
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

79 | P a g e

www.ijacsa.thesai.org

Explorative Study of SQL Injection Attacks and

Mechanisms to Secure Web Application Database- A

Review

Chandershekhar Sharma

Research Scholar, Computer Science

and Engineering

Rajasthan Technical University

Kota, India

Dr. S. C. Jain

Professor, Computer Science and

Engineering

Rajasthan Technical University

Kota, India

Dr. Arvind K Sharma

Department of CSI

Kota University

Kota, India

Abstract—The increasing innovations in web development

technologies direct the augmentation of user friendly web

applications. With activities like - online banking, shopping,

booking, trading etc. these applications have become an integral

part of everyone’s daily routine. The profit driven online

business industry has also acknowledged this growth because a

thriving application provides the global platform to an

organization. Database of web application is the most valuable

asset which stores sensitive information of an individual and of

an organization. SQLIA is the topmost threat as it targets the

database on web application. It allows the attacker to gain

control over the application ensuing financial fraud, leak of

confidential data and even deleting the database. The exhaustive

survey of SQL injection attacks presented in this paper is based

on empirical analysis. This comprises the deployment of injection

mechanism for each attack with respective types on various

websites, dummy databases and web applications. The

paramount security mechanism for web application database is

also discussed to mitigate SQL injection attacks.

Keywords—Injection Attacks; SQL vulnerabilities; Web

Application Attacks

I. INTRODUCTION

Rapid advancement in web technologies has expedited the
rate of adoption of database driven web application. The
backend database servers of these web applications accumulate
some general data along with critical & sensitive information
about organizations and clients [40].As the database is
accessible from anywhere over internet makes it prone to
attacks. The most hazardous attacks against database driven
web applications are –SQL injection attacks [48]. These attacks
are very serious threat to any web application that receives
inputs from user and incorporate it in to SQL queries to an
underlying database[10][38].Although web application keeps
the user‘s data secure for making any online exchange of
information but presence of vulnerabilities makes this attack
feasible. SQLIA are mostly caused by the insufficient
validation of user input.

An attacker can submit a query (utilizing SQL command)
directly to the database which can extract categorical
information depending upon the severity of vulnerability.
Database is the main asset of any web application to which
attackers are keenly fascinated. SQL injection is very lucrative

for attackers as there is a successful black market that deal all
scarcely digitally purloined data like credit card information,
bank accounts detail and social security numbers etc.[21].

With a little knowledge of SQL commands and ingenious
conjecture work to crucial table name SQL injection attacks
can be launched. These commands alter the desired output of
queries to break in to database. Injection attacks were ranked
1st attack in 2013 by OWASP (Open Web Application
Security projects) in TOP ten attacks and found that 80% of
web applications are Vulnerably susceptible to SQL injection
attacks [14] [33][47]. Before moving further, one must go
through some fundamental definition for better understanding
of the SQL injection attacks on web application and its
underlying database [49].

Vulnerability: Vulnerabilities are the impuissance,
loopholes, bugs or fault/imperfection in the subsisting system.

Attack: An attack is an illicit access i.e. a method to exploit
vulnerabilities.

Threat: a series of events that utilizes the system in an
unauthorized way compromising the principles of information
security i.e. confidentiality, integrity and availability of the
system.

Risk: Impact of the threat.

Albeit many researchers and practitioners have done the
survey on SQL injection attacks against database but a detailed
survey is done to elaborate the other aspects of attacks against
database. In this paper an endeavour is done to provide the
taxonomy of SQL Injection Attacks against database of a web
application. This repository is the relegation scheme of attacks
which includes- Research papers, white papers, technical
reports and web sites. It can become a vital auxiliary in
designing the security for web application and its underlying
database.

The rest of paper is organized as follows: Section 2
describes the architecture of web application. Section 3 covers
SQL injection attacks preview. Section 4 explains SQL
injection classification and section 5 have explorative study of
SQLIA. Findings of the study are described in Section
6.Section 7 briefs the security mechanisms. Finally section 8
concludes the paper.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

80 | P a g e

www.ijacsa.thesai.org

II. ARCHITECTURE OF WEB APPLICATION

For the better understanding of SQLIA one must have the
cognizance of web application architecture. Web applications
are a set of web pages and programs which reside on a web
server [17]. The inputs provided by the user are sent to the
server in the form of parameter string. These inputs are used to
engender SQL query to retrieve information from the database.
An authorized user can access it over the cyber world or over a
public network and store the data in the database. A web
application utilizes a web browser as an interface to extract the
data from database server to accommodate the queries placed
by the users [11][48]. Every web application is predicated on 3
–tier architecture consisting of three layers [48] .Each layer can
run potentially on a different machine and each layer should be
independent of other layers. The three layers are

Presentation Layer: Presentation layer contains
presentation logic. It is the top most level of application and
handles the interactions with users. Its main function is to
receive input from the user and provide the result in a
convenient way that user can facilely understand.

Fig. 1. Architecture of web application

Business Layer: This layer is present in between
presentation layer and database layer. It is a logic layer which
consists of a set of rules for processing the information
between two layers. It contains application process commands
which retrieves the data from database and sends to
presentation layer for viewing the data. This tier can be
programmed in any server scripting language like JSP, PHP,
and ASP etc.

