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Abstract—A new predictor algorithm based on Bayesian 

enhanced approach (BEA) for long-term chaotic time series using 

artificial neural networks (ANN) is presented. The technique 

based on stochastic models uses Bayesian inference by means of 

Fractional Brownian Motion as model data and Beta model as 

prior information. However, the need of experimental data for 

specifying and estimating causal models has not changed. Indeed, 

Bayes method provides another way to incorporate prior 

knowledge in forecasting models; the simplest representations of 

prior knowledge in forecasting models are hard to beat in many 

forecasting situations, either because prior knowledge is 

insufficient to improve on models or because prior knowledge 

leads to the conclusion that the situation is stable. 

This work contributes with long-term time series prediction, 

to give forecast horizons up to 18 steps ahead. Thus, the 

forecasted values and validation data are presented by solutions 

of benchmark chaotic series such as Mackey-Glass, Lorenz, 

Henon, Logistic, Rössler, Ikeda, Quadratic one-dimensional map 

series and monthly cumulative rainfall collected from 

Despeñaderos, Cordoba, Argentina. The computational results 

are evaluated against several non-linear ANN predictors 

proposed before on high roughness series that shows a better 

performance of Bayesian Enhanced approach in long-term 

forecasting. 

Keywords—long-term prediction; neural networks; Bayesian 

inference; Fractional Brownian Motion; Hurst parameter 

I. INTRODUCTION 

Forecasting is based on identifying and estimating through 
observation and in some instances theory, patterns and/or 
relationships and then extrapolating or interpolating them in 
order to predict [1]. Scientists are different than other 
forecasters in being well aware of uncertainty, by providing 
probabilistic forecasts, and constantly searching for 
enhancements using objective feedback [2]. Their overall 
success rate is improving and their assessment of uncertainty is 
well calibrated. Finally, weather forecasters have learned that 
predicting extreme weather events requires different models 
and skills than those of normal ones [3].  

At the same time, they consider such events as an integral 
part of their job, even though it requires special effort, different 
models and extra skills to predict them. 

The natural phenomena where humans cannot influence 
their future course, except to a limited extent, do influence with 
their actions and reactions, changing their future course, 
making forecasting more difficult but also more challenging 
[4]. The question regarding why simple forecasting models 
outperform sophisticated ones is still open. The future is never 
exactly like the past which means that the accuracy of 
extrapolative predictions cannot be assured. The crucial 
question is the extent of accuracy, or inaccuracy of such 
predictions. Most of the time series in rainfall forecast are 
influenced by random events and often behave not far from 
random walks, favoring simple methods that are capable of 
smoothing such randomness. In long-term forecasts, the 
accuracy of predictions drops while uncertainty increases. On 
way used by forecaster is reducing the forecasting errors of 
predictions by averaging more than one model [5]. The 
outcome is not only higher accuracy but also a reduction in the 
size of forecasting errors, with simple averaging being the best 
way of combining forecasts [6]. The reason is that averaging 
cancels out the errors of individuals and/or models and in 
doing so eliminates the noise from the pattern and improve 
accuracy. 

Rossi, Allenby, and McCulloch (2006) argued that there are 
really no other approaches except the Bayesian approach which 
can provide a unified treatment of inference and decision as 
well as properly accounting for parameter and model 
uncertainty. The Bayesian approach allows researchers to cope 
with complex problems. However, the Bayesian inference 
provides answers conditional on the observed data rather than 
based on distribution of test statistics over imaginary samples 
not observed. Even though the Bayesian approach has decent 
benefits, it has some trivial costs including formulation of 
prior, requirement of a likelihood function, and computation of 
various integrals required in Bayesian paradigm [7]. The 
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advancement of computation make complicated integrals 
become possible. However, choosing an appropriate or 
objective prior has been an issue in the Bayesian approach [8]. 
Thus, investigators are facing a practical problem with little 
information in the real-world situations and should not neglect 
sources of information outside of the current data set [9]. 

In this article, the major advantage of the proposed BEA 
technique is that the complexity does not increase with an 
increasing number of inputs. The solutions can easily be 
generalized to the problem of uncertain (noisy) inputs, such as 
Bayesian inference [10] against other generalized approaches 
[11]. Here the filters in comparison are based on non-linear 
stochastic auto-regressive moving average (NAR) models such 
as Bayesian approach [12] and Neural-Network Modified [13] 
[14], implemented by ANN. 

The paper is organized as follows: Section II presents the 
data series as an important case of study, such as well-known 
chaotic time series. Section III provides the Bayesian Enhanced 
approach as a method using fractional Brownian motion for 
obtaining optimal network model. In Section IV, the proposed 
prediction method is highlighted by showing the performance 
of the proposed algorithm detailing experimental setup, results 
and analysis, with Section V providing some discussions and 
concluding remarks. 

