
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

323 | P a g e

www.ijacsa.thesai.org

Resource Allocation in Cloud Computing Using

Imperialist Competitive Algorithm with Reliability

Approach

Maryam Fayazi

Department of Computer, Ahvaz

Branch, Islamic Azad University

Department of Computer,

Khouzestan Science and Research

Branch, Islamic Azad University

Ahvaz, Iran

MohammadReza Noorimehr

Department of Computer, Ahvaz

Branch, Islamic Azad University

Department of Computer,

Khouzestan Science and Research

Branch, Islamic Azad University

Ahvaz, Iran

Sayed Enayatollah Alavi

Department of Computer

Engineering, Faculty Engineering,

Shahid Chamran University of

Ahvaz

Ahvaz, Iran

Abstract—Cloud computing has become a universal trend

now. So, for users, the reliability is an effective factor to use this

technology. In addition, users prefer to implement and get their

work done quickly. This paper takes into account these two

parameters for resource allocation due to their importance In

this method, the Imperialist Competitive algorithm with the

addition of a cross layer of cloud architecture to reliability

evaluation is used. In this cross layer, initial reliability is

considered for all the resources and the implementation of their

tasks and due to the success or failure of implementation,

reliability of resources is increased or reduced. Reliability and

makespan are used as a cost function in ICA for resource

allocation. Results show that the proposed method can search the

problem space in a better manner and give a better performance

when compared to other methods.

Keywords—Imperialist Competitive algorithm; Reliability;

makespan; Cloud Computing

I. INTRODUCTION

Research on cloud computing is growing rapidly. Cloud
computing means developing and applying computer
technology on the Internet. Cloud computing is a network for
enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g.,
networks, servers, storage, applications, and services) that can
be rapidly provisioned and released with minimal management
effort or service provider interaction[1]. In cloud computing,
the end users have unlimited access to the resources and only
pay for the resources they consume. Cloud computing basics is
that the user data is not stored locally, but is stored in the
internet data center. Companies that provide cloud computing
services can manage and maintain the data centers [2, 3].

To provide services to end users, the cloud computing
environment needs to be reliable and also well managed in
such a way that it gives throughput in the lowest time. So,
reliability and task scheduling are two important parameters. In
this paper, considering reliability, the allocation of makespan
resources was done using Imperialist Competitive algorithm
and a cross layer in cloud architecture.

This paper is organized as follows. Section 2 explains some
related works. Section 3 is dedicated to problem description
and some meta-heuristic algorithms related to problems such as
genetic algorithm and imperialist Competitive algorithm.
Section 4 is a discussion about proposed approach that uses
imperialist Competitive algorithm in it. Section 5 shows
simulation evaluations and comparison to genetic algorithm.
Section 6 is the conclusion.

II. RELATED WORK

Many heuristic and meta-heuristic methods are prevented
by different researchers for scheduling and resource allocation
to tasks in cloud. The heuristic approach uses the concept of
prioritization to schedule tasks. Algorithms such as max-min
and min-min are part of the heuristic-based approach that
divide scheduling to two steps: prioritizing the task and source
selection. In priority task, each task is assigned a rating based
on its priorities. In step source selection, a high-priority task is
selected and is scheduled on the optimized resources that have
completed the previous tasks. The meta-heuristic approach
includes scheduling algorithms based on repeatable method to
find the optimal solution. They provide an efficient way of
moving quickly towards a very good solution. Many meta-
heuristic approaches have been applied for solving workflow
scheduling problems, including Genetic Algorithms and
Imperialist Competitive Algorithm (ICA) [4].

One of important problems in cloud computing is
makespan constraint. Most scheduling algorithms focus on
makespan. In [5]-[10], Genetic Algorithm is used to reduce
makespan of tasks allocation to resources. Yue Miao [11] by
using firefly algorithm based on chaos algorithm tried to
reduce the average time spent by subtasks in processing request
tasks, and thus improve the efficiency of task processing and
achieve a rational allocation of resources. Mizan et al. [12]
proposed a modified task scheduling algorithm based on the
concept of Bees life algorithm and greedy algorithm to gain
optimistic value of service in hybrid cloud. The main idea of
the system is to achieve an affirmative response from the end
users and utilize the resources in a very transient manner.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

324 | P a g e

www.ijacsa.thesai.org

Seidgar et al. [13] describe an approach incorporating
simulation with imperialist competitive algorithm for the
scheduling purpose having machine breakdowns and
preventive maintenance activities. The objective is to minimize
the makespan.