Database Layer: This is a physical storage layer for data
persistence. It manages all access to database and file system.
Information is stored and retrieved from database .It is then
passed back to the presentation layer for processing and
eventually back to the user. The main function of this layer is
to provide access to authorized user and restrict the maleficent
user.

Working principle of architecture: The presentation layer
receives the request from web browser, processes it and then
passes the dynamic part to the business layer which processes
server scripting languages. All requests for database access are
passed to the database server. The result is then dispatched to
web browser as web pages. This architecture is easy to
maintain and all the components are reusable. For the faster
and smooth functioning, all the layers are governed and
managed by different groups of experts. Web designer looks
after the presentation layer. Software engineer does the logic
and database administrator manages the database servers.

III. SQL INJECTION ATTACK- PREVIEW

The focus on implementing the functionality rather than
security from internal and external environment causes the
susceptibilities in web applications. These are described as
most solemn threat for web application as it may allow attacker
to gain access to the web application and its underlying
database. The potential of attacker perforates the system to
extract sensitive information. Exploitation of loopholes in the
design breaches the fundamental principles of information
security i.e. confidentiality, Integrity, authenticity and
availability of information [39][50].Information stolen is loss
of confidentiality. Loss of integrity takes place when data is
modified in an unexpected manner. The Denial of service takes
place when information is expunged for genuine user. Loss of
authenticity means when information is accessed by
unauthorized user. These attacks are application level attacks
which are not obviated by firewalls [35][36][46].It is hard to
detect SQL injection prior to its impact. In most of the cases
the unauthorized activity is performed through a valid user
credentials for accessing the critical section of database of web
application. The database servers are convinced that injected
code is syntactically as valid as a SQL code. The inputs
provided by the user form the dynamic SQL query to access
the backend database. If these inputs are not opportunely
sanitized, they can cause the web application to generate
unintended outputs. The basic underlying fact is that SQL
injection attacks are very easy to execute without any
professional training.

Consider the following SQL statement.

SELECT Emp_info from Employee where E_name=‘abcd‘
AND E_id = ‗12345‘;

The above query will provide the information about a
particular desired employee for supplied input values but a
SQL expression with injection will deport differently because
the logic of the query is transmuted by the attackers, as

SELECT Emp_info from Employee where E_name=‘abcd‘
AND E_id = ‗12345‘ OR ‗1‘=‘1‘;

Because of an injection statement (OR ‗1 =1‘) the list of all
the employees from the table in lieu of a desired output
exposes the whole database. Such types of susceptibilities form
the attacks [11]. Example expounded above is a very
fundamental injection attack. The professional attacker uses
very logical and resourceful keywords to extract the data from
database servers.

IV. ORGANIZATION OF SQL INJECTION ATTACKS

The objective of SQL Injection Attack (SQLIA) is to
penetrate the database system into running inimical code that
can reveal confidential information. This is done by injecting
the SQL queries and expressions as an input string to gain an
unauthorized access. SQL injection is a threat that leads to
a high level of compromise - conventionally the ability to run
any database query. It is web-predicated application level
attacks that connects to backend database and bypass the
firewall. The advantage of insecure code and deplorable input
validation is clinched by the attacker to execute unauthorized
SQL commands. On the substratum of attacks against the

 Presentation Layer Business Layer Database Layer

HTML/

Java

Script

JSP/ASP/

PHP Database

B

r

o
w

s

e
r

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

81 | P a g e

www.ijacsa.thesai.org

database management system, SQL injection attack can be
classified as [7][10][16][43][45][46].

SQL Injection attacks against web application databases
can be divided in four sections as follows:

1) Code Injection

2) SQL Manipulation

3) Function Call Injection

4) Buffer Overflows
Code injection is when an attacker inserts new database

commands or SQL statements into user‘s statement. The
manipulation involves modifying the SQL statement through
set operations or altering the WHERE clause to return a
different result. When attacker injects a customized function or
already existing function into a SQL statement, that type of
injection is known as function call injection. These are used to
manipulate data in the database. Buffer overflows is a subset of
function call injection. In several commercial applications
vulnerabilities exist in database functions that may result in a
buffer overflow.

a) Code Injection

In code injection, attacker attempt to add additional SQL
statement or commands to the existing SQL statements.

Original query

SELECT Emp_salary FROM Employee WHERE
E_name=‘kushagra‘ and E_id=‘abc123‘;

Output

A salary statement of desired employee is extracted from
the database.

Injection query

SELECT Emp_salary FROM Employee WHERE
E_name=‘kushagra‘ and E_id=‘abc123‘; DELETE FROM
Employee WHERE username = 'kushagra';

The above query uses the stored procedure command which
is inserted between original query and injected query so that
the both queries executes in a single run as a single query.

Output

Information about desired employee is deleted from the
database due to additional command.

Fig. 2. Classification of SQLIA against database

b) SQL Manipulation

A very familiar kind of SQL Injection attack is SQL
manipulation. The most significant examples of this type is by
adding elements to the WHERE clause with set operators like
UNION, INTERSECT etc. Or comparators like OR, <,> and
many more. The simplest example is login authentication that a
web application may check.