II. DATA TREATMENT 

A. Overview on fBm 

The fractional Brownian motion, which provides a suitable 
generalization of the Brownian motion, is one of the simplest 
stochastic processes exhibiting long-range dependence [15] 
[16]. It has been used as a modeling tool. The following 
demonstrates the stochastic integral representation of fractional 
Brownian motion [17]. The process is as follows, 
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where B(t) is a standard Brownian motion and Γ refers to 
the gamma function, is a fBm with 0<H<1. The constant 
1/Γ(H+1/2) in the following computation is dropped for the 
sake of simplicity. According to the definition, a fractional 
Brownian motion (B(H)(t)) t>0 of Hurst parameter H is a 
continuous and centered Gaussian process with covariance 
function, 

                          22 21
.

2
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Therefore, B(t) is a fBm of Hurst index H. The fBm is 
divided into three different families corresponding to 0<H<1/2, 
H=1/2, 1/2<H<1, respectively. The basic feature of fBm is that 
the span of independence between their increments can be 
infinite [18]. As the Hurst parameter H governs the fractal 

dimension of the fractional Brownian motion, its regularity and 
the long-memory behavior of its increments, the estimation of 
H is an important but difficult task which has led to very vast 
literature [19]. 

In this work, the H index is measured by wavelet method 
[20] [21]. 

B. Overview on Benchmark Time Series 

The standard non-parametric approaches presented in this 
article are based on stochastic techniques that assume non-
linear relationship among data that reproduce the benchmark 
chaotic time series and rainfall data only in statistical sense. 
Although there are many situations when accurate forecasting 
is impossible, there are many others where predictions can 
provide useful information to improve our decisions and gain 
from effective action. Weather forecasts, made several times a 
day, in hundreds of thousands of locations around the world, 
are an example, as it is proposed in this work. The rainfall 
dataset used is from Despeñaderos located at Cordoba, 
province of Argentina (-31.824703;-64.289692) and the 
collection date is from year 2000 to 2014 as shown in Fig.1. 

 
Fig. 1. Original Rainfall times series from Despeñaderos, Cordoba, 

Argentina 

The rest of the benchmark time series are presented in the 
following subsections. 

C. The Mackay-Glass Chaotic Time Series 

The dataset ensemble is by sampling the Mackay-Glass 
(MG) equations [22] defined by: 
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with a, b, c, τ setting parameters shown as follows in Table 
I. 

TABLE I.  PARAMETERS TO GENERATE MG TIME SERIES 

Series No. β α c τ H 

MG17 0.2 0.1 10 17 0.980 

MG30 0.2 0.1 10 30 1 
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D. The Logistic Chaotic Time Series 

The logistic series (LOG) is defined by: 

                                  1 [1 ( )].x t ax t x t                           (4) 

When a=4, the iterates of (4) perform a chaotic time series 
[23]. 

TABLE II.  PARAMETERS TO GENERATE LOG TIME SERIES 

Series No. N a X0 H 

LOG01 50 4 0.1 0.151 

LOG03 50 4 0.3 0.100 

E. The Henon Chaotic Time Series 

The Henon chaotic time series can be constructed by 
following (5), however, it presents many aspects of dynamical 
behavior of more complicated chaotic systems [24]. 

                                     2( 1) 1 ( )x t b ax t                            (5) 

When generating data for our experiments, a and b are set 
as shown in Table III. These same parameters are used in both 
[25]. 

TABLE III.  PARAMETERS TO GENERATE HEN TIME SERIES 

Series No. N a b X0 Y0 H 

HEN01 120 1.4 0.3 0 0 0.187 

HEN03 120 1.3 0.22 0 0 0.833 

F. The Lorenz Chaotic Time Series 

Lorenz found three ordinary differential equations which 
closely approximate a model for thermal convection [26]. 
These equations have also become a popular benchmark for 
testing non-linear predictors. The Lorenz model is given by the 
equations (4), the data is derived from the Lorenz system, 
which is given by three time-delay differential systems 
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A typical choice for the parameter values are as a = 10, b = 
28, and c = 8/3. In this case, the system is chaotic. The data set 
is constructed by using four-order Runge–Kutta method with 
the initial value as is shown in Table IV for LOR01 and 
LOR03 series. The step size is chosen as 0.01, respectively. 
These sets of parameters are commonly used in generating the 
Lorenz system because exhibits deterministic chaos. 