In addition of makespan, reliability function is a very
important function for users [14]-[20].

Zhao et al. [14] proposed a DRR (Deadline, Reliability,
Resource-aware) scheduling algorithm, which schedules the
tasks such that all the jobs can be completed before the
deadline, ensuring the Reliability and minimization of
resources. Gartner [15] used a formal approach to define
important terms like fault, fault tolerance, and redundancy.
This leads to four distinct forms of fault tolerance and two
main phases in achieving them: detection and correction. It
shows that this can help to reveal inherently fundamental
structures that contribute to understanding and unifying
methods and terminology. By doing this, it surveys many
existing methodologies and discuss their relations. The
underlying system model is the close-to-reality asynchronous
message-passing model of distributed computing. Zhang et al.
[16] present BFT Cloud (Byzantine Fault Tolerant Cloud), a
Byzantine fault tolerance framework for building robust
systems involuntary-resource cloud environments. BFT Cloud
guarantees robustness of systems when up to f of totally 3f+1
resource providers are faulty, including crash faults, arbitrary
behaviors faults, etc. BFT Cloud is evaluated in a large-scale
real-world experiment which consists of 257 voluntary-
resource providers located in 26 countries. The experimental
results shows that BFT Cloud guarantees high reliability of
systems built on the top of voluntary-resource cloud
infrastructure and ensures good performance of these systems.
In [17], the different techniques of fault tolerance are
presented. The main focus is on types of faults occurring in the
system, fault detection, and recovery techniques. In [18], the
existing fault tolerance techniques in cloud computing are
discussed based on their policies, tools used, and research
challenges. Cloud virtualized system architecture has been
proposed. In the proposed system, autonomic fault tolerance
has been implemented. The experimental results demonstrate
that the proposed system can deal with various software faults
for server applications in a cloud virtualized environment.
Jhawar et al. [19] introduced an innovative, system-level,
modular perspective on creating and managing fault tolerance
in Clouds. They proposed a comprehensive high-level
approach to shading the implementation details of the fault
tolerance techniques to application developers and users by
means of a dedicated service layer. In particular, the service
layer allows the user to specify and apply the desired level of
fault tolerance, and does not require knowledge about the fault
tolerance techniques that are available in the envisioned Cloud
and their implementations. In [20], a fault tolerance model for
cloud computing is given and the Paper describes a model for
Fault Tolerance in Cloud computing (FTMC). FTMC model
tolerates the faults on the basis of reliability of each computing
node. A Computing node is selected for computation on the
basis of its reliability and can be removed, if it does not
perform well for applications.

To increase the Quality of Service in cloud, it is necessary
to implement a scheduling algorithm that in addition to
makespan, considers the reliability of cloud resources during
resource allocation. Recently in [21], makespan and reliability
were discussed. A genetic algorithm has been proposed that
schedules workflow applications in unreliable cloud
environment and meets user defined QoS constraints. A budget
constrained time minimization genetic algorithm has been
proposed which reduces the failure rate and makespan of
workflow applications. It allocates those resources to workflow
application which are reliable. So, here with this motivation,
work is done that reduces makespan with Imperialist
Competitive algorithm to provide reliable machines for
implementation of tasks.

III. BACKGROUND

A. Problem Description

Earlier, the Cloud data center was composed of thousands
of servers and hundreds of switches connecting the servers.
Each server can host for tens of virtual machines [22]. From
scheduling algorithms, it is expected to find a plan for each
task in set T with desired quality of service constraints for
users. The schedule should be one that reduces the failure rate
and makespan.

B. Imperialist Competitive Algorithm

Imperialist Competitive Algorithm is defined as the
optimization strategy based on social and political evolution of
humans. The Main Basics of this algorithm are Assimilation,
Imperialistic Competitive, and Revolution. For more accurate
algorithm inspired social and political phenomenon of
colonialism [23]. The Pseudo code for the algorithm is as
follows:

1) Select some random points and initialize the empires.

2) Move the colonies toward their relevant imperialist

(Assimilating).

3) If there is a colony in an empire which has lower cost

than that of imperialist, exchange the Positions of that

imperialist and the colony.