Original query

SELECT * FROM Employee WHERE
username=‘kushagra‘ and Password=‘abc123‘;

Output

A desired employee details are returned by the database.

Manipulation query

SELECT * FROM Employee WHERE
username=‘kushagra‘ OR ‗2‘ > ‗1‘and Password=‘-----‘;

Based on operator precedence, the clause WHERE is true
for every entry and (------) regarded as comment consequently
ignored by server granting access to attacker.

Output

Information about all users is received without
authorization.

It can also extract information about all the users using
union query.

SELECT * FROM Employee WHERE username like
'%kushagra‘; UNION SELECT username FROM users
WHERE username like '%';

c) Function call injection

Function call injection is the insertion of functions which
executes with a SQL statement. Functions which are marked as
―PRAGMA TRANSACTION‖ are executed as part of a SQL
SELECT statement. Using INSERT, UPDATE, or DELETE in
SQL statement attacker is able to modify data in the database.
By using custom functions an attacker can send information to
a remote computer or execute other attacks on the database
server.

Example: A custom application has the function
NEWUSER in the custom package MYAPP. The developer
marked the function as ―PRAGMA TRANSACTION‖, since it
is marked ―PRAGMA TRANSACTION‖, it can write to the
database even in a SELECT statement

SELECT TRANSLATE ('' || myapp.newuser ('admin',
'newpass') || '', '12345ABCDE', 'abcde56789') FROM dual;

This type of injection can even exploit the simplest SQL
statement at runtime.

d) Buffer Overflow

When the process of writing data to buffer overruns the
boundary of buffer and overwrites adjacent memory then an
abnormality is recorded known as Buffer overflow. These
injection attacks are triggered either by variations in inputs or
by amending the method of program operation. The standard
database functions which can be exploited through a SQL

SQL injection
againt Database

Code Injection

SQL Manipulation

Buffer Overflow

Functional Call

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

82 | P a g e

www.ijacsa.thesai.org

injection are tz_offset, to_timestamp_tz, and bfilename. A
buffer overflow attack is executed using the function injection
methods. The very effective buffer overflow attack is denial of
service [44][52].

Example: The web process gets hanged until connection to
the client is terminated.

V. EXPLORATIVE STUDY OF SQLIA

In this section the above briefed attacks are discussed in
detailed with their code injecting mechanism, types and
subtypes with appropriate SQL statements and queries.

A. Code Injection

Injection Mechanism: The attacker attempts to
manipulate the SQL statement by injecting additional code,
operator sub query in to original query.

The code injection attacks can be further divided in to four
types.

Fig. 3. Types of code Injection attacks

a) Like queries: Like query is used to compare a value

to similar values using wildcard operators.Bascically two

wildcards are used

i) % represents zero,one or multiple characters

ii) underscore (_) represents a single number or character.

The attacker manipulate the SQL statement using
these wildcards. A Denial of Service attack can be launched
with a few changes in a LIKE query by overloading the
database [7][44][51].

Example:

SELECT Employement_No FROM Employee WHERE
E_Name LIKE ‗A%‘;

It provides the list of all employees starting with name A
or having name an alphabet A

b) Column Mismatch: This particular attack occurs

when there are errors like mismatch operand type or ―Queries

containing a UNION operator must have same number of

expressions‖. To gather the information of this type of

injection, consider a random SQL query.

Example:

SELECT product_name FROM all_products WHERE
product_name like '&Chairs&'

It provides the name of product according to the query
input but attacker changes the logic of the query it becomes

SELECT product_name FROM all_products WHERE
product_name like '' UNION SELECT ALL FROM Objects
WHERE ‗‘ = ‗‘;

Above query would give errors that indicate that there is
mismatch in the number of columns and their data type in the
union of Objects table and the columns that are specified
using ALL. The error is caused by the injected string. Another
error is because the number of columns is not matching. This
information is enough to penetrate the database of any web
application [40][43].

c) Additional where queries: The attacker can also

extract the information from the message displayed by the

database while using an additional WHERE clause with the

input string.

Example:

SELECT FName, LName from Employees WHERE
City= ‗Delhi‘ AND Country=‘India‘;

This query will provide first name and last of all the
employees working in a particular city & country. The
modified query with injected additional WHERE clause will
be

SELECT FName, LName from Employees WHERE
City= ‗Nosuchcity‘ UNION ALL SELECT SomeField from
SomeTable WHERE 1 = 1 AND Country = ‗USA‘;

Due to this insertion clause the detailed error message
displayed by the database reveals the name of table and column
name in error message- like Invalid column Name ‗Country‘
because ‗Table1‘ does not have a column called ‗Country‘.
It exposes the database with table name

d) Insert subselect Queries:

The insertion of a sub query into a query can also help the
attacker to access all the records of the database

Example:

SELECT E_Name FROM Employee WHERE Employee
Employement_No = (SELECT work_in.Employement_no
FROM work_in WHERE D_No= 23)

The result of above query will provide the result to find the
name of all employees working in department no 23.If the
query is executed then the result is displayed otherwise there
will be an error message like ―subselect returned too many
rows‖. Attacker can go through all the record using NOT
operator. This attack is possible where users are allowed to
edit user information [7][52].