TABLE IV.  PARAMETERS TO GENERATE ROS TIME SERIES 

Series No. n X(0) Y(0) Z(0) H 

LOR01 120 12 9 2 0.158 

LOR03 120 0.1 0.1 2 0.080 

G. The Rössler Chaotic Time Series 

In this example, the data is derived from the Rössler system 
[27], which is given by three time-delay differential systems. 
The data set is constructed by using four-order Runge–Kutta 
method with the initial value as shown in Table V, and the step 
size is chosen as 0.01, respectively. 
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TABLE V.  PARAMETERS TO GENERATE LOR TIME SERIES 

Series 

No. 
n a b c X(0) Y(0) Z(0) H 

ROS01 120 0.2 0.2 5.7 12 9 2 0.203 

ROS03 120 0.42 0.42 0.42 0.1 0.1 2 0.274 

H. The Ikeda Chaotic Time Series 

Before describing the reconstruction, I introduce the system 
which will be used to generate most of the time series 
described herein, namely the Ikeda map [28]. The Ikeda map is 
given as follows: 
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where  2 2  1/ 1 .+t x y   This system displays chaotic 

behavior over a range of values for the parameter   including 

the values chosen  here. 

TABLE VI.  PARAMETERS TO GENERATE IK TIME SERIES 

Series No. n µ X(0) Y(0) H 

IK01 120 0.9 0.5 0.5 0.029 

IK03 120 0.8 0.9 0.6 0.060 

I. The Quadratic Chaotic Time Series 

The quadratic map is defined by the equation 

                              ( 1)  ( ) 1  ( )  x t x t x t                    (7) 

If this mapping is iterated by μ=4, starting with a random 
number in the interval between 0 and 1, then different behavior 
is obtained dramatically depending upon the initial value of x. 
Initial values of x which are quite close together can have 
dramatically different iterates.  

This unpredictability or sensitive dependence on initial 
conditions is a property familiar in displaying chaotic behavior 
[29] over a range of values for the parameter   including the 

values chosen here. 

TABLE VII.  PARAMETERS TO GENERATE QUA TIME SERIES 

Series No. n c X(0) H 

QUA01 120 1.95 0.5 0.31 

QUA03 120 0.8 0.9 0.011 

120 samples are for the selected time series, the first 102 
values are used for training and the remaining 18 values are 
kept for validation and test data. The long-term behavior 
changes thoroughly by changing the initial conditions to obtain 
the stochastic dependence of the deterministic time series 
according to its roughness assessed by the H parameter. Then, 
extra 18 testing data are used to measure the prediction 
performance. 
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                               (a)                                                         (b) 

  
                               (c)                                                         (d) 

   
                               (e)                                                         (f) 

    
                               (g)                                                         (h) 

Fig. 2. Bloxplot diagram of the benchmark chaotic time series 

III. BAYESIAN ENHANCED APPROACH 

This section presents a new method for issuing time series 
forecasting by focusing on three aspects: the formalization of 
one-step forecasting problems as supervised learning tasks, the 
discussion of modeling with Bayes inference techniques as an 
effective tool for dealing with temporal data and the key of the 
forecasting strategy when multiple-step-ahead is used for 
forecasting. 

The increasing availability of large amounts of historical 
data and the need of performing accurate forecasting of future 
behavior in several scientific and applied domains demands the 
definition of robust and efficient techniques able to infer from 
observations the stochastic dependency between past and 
future. The forecasting domain has historically been influenced 
by linear statistical methods such as ARIMA models. More 
recently, machine learning models have drawn attention and 
have established themselves as serious contenders to classical 
statistical models in the forecasting community. 

In this research, the Bayes assumption is used to update a 
prior distribution into a posterior distribution by incorporating 

the information driven as likelihood function from fractional 
Brownian, provided by neural networks weights from observed 
data in order to generate point and interval forecasts by 
combining all the information and sources of uncertainty into a 
predictive distribution for the future values. 

A weight vector w defines a mapping from an input vector 

x to a predicted output vector ŷ  given by ˆ ( , ).y f x w

Assuming a fractional Brownian model, the conditional 
probability distribution for the output given the input vector lx  

is a follows: 
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The application of the regression problem involving the 
correspond neural network function y(x,w) and the data set 
consisting of N pairs, input vector lx and targets tn (n=1,….,N). 