4) Compute the total cost of an empire (Related to the

power of both imperialist and its colonies).

5) Pick the weakest colony from the weakest empire and

give it to the empire that has the most likelihood to possess it

(Imperialistic Competitive).

6) Eliminate the powerless empires.

7) If there is just one empire, stop if not go to 2.
In step 1, randomly some points are selected and some

Empires are formed. Then, according to equations (1), (2), and
considering N.C. in equation (3), for each empire, the same
number of initial colonial countries are selected, randomly and
given to n

th
 Empire.

 Cn= – cn (1)

Cn : N
th
 Empire normalized cost

cn : N
th
 Empire cost

 : Max cost between Empires

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

325 | P a g e

www.ijacsa.thesai.org

 Pn= |

∑

| (2)

Pn : N
th
 Empire normalized power

Nimp : Number of Empires

N.C (Number of colonies of each Empire) = round (Pn *
Ncol) (3)

Ncol : total number of colonies

In step 2, Empires with the follow-up policy of assimilation
efforts are selected to attract their colonies. In line with this
policy, the colonial country moves the size of x units to the
Empire and get a new position. X is a random number with
uniform distribution (or any other suitable distribution).

In step 3, it is possible that the colony moves to the empire
get better position than the empire (lower cost). In this case,
empire and colony exchange and the algorithm continues with
the empire country in a new position.

In step 4, according to formula 4, the power of an empire is
equal to the central government plus a small percentage of the
power of its colonies.

T.Cn.= Cost (empiren) +

 mean {Cost (colonies of empiren)} (4)

In equation (4), T.Cn. is the total cost of n
th
 Empire and

is a positive number that is considered usually between zero

and one, and close to zero. Little consideration of

, makes the
total cost of an empire, almost equal to the cost of the central

government (the empire) and also increasing

 increases the
effect of the colonies cost of that empire in determining the
total cost.

The total cost of empire is obtained by the following
equation (5):

 N.T.Cn. = – T.Cn. (5)

In equation (5), T.Cn. is total cost of n
th
 empire and N.T.Cn.

is total normalized cost of that empire. Each empire with less
T.Cn., will be more N.T.Cn. In fact, the empire with min cost
has max power.

In step 5, there is a competition between empires on taking
over the weakest colony of the weakest empire.

By using the total normalized cost, the possibility (power)
of takeover of Competitive colony by each empire, is
calculated as in equation (6):

 = |

∑

| (6)

With the possibility of taking of the empire, for dividing
these colonies between empires randomly but with probability
of related to possibility of taking of empire; vector p is formed
from the above probability values (equation (7)):

1 2 3
, , ,...,

Nimp
p p p pp p p p

P

 (7)

Vector p in equation (7) has a size of 1*Nimp and is made
from possibility takeover empires values. Then, the random
vector R, is formed in the same size of vector p. arrays of this
vector are random numbers with uniform distribution in the
interval [0, 1]. Then, vector D is made from the following
equation (8):

 1 2 3

1 2 3

1 2 3

, , ,...,

, , ,...,

imp

N impimp

N

p p p p N

D D D D

p r p r p r p r

D= P - R

=
 (8)

By using vector D, those colonies where the index in vector
D is larger than others are given to the empire. In step 6, the
empire that doesn’t have any colony, is eliminated to be a
colony.

IV. PROPOSED METHOD

This section discusses the proposed approach that uses
Imperialist Competitive algorithm and cross layer for
evaluating the reliablity of virtual machines.

A. Evaluation Reliability Algorithm

In [20] a method is used to increase fault tolerance and this
method is applied as cross layer in cloud architecture to
evaluate the relaiability of virtual machines and then the VM
with a high reliability is selected. Reliability evaluation
algorithm is applied on each VM. At first, each VM reliability
will be set to 1. There is an adjustment factor N that controls
reliability evaluation. N value is always greater than 0. The
algorithm gets the RF factor from input. RF is a reliability
factor that increases or decreases resource reliability. RF value
depends on user decision. Reliability should be between 0, 1. If
task implementation by resource is done before defined
deadline, it is successful and it’s reliability will be increased.
Otherwise it is a failure and it’s reliability will be reduced.
Pseudo-code of reliability evaluation algorithm is shown in
Figure 1. Table I gives a sample of VM reliability evaluation.