Code Injection

Like queries

Column Mismatch

Additional WHERE
queries

Insert Subselect
Queries

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

83 | P a g e

www.ijacsa.thesai.org

B. SQL Manipulation

Injection Mechanism: The attacker attempts to
manipulate the SQL statement by injecting the code in one
or more conditional statements.

These SQL manipulation attacks have four types as shown
in the figure given below.

Fig. 4. Types of SQL manipulation

a) Tautology: In this type of SQLIA, an attacker

exploits an injectable field that is used in a query. The query

always returns result upon evaluation of a WHERE

conditional parameter. The aim of this attack is to inject

malicious codes into one or more conditional statements

which are always evaluated to be true.All the rows in the

database table targeted by the injected query returns the

conditional WHERE into a tautology.

Example: It allows an attacker to log on to application
without supplying a valid user name. The attacker submits

‗Abcd‘ OR ‗1‘=‘1‘/‘A‘=‘A‘ in login field and ‗-----‗in
password or pin field.

The resulting query is:

SELECT Emp_id FROM Department WHERE

Login=‘Abcd‘ OR ‗A‘=‘A‘ AND pass=‗-------‗;

As the condition (OR A=A) is always true and ---- is used
for comments, it converts the entire WHERE clause into a
tautology [38][40][45].

b) Inference: when the attacker tries extracting

information from not enough secured backend database via

error messages then inference injection is executed. A

different method must be used by the attacker to get the

response from the database since database error messages are

not available without executing a query or statement .The

error messages displayed by database may become useful

tools for attacker to plan an attack. In this situation, the

attacker injects commands and then observes the change

i n function/response of application. By carefully observing

the behaviour of application vulnerable parameters can be

extrapolated by attacker with added information about the

database.

Example: SELECT Employee from Bankers where
E_number=‘ $%^&*!@#‘and E_id =‘AZ+=79%‘:

The input provided in query is incorrect & results in an
error message. The displayed error message should be like

―Microsoft OLEDB provider for SQL Server
(0x80040E07) error converting nvarchar value ‗E_number‘ to
column of data type int‖.

The Information about version and schema of backend
database and is reveled to attacker to plan further Inference
attacks [10][40][43].

c) Basic union queries: This type of attack is also called

statement injection attack. The attacker tricks the database

server to return data that which is not intended by the

authentic user. The vulnerable parameters are exploited with

the help of keyword UNION, which is used to join original

query and an injected query. The attacker controls the injected

query completely, to retrieve information from database. The

output of this attack causes the database return values which is

union of two queries

Example: SELECT Basic_info from Employee where user
E_name=‘xyz‘ and E_id=‘------‗; UNION SELECT

Salary _info from Employee where Emp_id= ‗1234‘;

The first part of the query gives null values but second part
of the query returns the information of employee having id
1234 [10] [16][40][51].

d) piggy- backed queries: In this category the

attacker‘s aim is not to modify the query. The addition of

distinct queries with the valid query is desirable. When

database receives multiple queries, shows extremely harmful

results like deletion or removal of information with a harming

intention.

Example: SELECT Basic_info from Employee where user
E_name=‘xyz‘ and E_id=‘1234‘; DROP table Employee;

Here two queries are separated by delimiter (;). So both the
queries get executed. After execution of first query the
database proceeds for the injected second query. When
second query executes, it will drop table ‗Employee‘, from
database which results in potential damage to important
information. In the similar manner there are various other
types of queries like inserting new employees to table etc.
[10][40][45].

C. Function Call Injections

Injection Mechanism: The attacker attempts to
manipulate the SQL statement by inserting database
functions or custom functions into a vulnerable SQL statement
[43][53]. This type of injection attack has two types role
function and system stored procedure

SQL Manipulation

Tautology

Inference

Union Queries

Piggy-Backed
Queries

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

84 | P a g e

www.ijacsa.thesai.org

Fig. 5. Types of function call injection

the knowledge of this type of injection, Consider the
Webportal of a company which provides press release on
regular intervals.

Example:

www.company.com/PressRelase.php?pRealeaseID

The corresponding SQL statement used by the application
would look as under, if pRelease is 7

Select title, description, releasedate, body from
pressRelease WHERE pRelease ID=7

All the information requested corresponding to the 7th
press release is returned by the database server. This
information is in a HTML page (understood by the browser)
and provided to the user. Certain changes in parameters in the
address of a HTML page by attacker can change the role of a
query. Like

Select title, description, releasedate, body from pRelease
WHERE pRelease ID=7 AND 2 > 1; or

Select title, description, releasedate, body from
pressRelease WHERE pRelease ID=6;

If the application still returns some document i.e. it is
susceptible to SQL injection attack and attacker can plan the
attack accordingly [7][47].

a) Stored system procedures: In this type the in-built stored
procedures are attacked by attacker using malicious sql
injection codes. Every database uses the stored procedures. The
knowledge of running backend server allows the attacker to
penetrate the system using the stored procedures. This attack is
like Piggy Backed queries attack in which stored procedure
command is inserted inbetween original query. The both
queries execute as one.

Example: SELECT Emp_ Salary from Employee where
username=‘abcd‘; SHUTDOWN; and password=‘12345‘;

In above query SHUTDOWN is a stored procedure which
causes shutdown the database. The admittance to system store
procedures depends on the access privileges to user by the
application [10][40][51].

