
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

218 | P a g e

www.ijacsa.thesai.org

Wiki-Based Stochastic Programming and Statistical

Modeling System for the Cloud

Vaidas Giedrimas

Department of Informatics

Siauliai University

Siauliai, Lithuania

Leonidas Sakalauskas

Department of Informatics

Siauliai University

Siauliai, Lithuania

Marius Neimantas

Department of Informatics

Siauliai University

Siauliai, Lithuania

Kestutis Žilinskas

Department of Informatics

Siauliai University

Siauliai, Lithuania

Nerijus Barauskas

Imagine Communications Group

Dublin, Ireland

Remigijus Valčiukas

Department of Informatics

Siauliai University

Siauliai, Lithuania

Abstract—Scientific software is a special type of software

because its quality has a huge impact on the quality of scientific

conclusions and scientific progress. However, it is hard to ensure

required quality of the software because of the

misunderstandings between the scientists and the software

engineers. In this paper, we present a system for improving the

quality of scientific software using elements of wikinomics and

cloud computing and its implementation details. The system

enables scientists to collaborate and make direct evolution of the

models, algorithms, and programs. WikiSPSM expands the limits

of mathematical software.

Keywords—Wikinomics; open source; mathematical

programming; software modeling; online computing

I. INTRODUCTION

Scientific software is a special type of software because its
quality depends not only on the financial results but also that of
the quality of appropriate scientific conclusions and the speed
of scientific progress. However, the success ratio for the
projects of scientific software development is close to average.
This means that part of the projects fail, over budget or give
inadequate product.

The misunderstandings between final users (scientists) and
contractors (software engineers) are even more frequent as
usual. This is because of the fact that software engineers
sometimes are unable to get deep knowledge of user’s domain
(e.g. high energy physics or life sciences). In order to avoid
possible problems, scientists sometimes try to develop software
indecently. However, such projects can also fail due to the lack
of knowledge of software engineering domain. For example,
scientists may not know (or just do not care about) good
software engineering practices, common processes, etc. They
may even lack knowledge about good practices or good
,artifacts of the software, made by their colleagues.

We believe that this problem must and can be solved using
the idea of Wikinomics, which is introduced by Tapscott and
Williams [7]. Wikinomics (or Wiki economics) is a spatial
activity, which helps to achieve results using the available
resources only. The idea of Wiki-based systems is very simple:
the project leaders collect critical mass of volunteer who are
willing and who can to contribute small parts. Sum of such
small parts makes a huge contribution to project goals and
makes this form of mass-collaboration very attractive. Such
systems as Wikipedia or Wikitravel are good advocates of the
advantages of the Wiki technologies.

On the other hand mass-collaboration in the software
modelling or software coding states is not enough. In order to
use all (or at least part of) computational power of the
distributed infrastructures, we need software developing
solutions, oriented to clouds and grids.

Software synthesis for grid, cloud, and other distributed
systems is one of the three main distributed computing-related
research areas of Siauliai University [1, 2]. On the umbrella of
this research area, a new project at Siauliai University was
started from October 1, 2010. The main goal of this project was
to develop the environment for scientific software synthesis
using grid, cloud, web, and wiki-oriented technologies.

The goal of this paper is to present results of the empirical
research related to this project, namely - the system for the
Stochastic Programming and Statistical Modelling System
empowering the members of scientific community with the
abilities to make, edit, and reuse models, algorithms and the
software.

The rest of the paper is organized as follows: Section 2
outlines the overall architecture of our system including its
main components. Section 3 presents the result of testing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

219 | P a g e

www.ijacsa.thesai.org

Section 4 describes the comparison of similar systems. Finally,
the conclusions are made and future work is discussed.

Fig. 1. Main components of the Wiki-based

Stochastic Programming and Statistical Modelling System

II. THE ARCHITECTURE OF STOCHASTIC PROGRAMMING

AND MODELLING SYSTEM

We have started from the hypothesis that using together
wiki-based technologies, software synthesis methods, and the
power of the grid/cloud infrastructure, scientific software can
be developed more rapidly and the quality of the software will
increase. The project consists of three main stages:

1) The development of the portal for the wiki-based mass-

collaboration. This portal will be used as the UI enabling

scientists to specify the problems for software development, to

rewrite/refine the specifications and software artefacts given

by other researchers, to contribute all software developing for

particular domain process. As the target domain for software

development we have chosen the set of the statistical

simulation and optimization problems. In the future the

created environment can be applied to other domains.

