the lower bound of the number of permutations

Based on the results in the previous section, all of the leaves
of the tree are not necessary, but in this section we work on
bounding the number of leaves in the tree.

Computing the exact number of permutations (or number
of leaves of the tree) is difficult, because the degree of inner
vertices of the tree are different (maximum degree is for the
root which is n − 1 and minimum degree is 1), so we find
a lower bound on the number of leaves of the tree. If this
lower bound is of order of nn2

, then we can conclude that
the lower bound of the problem of sorting pairs of points is
Ω(n2 log n). To bound the number of leaves from below, we
find the minimum degree of vertices that lies in each level

of the tree and then compute the lower bound by multiplying
them.

Lemma II.1. The difference between the degree of each node
of the tree (except the root) and the degree of its parent is at
most one.

Proof: Consider an arbitrary node u of the tree and its
corresponding matrix. The degree of the node u is equal to
the number of elements in the set of candidate entries of the
matrix that can be removed in the next step. In this step, we
remove an entry from the candidate set. We have three cases:

Case 1: after removing the current entry, only one new
element added to the candidate set (see Fig. 4A). In this case
the degree of the node and its children is the same.

Case 2: after removing the current entry, two new elements
added to the candidate set (see Fig. 4B). In this case the degree
of children is one more than the degree of their parent.

Case 3: after removing the current entry, no new element
added to the candidate set (see Fig. 4C). In this case the degree
of children is one less than the degree of their parent.

So, we are done.

BC A

Fig. 4: Three case of the proof of Lemma II.1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

628 | P a g e
www.ijacsa.thesai.org

Now, we use this lemma to bound the number of leaves
in the decision tree. So, in each level of the tree, we choose
the node with minimum degree. On way that comes to mind
is to start from the root and the by going down in the tree, we
decrease the degree of the node in each step by one. This is
true, but it can not go further than (n− 1)/2th level, because
if we go one step further from this level, the degree of the
nodes will be zero which is unacceptable.

Considering the proof of Lemma II.1, we should choose the
entries such that case 3 in the proof of the lemma happens,
i.e., if we choose an entry, the next entry is chosen from a
row which is at least two rows above or below the row of
current entry’s row (if we choose the next entry from the row
just above or just below the current row, then the number of
selection does not change in the next step). So, the best strategy
is to choose elements from the every other row (see Fig. 5).

AB

14 choices

after removing the red points, the number of se-
lection reduces to 7

Fig. 5: The case with minimum selection for the next step.

As one can see in Fig. 5A, by removing the red entries in
(n−1)/2 steps, the number of selection decreases to (n−1)/2
(the green entries in Fig. 5B). Therefore, in step (n−1)/2+1, if
we choose any of the green entries, by Lemma II.1, the number
of candidates in the next step increase by 1, i.e. (n− 1)/2+1
selection.

As we mentioned before, we are looking for permutations
(paths in the tree) such that we have the least selection for
the next step. To this end, if one remove the entries showed
in Fig. 7, in the order mentioned in the figure, we have ((n−
1)/2)+1, (n−1)/2, (n−1)/2 and ((n−1)/2)−1 selection,
respectively. After removing these four entries, the number of
selection decreases by one and this decrease is irrecoverable.
In a similar manner, we can remove the next 4 entries in similar
situation which decreases the number of selections to ((n −
1)/2)− 2. We continue removing the elements in this manner
(see Fig. 6).

So, by summing up all of the degrees, the number of
generated permutations are as follows:

n
2

times︷ ︸︸ ︷
n

2
× · · · × n

2
×

n times︷ ︸︸ ︷
n

4
× · · · × n

4
×

2n times︷ ︸︸ ︷
n

8
× · · · × n

8
× · · · ×

· · ·

n2i−2 times︷ ︸︸ ︷
n

2i
× · · · × n

2i
× · · ·×

n2log n−2 times︷ ︸︸ ︷
n

2logn
× · · · × n

2logn

= (
n

2
)

n
2 ×

︷ ︸︸ ︷
(
1

2
)n × (

n

2
)n ×

︷ ︸︸ ︷
(
1

2
)2n × (

n

2
)2n × · · · ×︷ ︸︸ ︷

(
1

2
)n×2i−2×(i−1) × (

n

2
)n×2i−2

× · · ·

×
︷ ︸︸ ︷
(
1

2
)n×2log n−2×(logn−1) × (

n

2
)n×2log n−2

= (
n

2
)
∑log n

i=1 n×2i−2

× (
1

2
)
∑log n

i=1 n×2i−2×(i−1)

= (
n

2
)

n
2 ×(n−1) × (

1

2
)

n
4 ×(4(1−n)+2n×logn)

= (
n

2
)

n
2 ×(n−1) × (

1

2
)n×(1−n) × (

1

2
)

n2

2 ×logn

= n
n
2 ×(n−1) × (

1

2
)

n
2 ×(n−1) × (

1

2
)n×(1−n) × (

1

2
)logn

n2

2

= n
n
2 ×(n−1) × (

1

2
)

n
2 ×(1−n) × 1

n
n2

2

= n−n
2 × (

1

2
)

n
2 ×(1−n) =

2
n
2 ×(n−1)

n
n
2

= (
2n−1

n
)

n
2

= (
2n−1

2logn
)

n
2 = 2

n
2 ×(n−logn−1).

The bound is much less that the one that gives us the
desired lower bound. However, we believe it is possible to find
a suitable lower bound using a more sophisticated analysis of
the tree.

III. CONCLUSION AND FUTURE WORKS

In this paper, we studied the time complexity of sorting
distances between pairs of n input points in the real line. We
could not come-up with a new result, but it seems that more
sophisticated analysis of the structure that proposed in this
paper will show the complexity of the problem. Our conjecture
is that this problem has Ω(n2 log n) lower bound on time
complexity.

Another way of attacking the problem is to reduce another
problem with known time complexity Ω(n2 log n) to this
problem. There are several algorithm in the class of quadratic
time complexity (see [4], [5]). However, we could not find a
problem with Ω(n2 log n) time complexity. It is also interesting
if one study the problem in higher dimensions.

REFERENCES

[1] G. Narasimhan and M. Smid, Geometric spanner networks. Cambridge
University Press, 2007.

[2] P. Bose, P. Carmi, M. Farshi, A. Maheshwari, and M. Smid,
“Computing the greedy spanner in near-quadratic time,” Algorithmica,
vol. 58, no. 3, pp. 711–729, 2010. [Online]. Available:
http://dx.doi.org/10.1007/s00453-009-9293-4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

629 | P a g e
www.ijacsa.thesai.org

ABCDE

Fig. 6: The case with minimum selection for the next step.

AB

1

3 selections

2

3

4

7 selections

By removing red entries, the number of selec-
tions reduces to half

Fig. 7: The case with minimum selection for the next step.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press, 2009.

[4] A. Gajentaan and M. H. Overmars, “On a class of
problems in computational geometry,” Computational Geometry,
vol. 45, no. 4, pp. 140 – 152, 2012. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0925772111000927

[5] J. King, “A survey of 3sum-hard problems,” 2004.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 2, 2016

630 | P a g e
www.ijacsa.thesai.org