D. Buffer Overflow

Injection Mechanism: The attacker attempts to
manipulate the SQL statement by using database functions
which are susceptible to buffer overflows. In several databases
some database functions are vulnerable to buffer overflows that
can be exploited through a SQL injection attack. A very
efficacious denial of service attack hangs the process until the

connection is terminated with the above said attack
[44][52][53].

During the preparation of this repository some other
methods are encountered. These methods do not fit under any
attack schema but can be used to inject malevolent code in to
user‘s code for executing SQL injection attacks. The methods
are explained as under [17][35][36][46][48][52].

a) Sophisticated Matches: One of the prevalent

signatures utilized by such mechanisms is some remotely

variant on the famous OR‘ 1‘=‘1‘attacks. Sophisticated

matches technique uses alternative expression of OR‘ 1‘=‘1‘.

For example: OR ‘Unusual‘ = ‘Unusual‘, OR ‘Simple‘

=‘Sim‘+‘ple‘, OR 2 > 1 and OR ‘Simple‘ BETWEEN ‘R‘

AND ‘T‘ all have the same effect as OR‘ 1‘=‘1‘.

b) Hex Encoding: Hex encoding technique uses

hexadecimal encoding to represent a string. For example, the

string ‘SELECT‘ can be represented by the hexadecimal

number 0x73656c656374, which most likely will not be

detected by a signature protection mechanism.

c) Char Encoding: Char encoding technique uses build-

in CHAR function to represent a character. For example, the

string ‘SELECT‘ can be represented by the CHAR function as

char (73)+char (65) +‖LECT‖, which make it very arduous for

detection system to build a signature that match it.

d) In-line Comment: In-line comment technique

obscures input strings by inserting in-line comments between

SQL keywords. For instance,

/**/UNION/**/SELECT/**/name designation can elude

detection from signatures that expects white space between

SQL keywords.

e) Dropping White Space: Dropping white space

technique obscures input strings by dropping white space

between SQL5 keyword and string or number literals. For

example, OR ‘Simple‘=‘Simple‘ works precisely the same

way as OR ‘Simple‘ = ‘ Simple‘, but has no spaces in it, make

it capable of eschewing any spaces predicated signature.

f) Break Words in the Middle: With MySQL, the in-line

comments would not work as supersession for a space. The in-

line comments can be utilized in MySQL to break words in

the middle, for Instance: UN/**/ION/**/ SE/**/LECT/**/ is

evaluated as UNION SELECT.

VI. FINDINGS OF STUDY

The study of the SQL injection attacks (SQLIA) against
database centric web application concludes that these attacks
possess the great threat. Unfiltered user inputs invite these
attacks. Bypass the authentication process sanctions the
attacker to postulate all privileges associated with genuine user.
The Retrieval of personal and sensitive information is highly
desirable by the attackers. Mostly SQL injection attacks are
done to steal the sensitive information. By knowing the version
and type of the database utilized by the user makes it facile for
the attacker to craft a query. Sometimes the goal of attacker is
to integrate the information in a database to mark one‘s
identity; if it is done for enjoyment then no harm is caused but
an attacker with destructive intention can delete the whole
database. By remote command execution attacker can even

Functional Call

Role function

System stored
procedure

http://www.company.com/PressRelase.php?pRealease

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

85 | P a g e

www.ijacsa.thesai.org

shutdown the database. Based on above discussion some
findings are listed as under

A. Most common reasons are behind SQLIA

a) Mismatch Data type

b) Accounts with more access

c) Insufficient input validation

d) Detailed Error messages

e) No sanitization of data sent to the server through

URL.

B. Privileges gained on successful SQLIA

a) Access to Database schema.

b) Disclosure threats of the asset.

c) Gain access to host and internal network.

d) Exploitation of susceptibilities of the web

application.

e) Privilege escalation.

f) Impose deception and usurpation threats.

C. Methods for eschewing SQLIA

a) Avoid building dynamic SQL expression from user

input.

b) Length of input string must be constrained.

c) Avoid using query delimiter, SQL keyword, character

data string delimiter and single line comment in user input.

d) Use different Database account for different calibers

of privileges.

e) Error messages must be customized to hide the

details of injectable parameters.

f) Use parameterized queries for Database access.

g) Use stored procedures to avoid direct access of

Database.

h) Evade building SQL statements from cookie and

HTTP variables.

VII. SECURITY MECHANISMS

When good programming habits and eschewing methods
are not sufficient for the avoidance of SQL injection attacks
then some manual and automated security mechanisms are
applied for the protection of web application database. These
are very inimical attacks which target the most valuable assets
of web application. The consequences of SQL injection attacks
range from modification in data to denial of data. Researchers
have proposed several techniques to contravene SQL-injection
attacks which include - Code review, Defensive programming,
Software hardening techniques, and Hardware extensions
feature in modern processors, Attack detection and
containment mechanisms and many more. These approaches
are not sufficient to counter the problem of SQL injection
attacks. Some security mechanisms are suggested to faceoff
SQL injection attacks.