2) The development of the model of the interoperability

bridge between wiki-based portal and the Lithuanian National

Grid Infrastructure or other distributed infrastructures. For

this purpose currently the private cloud is created at Siauliai

University, based on Ubuntu One.

3) To refine existing methods for software synthesis using

the power of distributed computing infrastructures.
This paper mainly covers the results of the first two stages.

The system for Stochastic Programming and Statistical
Modelling based on Wiki technologies (WikiSPSM) is built
using the Model-View-Control architecture. It consists of the
following parts (Figure 1):

 Web portal with the content management system and
Wiki-capabilities as the Graphical User Interface (see
Subsection B for more details).

 Server application for jobs processing (Subsection C).

 Database and its management system for the storage
and processing of existing software artifacts including
programs, subroutines, and models (Subsection A).

The importance of each part and its role in overall
functionality of the system is detailed in the remaining
subsections.

A. Database

The database is based on MySQL. It consists of 34 tables,
which can be divided to 5 groups: user data, logging data, job
data, website data, and program data.

The tables of the user data consist of information about user
access rights, groups, etc. Tables for logging data consist of the
portal usage history data, portal user actions, and so on. Job
data tables carry information about the submitted jobs and their
states and location details.

Website data is the basis for CMS and user interface of the
Wiki part of the portal. Program data (PD) is probably the most
important (and most distinctive) part of all the systems. PD
tables are for storage and processing of the programs, written
by users and APIs. In other words, PD is the basis for the Wiki
part of the portal.

B. Wiki-based Portal

The user interface portal is the central entry-point for the
users in our system. It consists of four main components:

 Template-based generator of web pages. This
component empowers a user to make web page content
using its structure from the template. The same
component is used for the storage of generated web-
pages including version control.

 WYSIWYG text editor. The functionality of this
component is beyond simple text editor on the web
page. The component is dedicated to describing
mathematical models and numerical algorithms. For
safety reasons, it is enriched with the text pre-
processing algorithms, which prevents code injection
and hijacking attacks.

 Integrated developing environment component is
implemented for the modeling and the codding of the
software. It is built according to theoretical background
published in [10].

 Mathematical Functions Repository. This component
enables a user to retrieve, rewrite, and add repository of
mathematical functions with new artifacts, for example,
new APIs. Almost all WikiSPSM is built from scratch.
However, for efforts optimization it was decided to
include “standart” library of mathematical functions in
it. Our system is based on NetLib repository LAPACK
API. However, it can be changed on demand to work
with other libraries, for example, ESSL (Engineering
Scientific Subroutine Library) or Parallel ESSL [6].

The architectural decision to store all the mathematical
models, algorithms, programs, and APIs in central database
makes WikiSPSM easy extensible and evolvable.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

220 | P a g e

www.ijacsa.thesai.org

Fig. 2. The algorithm of data analysis and job processing

C. Software Generation Process

The architectural decision to enable users to write their
software in C/C++, Java, Fortran 90, and QT programming
languages was made in the design stage of WikiSPSM. In order
to implement this idea, command-line interfaces were chosen
as the architecture of communication between the UI and
software generator part. Software generator must perform the
following actions:

 Compilation,

 Job submission (to cloud or to single server),

 Job monitoring,

 Job and its results control.

External command-line compilers were chosen for the
compilation of the programs. Theoretically, our system can be
configured to work with any programming language if only its
command-line compiler (or compilation service) is available.
The requirement to have command-line user interface is
necessary for user’s programs also. In the current version,
WikiSPSM is not able to work with the external programs
using GUI.

It is planned that compilation and execution must be made
on the server side. Note that “server side” here means not only
one server, but can be considered as a cloud also (see

Subsection D). The server application consists of three classes:
Server, Task, and vrMath. At the application initialization, time
object vrMath is created, and then it creates the object Server.
These objects help to monitor jobs and to manage them
interactively, including abort operation.

The algorithm of the program data analysis and job
processing is shown in Figure 2. Object Server creates an
object Task for each submitted data array received from the
portal. Task object parses the data and sends a Token back to
the user (via portal). Token is necessary to identify the job,
monitor it, and get its results. When the process Task is
finished, it passes the data to Server object and then the process
of compilation of execution begins. All the jobs are scheduled
and queued. If number of resources (e.g. number of CPU) is
less than requested, job waits the end of some other processes.
After job completion, its result is stored in the database.