To complete the Bayesian enhanced approach for this work 
[30], prior information for the network is required. The beta 
distribution is chosen for this purpose. The Beta density 
function is a very versatile way to represent outcomes like 
proportions or probabilities. It is defined on the continuum 
between 0 and 1. There are two parameters α and β which work 
together to determine if the distribution has a mode in the 
interior of the unit interval and whether it is symmetrical. This 
is a probability model which describes the knowledge gained 
after observing a set of data. It is proposed to use fractional 

Brownian, where H is the Hurst parameter, 1 2, ,( ),  n ntt t t   

follows a standard fBm and 
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assuming that the expected scale of the weights is given by 
w set by hand. The Beta prior distribution for H is 
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The full probability model is derived from the product, 
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Then, the posterior distribution is as follows, 
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Metropolis-Hasting algorithm was used for computation 
with a starting value of 0.1. The number of iterations was set to 
be 10,000. Monte Carlo Error was used to examine the 
convergence. This was carried out considering that the network 
function  f(xn+1,w) is approximately linear with respect to w in 
the vicinity of this mode, in fact, the predictive distribution for 
yn+1 will be another multivariate Gaussian. This was carried out 
considering that the network function f(xn+1,w) is 
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approximately linear with respect to w in the vicinity of this 
mode, in fact, the predictive distribution for yn+1 will be another 
multivariate Gaussian. 

IV. PREDICTION RESULTS 

The simulation results in different order approximations 
and time periods are presented in the following Table VIII. The 
performance of the comparison is measured by the Symmetric 
Mean Absolute Percent Error (SMAPE) and Root Mean Square 
Error (RMSE) proposed in the most of metric evaluations [31], 
defined by 
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where t is the observation time, n is the size of the test set, s 
is each time series, Xt and Ft are the actual and the forecasted 
time series values at time t respectively. The SMAPE and 
RMSE of each series s calculate the error in percent between 
the actual Xt and its corresponding forecast value Ft, across all 
observations t of the test set of size n for each time series s. 

 
Fig. 3. Despeñaderos Rainfall time series Neural-Network Bayesian 

enhanced approach (BEA) 

 
Fig. 4. Despeñaderos Rainfall time series Neural-Network Bayesian 

enhanced approach (BEA) 

 
Fig. 5. Despeñaderos Rainfall time series Neural-Network Bayesian 

approach (BA) 

 
Fig. 6. Despeñaderos Rainfall time series Neural-Network Bayesian 

approach (BA) 

 
Fig. 7. Despeñaderos Rainfall time series Neural-Network Modified 

approach (NN-Mod) 
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Fig. 8. Despeñaderos Rainfall time series Neural-Network Modified 

approach (NN-Mod) 

The Monte Carlo method was used to forecast the next 18 
values from benchmark chaotic and rainfall time series. Such 
outcomes are shown from Fig.3 up to Fig.8. Here, previous 
algorithms are used [10] [11] [13] [14] to compare the 
Bayesian enhanced approach. 

Comparisons are preformed between the Bayesian and 
NAR models by using long-term time series; in this case 15 
years of monthly rainfall data (2000-2014) served as the 
historical data to forecast 2015 and benchmark of chaotic time 
series proposed in the literature. The results in Table VIII show 
that Bayesian enhanced approach (BEA) were a bit superior for 
the lengthy time series, with a SMAPE and RMSE about one 
half that of the Bayesian approach (BA) and neural network-
modified predictor filter (NN-Mod).  

The results show that the performances of the BEA with 
BA and NN-Mod are better than those in term of SMAPE and 
RMSE, due to the existence of outliers. With this lengthy 
series, BEA could adequately detect the underlying the 
relationship among those correlated variables. The simulation 
results of the BEA methods are compared with the BA and 
NN-Mod summarized in Table VIII for the benchmark time 
series. The similarity of the trend of the prediction performance 
between them is clear, BEMA is slightly better particularly on 
rainfall time series with reference to BEA and BA approaches. 