A. Detection and Prevention tool

When the techniques like defensive coding & operating
system hardening [13] are not enough to stop SQLIA, some

tools are required for detection and prevention of web
application and its underlying database. Prevention designates
to evade unauthorized user (attacker) from accessing any
component of system or data. Prevention tools [26][30][34] are
runtime analysis for checking susceptibilities by placing a
validation checker between web server and database server. It
additionally averts the attacks that capitalize on type mismatch,
sanitization of inputs and input sources withal [20][22].
Detection determines whether someone has attempted to break
into your system, if yes, then up to what extent of damage may
have been done. Detection tools are implemented in two
approaches [18][31][37] – Static technique and Dynamic
technique. Static technique [33] is applied directly without
running the code, it includes approaches [6][27][28] like –
Pattern Matching, Lexical Analysis and Parsing (includes type
qualifier, dataflow analysis, taint analysis and model
checking).Whereas dynamic techniques [33] include
approaches like- Fault injection, Fuzzy testing, Dynamic taint
& Sanitization of inputs [5]. Most of the approaches [31] are
not implemented yet as a tool. So the scope of developing
prevention tool, detection tool or the combination of both
prevention and detection tool is on the cards for the
researchers.

B. Instruction Set Randomization

A technique to counter SQL- injection attack, is instruction
set randomization (ISR) [1][4][12][46]. The fundamental idea
behind this approach is that attacker doesn‘t know the language
spoken by the runtime environment on which an application
runs, so a SQL-injection attack will ultimately fail because the
foreign code, however injected, is written in a different
language. An ISR to SQL injection is straightforward
approach. It randomizes both the underlying runtime
environment the SQL parser and the SQL program (the
template that the Web application uses). A simple approach for
randomizing the SQL grammar consists of appending a random
numeric tag (the randomization key) to each statement and
operator in SQL .This can be an efficacious way of ceasing
injection attacks, but it typically requires extensive
modifications to the runtime environment.

C. Intrusion Detection System and Proxy Server

Most of the SQL injection attacks are application level
attacks. A model can be built to filter the SQL queries which
work as security layer between database server and web server
to filter the queries at run time[9][12][19][24]. Similarly a
Proxy filter can be developed to intercept the HTTP request
and enforce input validation so that malevolent SQL
expression would be averted to send to database server
[15][23][29].Many models have been proposed by researches
based on different approaches like machine learning, intended
structure of SQL verbalizations, data flow analysis,
identification of critical points and many more but are not
sufficient to avert SQL injection attacks [29][31]. So an
incipient hybrid model can be proposed which may be the
combination of several approaches to counter injection attacks.

D. Threat Model

Threat modeling [2][3][8][13] is a procedure for optimizing
Security by identifying objective, susceptibilities and then
defining countermeasure to avert the effects of threat to the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

86 | P a g e

www.ijacsa.thesai.org

system [19].The threat modeling process customarily involves
identifying information sources to be bulwarked, ingression
points or access points to the system‘s assets, analyzing the
threats, evaluating the associated risks and developing
mitigation strategies[25].There are three different approaches
of threat modeling – Asset centric (Find risks associated and
rank the risks), Attacker centric (Find level of harm, Evaluating
damage potential and risk rating) and Software centric
(Decomposes the application to identify the threats and then
mitigate the threats).Many more threat models [41][42] or a
hybrid model (amalgamation of two or more models) can be
proposed to filter the susceptibilities and malevolent SQL
verbal expressions from different input sources and mitigate
the attacks.

VIII. CONCLUSION

In this paper the detailed analysis is presented on various
types of SQL injection attacks with related vulnerabilities and
injection mechanisms. SQL Injection is a common technique
that attackers employ on web based data centric applications.
These attacks modify the SQL queries in a manner to alter the
behaviour of application. This paper also provides the
taxonomy of mechanisms for avoidance, prevention and
detection from these attacks. In future work, a Threat model
will be proposed as a security mechanism for securing database
of web applications.

REFERENCES

[1] E.G. Barrantes,‖Randomized Instruction Set Emulation to Disrupt
Binary Code Injection Attacks,‖ Proc. 10th ACM International
Conference on Computer and Communication Security, pp. 281–289,
2003.

[2] F.Swiderski and W.Snyder,‖Threat modeling‖ (Microsoft press, 2004)

[3] Threat risk modeling.,‖A Guide to Building Secure Web Applications
and Web Services,‖ (2.0 Black Hat edition, p. 38-51,July 2005)

[4] A. Sovarel, D. Evans and N. Paul,‖Where‘s the FEEB? :The
Effectiveness of Instruction Set Randomization,‖ Proc. Usenix Security
Symposium, Usenix Association,pp. 145–160, 2005.

[5] W.G.Halfond and A.Orso.Amnesia,‖Analysis and monitoring for
neutralizing sql injection attacks,‖ Proc.20th ACM Int. Conf. on
Automated Software Engineering., Long Beach, California,USA,
p.174,2005.

[6] A McClure and Ingolf H.Kruger,‖SQL DOM: Compile TimeChecking
of Dynamic SQL Statements,‖ Proc. International ACM Conference of
Software Engineering, pp. 88-96, May 2005.

[7] Sagar Joshi,―SQL injection attack and defense: Web Application and
SQL injection,‖ 2005.

[8] P.Torr,‖Demystifying the threat modeling process‖IEEE transaction on
Security & Privacy, 3(5), pp. 66- 70, 2005.