D. Bridge to Distributed Systems

In its early stage, WikiSPSM was implemented as a server-
based distributed program [1]. However, it was observed that
increased number of users and submitted tasks have negative
impact on the performance of the system. For example, while
testing the instability of the system, it was observed when a job
tried to use more than 3 CPUs on one server. In order to solve
this issue. the architecture of the system has been changed.

In revised architecture of the system. Wiki-based portal and
other components remain more or less the same. However, the
software generation component is changed dramatically. The
adoption of this legacy component is made in two stages:

 Transformation between different operating systems.
Initially, the server-side application was hard coupled
with the Windows operating system, because of used
before command-line compilers and Qt library. All this
part was redesigned and new Linux-based
implementation is made. The changes not only
improved the system but also made it completely
multiplatform.

 Transformation between the paradigms. For better
throughput of computing application, server was
redesigned to schedule jobs in wide-distributed
environments, namely Ubuntu One and Open Stack
private clouds (Figure 3). Besides the central DB
distributed file system with NFS file system is used for
the communication of working nodes. During the
development and for the testing a set of VirtualBox
virtual machines have been used.

Early test of redesigned component shows very good
results (see Section 3).

III. TEST RESULTS

WikiSPSM is tested both in technical and scientific levels.
The set of programs was made using Fortran 90, Java, C, C++,
and NetLib repository LAPACK API.

The set of scientific tests consisted of a) the comparison of
the results of well-known problems with the results given by
the system; b) the comparison of the results of sequential and
parallel implementations of the same Monte Carlo method-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

221 | P a g e

www.ijacsa.thesai.org

based algorithm. All the tasks finished and show expected
results only. The participants of the pilot project named the
possibility to change and extend programs from the repository
as a very useful and efforts-sparing option.

The set of technical tests consisted of the tests of program
compilation, execution, data exchange, and user-computer
interface support processes. For the system load testing, a
program for Monte Carlo algorithm implementation was
chosen. On its basis, 500 requests for the server side were
generated. The server with 4 CPUs was chosen as an
abstraction of the distributed system. The results of this test
show (Table 1) that the system acts as a common task
distribution system and the given job submission and job
execution times fit the Amdahl’s law very well.

For 150 jobs, Monte-Carlo problem using new (bridged to
distributed systems) execution component was solved two
times faster than initial server-based application component.
The “toy example” (calculation of the factorial of big numbers)
– was solved eight times faster.

IV. RELATED WORK

Our system (in short WikiSPSM) has been compared to
other commercial and open-source products. Here the
comparison with two most distinguished products (each present
the set of the tools) is presented.

A. Mathematica

Wolfram Research Mathematica is a multiplatform tool
with high functionality. It consists of the core and user
interface components. The core is able to parse Mathematica
programming language, to call external command-line
software, process with files using default programs, commutate
via e-mail, and perform dynamic linking of the functions, in
such a way as to extend the functionality of the core. The core
with UI communicates using MathLink protocol. For the
communication with external software .NET/Link and
Java/Link are offered, which enables to call Mathematica’s
functions from e.g. Java program and vice versa [3, 8].

TABLE I. THE RESULTS OF SYSTEM LOAD TEST

Number of

processes

Time for all job

submission

Time for all jobs

completion

1 12 s 14 min. 21 s

2 16 s 9 min. 41 s

3 22 s 9 min. 51 s

4 NA NA

TABLE II. THE CRITERIA OF COMPARISON

Criteria
Weight

coefficient

Reusability of Mathematic functions, models and
programs

0.3

Possibility to extend system repository by new

functions, models and programs
0.2

User interface 0.2

Programming languages support 0.1

Programs’ execution 0.1

The possibility to integrate system in other systems 0.1

There are two tools under Mathematica umbrella, which
can be used as components for a stochastic programming and
Statistical Modelling System: Grid Mathematica and Web
Mathematica.

Grid Mathematica is able to perform calculations using
distributed infrastructures. This tool is the subject of additional
licensing and supports up to 16 cores per task.

Web Mathematica is based on Java applets and servlets. It
can perform asynchronous computations only and is useful as a
different type of UI only.

Fig. 3. The architecture of WikiSPSM with the cloud computing component

Grid Mathematica and Web Mathematica cover only two
aspects of our System: distributed computation and web-based
interface. However, the users of Mathematica aren’t able to
make new module dynamically, to add functionality to
Mathematica Core dynamically, to reuse programs of other
users. In Web Mathematica case, only the site administrator
has rights do refining of the core. Therefor the use of
Mathematica in Wikinomics context is problematical.