TABLE VIII.  RESULTS OF THE FORECASTING APPROCHES 

Series 

 
Method 

Real 

Mean 

Forecasted 

Mean 
SMAPE RMSE 

Rainfall 

DES 

BEA 50.55 66.25 3.91 30.30 

BA 50.55 46.56 4.51 33.53 

NN-Mod. 50.55 78.22 6.92 68.29 

MG17 

BEA 0.94 0.92 0.045 0.032 

BA 0.94 0.91 0.085 0.036 

NN-Mod. 0.94 0.89 0.32 0.047 

MG30 

BEA 0.87 0.85 0.027 0.09 

BA 0.87 0.91 0.11 0.017 

NN-Mod. 0.87 0.80 0.32 0.038 

ROS01 

BEA 0.11 0.10 0.009 0.05 

BA 0.11 0.14 0.017 0.10 

NN-Mod. 0.11 0.20 0.025 0.14 

ROS03 

BEA 0.0014 0.0026 0.00005 0.0003 

BA 0.0014 0.0030 0.00014 0.0014 

NN-Mod. 0.0014 0.0026 0.00031 0.0018 

IK01 

BEA -0.44 -0.28 0.017 0.125 

BA -0.44 0.008 0.105 0.29 

NN-Mod. -0.44 0.012 0.136 0.99 

IK03 

BEA -0.23 0.027 0.016 0.101 

BA -0.23 0.053 0.021 0.121 

NN-Mod. -0.23 0.017 0.159 0.93 

LOR01 

BEA 33.37 30.37 0.12 7.61 

BA 33.37 28.99 1.42 10.01 

NN-Mod. 33.37 17.79 5.06 32.41 

LOR03 

BEA 25.30 35.62 2.84 18.30 

BA 25.30 36.74 3.15 20.60 

NN-Mod. 25.30 23.30 4.95 30.08 

LOG01 

BEA 0.49 0.50 0.059 0.017 

BA 0.49 0.51 0.12 0.043 

NN-Mod. 0.49 0.46 0.35 0.063 

LOG03 

BEA 0.34 0.38 0.07 0.034 

BA 0.34 0.41 0.12 0.057 

NN-Mod. 0.34 0.47 0.40 0.072 

 BEA 0.16 0.36 0.022 0.128 

QUA01 BA 0.16 0.46 0.027 0.169 

 NN-Mod. 0.16 0.53 0.22 1.32 

 BEA 0.27 0.51 0.031 0.186 

QUA03 BA 0.27 0.18 0.034 0.231 

 NN-Mod. 0.27 0.04 0.27 1.51 

HEN01 

BEA 0.21 0.20 0.002 0.012 

BA 0.21 0.20 0.0025 0.014 

NN-Mod. 0.21 0.18 0.018 0.117 

HEN03 

BEA 0.13 0.13 0.0001 0.007 

BA 0.13 0.14 0.0019 0.012 

NN-Mod. 0.13 0.12 0.009 0.061 
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V. DISCUSSION 

This paper reports the results of a comparison of three 
different forecasting techniques for a class of high roughness 
long-term time series forecasting. The series were selected 
regarding the long or short term stochastic dependence of the 
time series assessed by the Hurst parameter H to give a forecast 
horizon of 18. The rainfall forecasts obtained between those 
algorithms are compared with NAR ANN predictor, namely 
BA and NN-Mod, for a case study on southwestern province of 
Cordoba. The study analyzed and compared the relative 
advantages and limitations of each time-series predictor filter 
technique, used for issuing rainfall and chaotic time series 
prediction. The discussion of how feed-forward networks can 
successfully approximate the quantitative changes in the 
dynamics of the time series data due to changes in the 
parameter values of the exogenous variables remains open for 
study, mainly. 

Although the comparison was performed on ANN-based 
filters, the experimental results confirm that the enhanced 
Bayesian method can predict chaotic time series more 
effectively in terms of SMAPE and RMSE indices when is 
compared with other existing forecasting methods in the 
literature. However, the wish to preserve the stochastic 
dependencies constrains all the horizons to be forecasted with 
the same model structure. Since this constraint could reduce 
the flexibility of the forecasting approach, a variant of BEA 
approach is still open. Fig.10 and Fig.11 shows the evolution of 
the SMAPE and RMSE indices for BEA, BA and NN-Mod 
filter, which use the H parameter to adjust heuristically either 
structure of the net or parameters of the learning rule. 

 
Fig. 9. The SMAPE index applied over the 15 time series 

 
Fig. 10. The RMSE index applied over the 15 time series 

VI. CONCLUSIONS 

A new approach for time series forecasting: Bayesian 
enhanced by fractional Brownian motion with application to 
rainfall series is presented. Building effective predictors form 
historical data demands computational and statistical methods 
for inferring dependencies between past and long-term future 
values of observed values as well as appropriate strategies to 
deal with longer horizons [32]. This work showed and 
discussed the BEA supervised learning technique to deal with 
long-term forecasting problems. In particular the fBm model 
assumption is   stressed in Bayes inference by local learning 
approximators in dealing with important issued in forecasting, 
like nonlinearity and nonstationarity. The main results show a 
good performance in term of SMAPE and RMSE indices of the 
predictor system based on Bayesian enhanced approach, 
particularly on rainfall time series from a geographical 
observation point, such as Despeñaderos, Cordoba, Argentina. 

Future research should be concerned with the extension of 
these techniques to some recent directions in big data and the 
application to spatiotemporal tasks. These results encouraged 
us to continue working on new machine learning algorithms 
using novel forecasting methods. 
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