Fig. 1. Pseudo-code of reliability evaluation algorithm

1 Start

2 Initialized Reliability: =1, N: =1;

3 Input RF;

4 Input processing node status;

5 If processing node Status =Pass then

6 Reliability: = Reliability + (Reliability * RF);

7 If N > 1 then

8 N: = N-1;

9 If Reliability > 1 then

10 Reliability: = 1;

11 Else if processing node Status = Fail then

12 Reliability: = Reliability – (Reliability * RF * N);

13 N: = N+1;

14 If Reliability < 0 then

15 Reliability: = 0;

16 End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

326 | P a g e

www.ijacsa.thesai.org

TABLE I. SAMPLE OF VM RELIABILITY EVALUATION

B. Imperialist Competitive algorithm

To achieve the best allocation of resources in cloud, the
Imperialist Competitive algorithm as follows:

1) Problem modeling: in this method, n different tasks

and m virtual machines are considered and also Ti means i
th

task and VMj means j
th

 virtual machines. It is done by using

identification number of each virtual machine and the task. In

Figure 1, there are 10 tasks and each task has a unique

identification number from 0 to 5 and there are 3 virtual

machines each having unique identification number from 0 to

2. In Imperialist Competitive algorithm, each country

represents a mapping of tasks to available resources on the

issue of scheduling tasks. We are looking for the best possible

sequence of tasks to allocate to resources. In ICA, position of

each country represents a solution for a problem that shows

mapping tasks on resources. Figure 2 shows sample of

mapping tasks to resources by using identification number of

tasks and virtual machines.

Fig. 2. Countries as resource allocation

2) Initial Population: In initial population, countries are

generated randomly. In this problem, each country is an array

with 2*Nt length that first row is tasks and second row is

resources and The task t is selected from set T that has not

been allocated to any virtual machine. Then a virtual machine

is selected randomly from set VM. This process continues

until countries are generated. The number of countries are

generated in initial population according to the size of initial

population. Then, number of initial empires and colonies is

calculated from follow equations (9), (10):
 Initial empires = Countries* n (9)

 All Colonies = Countries –Initial empires (10)

In equation (10), n is a percentage of total number of
countries that in the proposed algorithm is considered to be 0.1.
In this paper, initial population size and number of empires are
100, 10, respectively.

3) Evaluation: in this step, best country is found. So,

fitness value is calculated based on makespan and reliability.

A country having low makespan and high reliability will have

low cost value compared to other countries. In the proposed

method, makespan must be minimized. Makespan and task

execution time are calculated respectively in equations (11),

(12).

 Makespan M (I) = ∑

 (11)

= (length of task) / (MIPS of virtual machine) (12)

In this method, in addition to reduced makespan, reliability
also will increase. So, the solution giving a low makespan and
high reliability will be selected. Reliability is obtained from
cross layer.

So, cost function in this model is calculated from the
following equation (13):

 Cost= c1*(1-R) + c2* M (13)

Reliability R (I) = mean (R (VMt1), R (VMt2)… R (VMtn)) (14)

In the equation (13), M is makespan of countries and R is
mean reliability of resources in countries obtained from
equation (14). In equation (14), R (VMt1) is the reliability of
vm where first task is to be executed, R (VMt2) is the
reliability of vm where second task is to be executed, and so
on. R (VMtn) is the reliability of vm where nth task is to be
executed. c1 and c2 values are coefficients to prioritize the
order of importance makespan or reliability factors and sum of
these values must be 1. These values are determined by the
user.

4) Initial empires generation: some countries with highest

power are considered as empire and other countries as

colonies. For this, countries are ordered as ascending on basis

of their cost value. So, countries in the beginning of the array

will have lower cost. Normalized cost and power of empires

and number of their colonies is obtained from equations (1),

(2), (3).

5) Assimilation: In this step, assimilation policy is done.

In fact, distance of empire and colony is calculated from

equation (15) and then colony new position is calculated from

equation (16).
 d= Imperialist position- Colony position (15)

X =round (Colony Position+ α * ß * int (Rnd (2)) * d) (16)

In equation (16), ß is a number greater than one and close
to 2. ß is made to colony country during move to empire
country, close to it from different sides. α is a desired
parameter which increases increase search around empire and
decreases to make colonies move close to Vector Empire to
colony. In this model, α is considered 0.5.