B. Scilab

Scilab Scientific is chosen as an example of open-source
tool because of the functionality. The tool is oriented to solve
problems of linear algebra, matrixes, polynomials, statistics,
differential equations etc. Because of this, by the functionality
Scilab can be named as a good competitor of commercial
systems. Scilab is multiplatform tool; it supports all recent
operating systems. Scilab provides links between it and C, C++
and Java. Scilab native programming language subroutines can
be called for C, C++, and Java programs. There is a possibility
to import Matlab code, because of the similarity of Scilab
native language and Matlab language. However, in contrast to
Mathematica, Scilab does not have task parallelization
component or web UI component [4, 5].

C. Comparison

Our system and the two competitors described above have
been compared using the list of criteria (see Table 2). Most
important criterion is the reusability of artifacts, because on it
depend the complexity of scientific software and the amount of
time required to make new solutions. Second criterion is the
possibility to extend the system with new artifacts: functions,
models, and programs. The possibility of using the system
artifacts from external sources (programs) is no less important.

	

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

222 | P a g e

www.ijacsa.thesai.org

These three criteria together have direct relation with the
idea of wikinomics in scientific software domain.

All three compared products (see Table 3) have rich set of
supported mathematical functions and API’s. Mathematica has
the most rich list of functions and algorithms for the problems
of mathematical programming. WikiSPSM uses NetLib
repository LAPACK [9] for C++ and FORTRAN and as a
consequence provides more functionality as Scilab.

Users of Mathematica or Scilab can reuse their functions
directly. In contrast, WikiSPSM does not offer such possibility,
because it is web based and all the programs are executed on
the server side, not locally.

As could be predicted, WikiSPSM shows best result on
second criterion – the possibility to extend system repository.
All artifacts are stored in public database, can be reviewed,
reused, and appended. Other systems have different, single user
oriented architecture. Moreover, they have only a little
possibility to change system functions or extend the core of the
system by user subroutines.

Comparing the systems by the user interface criterion it’s
easy to see that WikiSPSM has UI with a reach not as large as
Mathematica or Scilab in terms of common functions. (e.g.
possibility to show 2D and 3D graphical objects). However,
WikiSPSM in its UI has a lot of Wiki-oriented functions (in
contrast to other systems) and web-orientation (in contrast to
Scilab).

TABLE III. THE ASSESSMENT OF THE SYSTEMS

Criteria M S W

Reusability of Mathematic functions, models

and programs
10 7 8

Possibility to extend system repository by new
functions, models and programs

3 3 9

User interface 9 5 7

Programming languages support 6 6 8

Programs’ execution 9 5 7

The possibility to integrate system in other

systems
10 6 2

Total 7.9 5.4 7.3

M – Mathematica, S – Scilab, W – WikiSPSM (our system). The total value is
calculated as a sum of values multiplied by the weight coficients (Table 2)

By the criterion of programming languages, WikiSPSM is
clear winner also because it supports C, C++, Java, QT, and
FORTRAN in contrast to others, which support only two to
three external languages.

By the last criterion (the possibility to integrate the system
itself with other IS), WikiSPSM can be assessed by the lower
mark than Mathematica and Scilab. Its integration process and
possibility of interoperability is the same as of some other
application server-based systems. However, this is not a big
disadvantage because our goal was to build this system as a
portal, as a central entry-point, not as a component.

V. CONCLUSIONS AND FUTURE WORK

The following conclusions can be made:

1) The system of Wiki-based Stochastic Programming and

Statistical Modelling is developed and it is adopted to cloud

computing infrastructure. WikiSPSM can solve various

optimization problems using C, C++, Java, Fortran,

programming languages and Qt and Netlib Repository

LAPACK libraries. The system already used to solve two stage

stochastic programming problems.

2) The system enable scientist to collaborate and make

direct evolution of the models, algorithms and programs.

WikiSPSM expands the limits of common mathematical

software.

3) WikiSPSM can be considered as the job submission

and management system for private academic cloud or other

distributed infrastructures. It has all the necessary

components despite the fact that the system is build from

scratch using open source technologies only.
The results of the project will have direct positive impact

on development of scientific software. Since the gap between
the two technologies is bridged, each of them promises good
performance. The power of the wiki-technologies will ensure
the ability of the interactive collaboration on software
developing using the terms of particular domain.