[9] F. Valeur, D. Mutz and G. Vigna,‖A Learning-Based Approach to the
Detection of SQL Attacks‖ Detection of Intrus Malware and
Vulnerability Assessment Proceedings, Volume: 3548, pp.123-
140,2005.

[10] W.G.Halfond,J. Viegas and A. Orso,‖A Classification of SQL-Injection
Attacks and Countermeasures,‖ Proc. IEEE Int. Symposium on Secure
Software Engineering, Washington,DC,USA,March 2006.

[11] Z.Su and G. Wassermann,‖The Essence of Command Injection Attacks
in Web Applications,‖ Proc. 33rd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,Charleston,South
Carolina, USA, pp. 372-382,2006.

[12] Y.Weiss and E.G. Barrantes,‖Known/Chosen Key Attacks against
Software Instruction Set Randomization,‖ Proc. Annual Computer
Security Applications Conf. (ACSAC),pp. 349–360,2006.

[13] E. A.Oladimeji and S.Supakkul, L. Chung,‖Security threat modeling and
analysis: a goal-oriented approach,‖Proc. of the 10th IASTED
International Conference on Software Engineering and Applications
(SEA), pp.13-15,2006.

[14] Jonse Fonseca,‖Testing and comparing web vulnerability scanning tool
for SQL and XSS attacks,‖ Proc. 13th IEEE symposium on Pacific Rim
Dependable Computing,pp 365-372,2007.

[15] Xiang Fu and Xin Lu,‖A Static Analysis Framework For Detecting SQL
Injection Vulnerabilities,‖ Proc. 31st IEEE Annual International
Computer Software and Application Conference, pp. 87-96,24-27 July
2007.

[16] San-Tsai Sun, Ting Han Wei, Stephen Liu, and Sheung
Lau,‖Classification of SQL Injection Attacks,‖Electrical and Computer
Engineering, University of British Columbia, November 2007.

[17] D.Stttard and M.Pinto,‖The Web Application Hacker‘s
Handbook:Discovering andExploiting Security Flaws,‖(Wiley
publication, 2007)

[18] M.Cova,D.Balzarotti,V.Felmetsger and G.Vigna, ―Swaddler: An
Approach for the Anomaly-based Detection of State Violations in Web
Applications‖, the Recent Advances in Intrusion Detection (RAID),
Gold Coast, Australia, pp.63 – 86, 2007.

[19] K.Kemalis and T.Tzouramanis,‖SQL-IDS:A Specification based
Approach for SQL Injection Detection,‖ Symposium on Applied
Computing. ACM, pp.2153-2158, 2008.

[20] Monticelli, F,‖SQL Prevent,‖ University of British Columbia (UBC)
Vancouver, Canada.2008.

[21] Symantec,‖Symantec Report on Underground Economy,‖ pp.9-
12,Symantec, 2008.

[22] Jin-Cherng Lin, Jan-Min Chen and Cheng-Hsiung Liu,‖An Automatic
Mechanism For Sanitizing Malicious Injection,‖ Proc. 9th IEEE
International Conference For Young Computer Scientists,pp.1470-
1475,18-21Nov 2008.

[23] Anyi liu and yi yuan,‖SQLProb: A Proxy based Architecture towards
preventing SQL injection attacks,‖ACM, pp.2054-2061, March 2009.

[24] Anglos D. Keromytis,‖Randomized Instruction sets and run time
Environment,‖IEEE Transaction on Security & Privacy, pp.18-25,
Jan/Feb 2009.

[25] F.Swiderski and W.Snyder,‖Threat modeling‖ O'Reilly Media, Inc.,
2009.

[26] P.Bisht, P.Madhusudan and V.N. Venkatakrishan,‖ ‗CANDID: Dynamic
Candidate Evaluations for Automatic Prevention of SQL Injection
Attacks,‖ ACM Transaction on Information System Security, pp.1-
39,2010.

[27] Ivano Alessandro Elia, Jose Fonseca and Macro Vieira,‖Comparing
SQL Injection Detection Tools using Attacks Injection: An
Experimental Study,‖Proc. 21st International Symposium on Software
Reliability Engineering,pp.289-298,1-4 Nov 2010.

[28] Jeom-Goo Kim,‖Injection Attack Detection using the Removal of SQL
Query Attribute Values,‖Proc. International Conference in Information
Science and Application(ICISA),pp.1-7,26-29 April 2011.

[29] Chai Wenguuang, Tan Chunhui and Duan Yuting,‖Research of
Intelligent Intrusion Detection System Based On Web Data Mining
Technology,‖ Proc. IEEE 4th International Conf. on Business
Intelligence and Financial Engineering,pp.14-17,17-18 Oct 2011.

[30] Indrani Balasundram and E .Ramaraj,‖An Authentication scheme for
Preventing SQL Injection Attack Using Hybrid Encryption,‖ (PSQLI-
HBE),53(3), pp.359-36, 2011.

[31] Atefeh Tajpour, Suhaimi Ibrahim and Mohammad Sharifi,‖Web
Application Security by SQL Injection Detection Tools,‖ International
Journal of Computer Science, 9(2), pp.332-338,2012.