6) Revolution: Revolution means sudden changes in the

position of a country that values change with a defined rate

randomly. In fact, in this step, resources with random number

are allocated to tasks that will a new country appear.

Revolution rate in this model is 0.1. Figure 3 shows a sample

of this change.

7) Exchange colony and empire: as explained before, if a

colony gets lower cost while moving to empire then the

colony and empire exchange positions.

8) Empires Competitive and Eliminate Week Empire:

Total power of empire is obtained from equation (4). To

takeover colonies of other empires, first according equation

(5), from total cost of empire, is defined as it’s normalized

total cost and then, probability of takeover each empire

(depend on the power of the empire), with considering total

cost of empire is calculated from equation (6).

Time VM1 Reliability

1 Fail 0.95

2 Fail 0.9

3 Success 0.945

4 Success 0.99

5 Fail 0.94

Tasks T0 T1 T2 T3 T4 T5

Virtual Machines VM1 VM2 VM0 VM2 VM0 VM1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

327 | P a g e

www.ijacsa.thesai.org

Fig. 3. Revolution

9) No need to calculate CDF1, make this mechanism to

perform faster than roulette wheel in genetic algorithm. This

step is ended when one of the empires takes over a colony,

then after a few iteration, weakest empire will be without any

colonies. In this case that empire will be removed from the

empire list.

10) Termination: The algorithm continues until a converge

11) Condition or reach to total number of iteration

reached.
The pseudo code of proposed ICA is given in Figure 4.

The flowchart of proposed method is given in Figure 5.

1 Cumulative distribution function

Fig. 4. The pseudo code of proposed ICA

Tasks T0 T1 T2 T3 T4 T5 T6 T7 T8 T9

Virtual Machines VM3 VM0 VM0 VM1 VM2 VM3 VM1 VM3 VM1 VM2

Tasks T0 T1 T2 T3 T4 T5 T6 T7 T8 T9
Virtual Machines VM1 VM4 VM0 VM2 VM4 VM3 VM0 VM2 VM1 VM0

1 Initialize Tasks and virtual machines.

2 While (No. of countries < initial population size) {

3 Set the status of all tasks in set T to unscheduled to generate new country

4 While (Set T has unscheduled tasks) {

5 Select a task t from set T of tasks which has not been allocated to any virtual
machine.

6 Select a virtual machine vm randomly from set VM of virtual machines.

7 Schedule task t on virtual machine vm.}

8 Store the new generated country in population P.}

9 Evaluate cost of all countries in population P by calling reliability
evaluation algorithm.

10 Sort the countries in ascending order according to their cost value.

11 Generate initial empires from top list of countries and colonies as other
countries.

12 While (total number of iteration < iteration threshold or No. of empire > 1)
{

13 Calculate distance of empire and colony and move colony.

14 If (Revolution rate > Revolution threshold) then

15 Apply Revolution.

16 If (empire cost > colony cost) then

17 Exchange Empire and colony position.

18 Calculate total power of empire.

19 Calculate normalized total power of empire.

20 Make vector D

21 Get max index of vector D

22 Give a colony of weakest empire to highest power empire.

23 If weakest empire (No. of colonies) <=1 then

24 Eliminate Week Empire and change to colony.}

25 Return Best Country with min Cost

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

328 | P a g e

www.ijacsa.thesai.org

Fig. 5. The flowchart of proposed method

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

329 | P a g e

www.ijacsa.thesai.org

V. PERFORMANCE EVALUATION

To ensure proper functioning of the proposed method,
results of the testing should be compared to other methods.
Until now, different papers are provided in this field that
often are handed makespan problem. In [21], the makespan
and reliability are considered by using genetic algorithm. So,
in this paper proposed algorithm is compared to genetic
algorithm. CloudSim is used for implementation of the
algorithm [24]. Table II gives information about simulation.