Despite the success of the project, some future work is still
required:

1) To increase the level of the security, automatically

inspect what files and data are stored (or going to execute) in

the server side and prevent hazardous actions.

2) To facilitate the configuration of the system and in

such way to expand the list of supported programing

languages.

3) To refine job scheduling, distribution and parallel

execution algorithms by adding stochastic elements.

4) To make a bridge between WikiSPSM and European

Grid Infrastructure or commercial infrastructures.
Continued testing of WikiSPSM is planned by solving the

following problems: power plant investment planning by
stochastic programming; two-stage stochastic programing
problem for short term financial planning.

REFERENCES

[1] V. Giedrimas, L. Sakalauskas, K. Žilinskas. Towards the environment
for mass-collaboration for software synthesis, 2011. EGI User Forum
2011. pp. 1-2 [online] URL:
https://indico.egi.eu/indico/event/207/session/15/contribution/117/materi
al/slides/0.pdf

[2] V. Giedrimas, A. Varoneckas, A. Juozapavicius. “The grid and cloud
computing facilities in lithuania.” In Scalable Computing: Practice and
Experience. vol. 12(4). pp. 417–421, 2011.

[3] S. Steinhaus. Comparison of mathematical programs for data analysis.
Munich, 2008.

[4] M. Baudin. Introduction to Scilab. The Scilab Consortium, 2010.

[5] C. Bunks, J.-P. Chancelier, F. Delebecque. C. Gomez, M. Goursat, R.
Nikoukhah and S. Steer. Engineering and scientific computing with
Scilab. Birkhauser Boston, 1999.

[6] ESSL and Parallel ESSL library [online] URL:
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp.

[7] D. Tapscott, A. D. Williams. Wikinomics – How mass collaboration
changes everything. Atlantic Books, 2011.

[8] Mathematica Documentation Center [online] URL:
<http://reference.wolfram.com/mathematica/guide/Mathematica.html>.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

223 | P a g e

www.ijacsa.thesai.org

[9] V.A. Barker et al. LAPACK User’s Guide: Software, Envinroments and
Tools. Society for Industrial and Applied Mathematics. 2001

[10] L. Sakalauskas. Application of the Monte-Carlo method to nonlinear
stochastic optimization with linear constraints. Informatica, Vol 15, No
2, pp. 271-282, 2004.

AUTHOR PROFILE

Vaidas Giedrimas is a member of the IEEE and the IEEE Cloud
computing SIG, a member of Lithuanian Computer Society. He holds PhD
from Vytautas Magnus University (Lithuania) in Informatics. He is associate
professor of Department of Software Systems at Siauliai University, Lithuania.
His research interests include Distributed software systems (grid and cloud
computing, component-based software engineering, service-oriented
architecture) and methodologies of automated software development. He is the
member of the Management committee of COST Action IC1201 Behavioural
Types For Reliable Large-Scale Software Systems (BETTY) and Lithuanian
representative at NorduGrid and Baltic-HPC associations.

Kestutis Zilinksas is a member of the Council of the Lithuanian
Operational Research Society. He holds PhD from Vytautas Magnus
University (Lithuania) in Informatics. He is associate professor of Department
of Informatics at Siauliai University, Lithuania. His research interests include
stochastic programming, Monte Carlo method, and numerical methods in
optimization.

Leonidas Sakalauskas is the main author of the presented project idea. He
holds the professor position at Department of informatics, Siauliai University
and principal researcher position at Operational research sector at Systems
analysis department. He also is the president of the council of the lithuanian
operational research society. His research interests consist of operational
research, artificial intelligence, data mining and information systems (business
informatics).

Nerijus Barauskas holds MS from Siauliai University (Lithuania) in
Informatics. He has rich experience as Web Application Developer and Cloud
computing infrastructures builder in Lithuania and Ireland. Currently he is
working as System Developer at Imagine Communications Group (Ireland)

Marius Neimantas holds MS from Siauliai University (Lithuania) in
Informatics. Currently he is working as Chief specialist at Informatics
department, National Low Administration (Lithuania). Security is the main
focus of his reseach interests.

Remigijus Valčiukas holds MS from Siauliai University (Lithuania) in
Informatics. Currently he is working as Software Developer at Šiaulių bank
(Lithuania). His reseach interests consist of software development with SQL,
C++, QT, PHP, JavaScript and jQuery programming languages, Oracle and
other databases.