[32] Avanish Kumar Singh and Sangita Roy,‖A network based Vulnerability
scanner for Detecting SQLI Attacks in Web Applications,‖ Proc. 1st Int.
Conf. on Recent Advances in Information Technology (RAIT-2012),
Dhanbad, India, pp.585-590,15-16 March 2012

[33] Sruthy Mamadhan, Manesh T and Varghese Paul,‖ SQLStor: Blockage
of Stored Procedure SQL Injection Attack Using Dynamic Query
Structure Validation,‖ Proc. IEEE 12th International Conf.on Intelligent
Systems Design and Applications(ISDA),pp.240-245,27-29 Nov 2012.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

87 | P a g e

www.ijacsa.thesai.org

[34] Debabrata Kar and Suvasini Panigrahi,‖Prevention of SQL Injection
Attack Using Query Transformation and Hashing,‖ Proc. IEEE 3rd
International Conf. on Advance Computing, pp.1317-1323,22-23 Feb
2013.

[35] Chad Dougherty,‖Practical Identification of SQL Injection
Vulnerabilities,‖ Produced for US-CERT© 2012

[36] Cenzic vulnerability report 2013.

[37] Jaskanwal Minhas and Raman Kumar,‖Blocking of SQL Injection
Attacks by Comparing Static and Dynamic Queries,‖ International
Journal Computer Network and Information Security,vol.2,pp.1-9,2013.

[38] Chandershekhar Sharma and S.C. Jain,‖SQL Injection Attacks on Web
Application,‖ International Journal of Advanced Research in Computer
Science and Software Engineering,4(3),pp.1268-1272,2014.

[39] F. S. Labs,‖Threat report‖ Last Accessed: 27-3-2014.

[40] Chandershekhar Sharma and S.C. Jain,‖Analysis and Classification of
SQL Injection Vulnerabilities and Attacks on Web Applications,‖ Proc.
IEEE Int. Conf. on Advances in Engineering & Technology research
(ICAETR-2014),Dr. virendra Swarup group of institutions, Unnao,
India,pp.1-6, August 2014.

[41] Adam Shostack,‖Threat Modeling: designing for security‖ Wiley
publication,2014.

[42] Satapathy Soumya Ranjan,‖Threat Modeling in Web Applications,‖
Thesis-NIT, Rourkela, 2014.

[43] C.anely,‖Advanced SQL injection in SQL server applications‖White
paper.

[44] Kevin J.Houle,‖Trends in Denial of Service Attack Technology,‖
Whitepaper.

[45] S.Mcdonald,‖SQL Injection: Modes of Attack,Defense, and Why It
Matters,‖-White paper.

[46] www.salientsecurity.com

[47] www.securitydocs.com/librarys

[48] www.owasp.org/index.php/Top_10_2013.

[49] www.bcs.org/upload/pdf/infosec-mgt-principles.pdf

[50] www.GovernmentSecurity.org.

[51] www.spidynamics.com/paper/SQLIWhitePaper

[52] M.Howard and D.LeBlanc,―Writing Secure Code,‖Microsoft Press,
Redmond, Washington.

[53] S.Kost,‖An introduction to SQL injection Attacks for Oracle
Developers.pptx

AUTHOR‘S PROFILE

Chandershekhar Sharma received B.Tech and M.Tech in
Computer Science and Engineering from Kurukshetra
University, Kurukshetra. He is Research Scholar in
Computer Science and Engineering Department at Rajasthan
technical university (Kota).His research interests include
Web application security, Information security, High

performance Computing and Threat modeling

Dr S.C.Jain has done his PG in Computer Science and
Technology from IIT Roorkee and PhD in VLSI design from
IIT, Delhi. He has served Defense Research and Development
organization, Bangalore, India and presently working as
Professor, Computer Science and Engineering, Rajasthan
Technical University, Kota, India. His Research interests are

VLSI design, Real Time Embedded System, Reversible Computing and High
Performance Computing.

Dr. Arvind K Sharma holds PhD degree in Computer
Science. He has more than 13 years of work experience in
academics field. He has published more than 27 Papers in
various National, International Journals and Conferences. He
has authored & co-authored almost 5 books. He has received
Best Paper Award in International Conference, 2012 held in

Thailand. He has visited Thailand & Dubai for attending International
Conferences. He has participated as Speaker & Keynote Speaker in many
National and International Conferences. He is a Sr. Member of numerous
academic and professional bodies i.e. IEEE, WASET, IEDRC, IAENG Hong
Kong, IACSIT Singapore, UACEE UK, ACM, New York. He is a Member of
Technical Advisory Committee of many International Conferences in India and
abroad. He is also Editorial Board Member & Reviewer of several National and
International Journals. Besides it, he is serving as a recognized Research
Supervisor to guide Masters and PhD scholars in many Universities of
Rajasthan, India. His area of interest includes Web Usage Mining, Web
Intelligence Applications, Web Data Mining, Big Data Analytics and Machine
Learning Tools.

http://www.securitydocs.com/library/3587
http://www.owasp.org/index.php/Top_10_2013
http://www.bcs.org/upload/pdf/infosec-mgt-principles.pdf
http://www.governmentsecurity.org/
http://www.spidynamics.com/paper/SQLIWhitePaper