TABLE II. SIMULATION CONDITION

Value Parameters

2 Number of Datacenters

2 Number of Hosts

1000000 MIPS Rate of Host

6144 Ram of Host

2,3 Number of VMs on each Host

2600,3200 MIPS Rate of VMs

512 Ram of VM

Space-Shared Mode of VMs on Host

5,10 Total Number of VMs

50-250 Number of Tasks

1000-2000 Task size (No. of Instructions)

The experiment is performed on a computer with a dual-
core, 2.4 GHz processor and 2GB of RAM. The test was done
once on 5 virtual machines and another one on 10 virtual
machines in an unreliable cloud environment. The scheduling
algorithm estimates execution time of tasks by using MIPS rate
of virtual machines. MIPS rates of some virtual machines are
considered as 2600 and 3200. Instruction numbers of tasks are
random numbers between 1000 and 2000. Table III and Table
IV show the parameters in ICA and GA, respectively.

TABLE III. ICA PARAMETERS

Randomly Initial Population Generation

100 Initial Population Size

100 Number of Iterations

 0.1 Revolution Rate

2 Assimilation Coefficient

0.5 Assimilation Angle Coefficient

0.02 zeta ()

0.05 RF Value

TABLE IV. GA PARAMETERS

Randomly Initial Population Generation

100 Initial Population Size

100 Number of Iterations

swapping Mutation operation

0.01 Mutation rate

Single point Crossover operation

0.5 Crossover rate

Experiments are done for both algorithms with different
number of tasks and resources. Table V shows average results
of the experiment after running the algorithm 20 times for
parameters such as makespan and reliability.

TABLE V. COMPARISON OF ALGORITHMS WITH DIFFERENT TASKS AND

RESOURCES

Fig. 6. comparison of makespan in both algorithm with increasing number of

tasks and resources

The values of two results are compared together. The bar
diagram in fFgure 6 shows makespan on resources in both
algorithms for 100 tasks with 5 resources and 200 tasks with 10
resources. As shown, the proposed method reduces makespan
rather than genetic algorithm by 5 percent in the first
experiment and 4.4 percent in the second experiment. The ICA
algorithm has useful operations such as revolution and
assimilation and help to better search the problem space but in
genetic algorithm mutation is used to avoid local optimum.
Hence, ICA can find optimum solution than GA

Fig. 7. compare reliability of both algorithm with increasing number of tasks

and resources

Figure 7 shows reliability on resources in both algorithm
for 100 tasks with 5 resources and 200 tasks with 10 resources.
As shown, the proposed method increases reliability rather than
genetic algorithm (in first experiment 5.4 percent and in second
experiment 6.7 percent). Therefore,

0.86

0.88

0.9

0.92

0.94

0.96

0.98

R
el

ia
b

il
it

y

Number of Tasks and Resources

Proposed ICA

GA

100 T, 5 R 200 T, 10 R

ICA GA

Reliabilit

y

Makespa

n

Reliabilit

y

Makespa

n

Number

of

Recourses

Number of

Tasks

0.98 12.1 0.96 13.42 5 100

0.93 12.71 0.9 14.01 10 200

100 T, 5 R 200 T, 10 R

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

330 | P a g e

www.ijacsa.thesai.org

according to this Figure and Figure 6, ICA proves to be able to
better search the problem space rather than GA. In the other
hands selected cost function here in linear condition has fitting
to two objects separately.

For more studies, we use different environment scale. The
results of makespan of both methods with different tasks and 5
resources are in accordance with Figure 8. In GA, during the
initial stage of population, virtual machines with high
reliability are selected. In this algorithm, makespan is less
important. In addition, in imperialist competitive using vector
D is used instead of roulette wheel that is quicker. So as shown
in Figure 8, the proposed algorithm has lower makespan in
comparison to GA.

Fig. 8. comparison of makespan

Reliability evaluation results of VMs are shown in Figure
9. As shown, in low number of tasks, reliability of both
algorithms is near to each other but by increasing number of
tasks, reliability of proposed ICA will be higher than GA.

Fig. 9. comparison of reliability

VI. CONCLUSION

In this paper, for resource allocation, makespan and
reliability were used as a fitness function. In fact, two
parameters were used in ICA as a cost function. In cross layer,
initial reliability of all resources is equal to 1 and after they
implemented tasks, the reliability increased or decreased
according to successful or failure implementation. Then, by
using imperialist Competitive algorithm different solutions are
checked and their cost function is calculated by makespan and

reliability values. In comparison with other methods, results
show that the proposed algorithm improves makespan and
reliability rather than GA. In fact, the proposed method reduces
makespan rather than genetic algorithm in experiment 100
tasks and 5 resources 5 percent and in in experiment 200 tasks
and 10 resources 4.4 percent while is increase reliability in
experiment 100 tasks and 5 resources 5.4 percent and in
experiment 200 tasks and 10 resources 6.7 percent. Results
show that ICA can search problem space better than GA.

REFERENCES

[1] Peter Mell, Timothy Grance: The NIST Definition of Cloud Computing,
National Institute of Standards and Technology, Special Publication
800-145 (2011)

[2] Zhao,L., Sakr, S., Liu, A., Bouguettaya, A.: Cloud Data Management,
XIX, 202 p. 86 illus., 50 illus., Springer, 2014

[3] Chunye Gong, Jie Liu, Qiang Zhang, Haitao Chen and Zhenghu Gong.:
The Characteristics of Cloud Computing, 39th International Conference
on Parallel Processing Workshops, 2010.

[4] Yu, J., Buyya, R., Kotagiri, A.: Workflow Scheduling Algorithms for
Grid Computing, vol. 146, pp. 173–214. Springer, Heidelberg (2008)

[5] Wang, P.C., Korfhage, W.: Process Scheduling using Genetic
Algorithm. In: Parallel and Distributed Proceeding Seventh IEEE
Symposium, pp. 638–641 (1995).

[6] Page, A.J., Naughton, T.J.: Dynamic Task Scheduling using Genetic
Algorithm for Heterogeneous Distributed Computing. In: Proceedings
19th IEEE Conference on Parallel and Distributed Processing
Symposium (2005).

[7] Moattar, E.Z., Rahmani, A.M., Derakhshi, M.R.F.: Job Scheduling in
Multiprocessor Architecture using Genetic Algorithm. In: 4th IEEE
Conference on Innovations in Information Technology, pp. 248–251
(2007).

[8] Mocanu, E.M., Florea, M., Ionut, M.: Cloud Computing Task
Scheduling Based on Genetic Algorithm. In: System IEEE Conference,
pp. 1–6 (2012).

[9] Shekhar Singh, Mala Kalra, Task scheduling optimization of
independent tasks in cloud computing using enhanced genetic algorithm-
International journal of application or innovation in engineering &
management (ijaiem)- volume 3, issue 7, july 2014.

[10] Van den Bossche, R., Vanmechelen, K., Broeckhove, J.: ―Cost Optimal
Scheduling in Hybrid IaaS Clouds for Deadline Constrained Workloads.
In: 3rd IEEE International Conference on Cloud Computing, Miami
(July 2010).

[11] Tasquia Mizan, Shah Murtaza Rashid Al Masud, Rohaya Latip.:
Modified Bees Life Algorithm for Job Scheduling in Hybrid Cloud,
International Journal of Engineering and Technology Volume 2 No. 6,
June, 2012.

[12] Yue Miao: Resource Scheduling Simulation Design of Firefly Algorithm
Based on Chaos Optimization in Cloud Computing, International journal
of Grid Distribution Computing, Vol.7, No.6 (2014), pp.221- 228.

[13] Hany Seidgar, Mostafa Zandieh, Hamed Fazlollahtabar, Iraj Mahdavi.:
Simulated imperialist competitive algorithm in two-stage assembly flow
shop with machine breakdowns and preventive maintenance, Journal of
Engineering Manufacture February 18, 2015.

[14] Zhao, L., Ren, Y., Sakurai, K.: ―A Resource Minimizing Scheduling
Algorithm with Ensuring the Deadline and Reliability in Heterogeneous
Systems‖. In: International Conference on Advance Information
Networking and Applications, AINA. (IEEE 2011).

[15] Felix C. Gärtner, “Fundamentals of Fault-Tolerant Distributed
Computing in Asynchronous Environments”, ACM Computing Surveys,
Vol. 31, No. 1, March 1999.

[16] Yilei Zhang, Zibin Zhengand and Michael R. Lyu, “BFTCloud: A
Byzantine Fault Tolerance Framework for Voluntary-Resource Cloud
Computing”, 4th International Conference on Cloud Computing, IEEE,
2011.

[17] Arvind Kumar, Rama Shankar Yadav, Ran vijay and Anjali Jain “Fault
Tolerance in Real Time DistributedSystem”, International Journal on

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300

M
ak

es
p

an
(s

)

Number of Tasks

Proposed ICA

GA

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

0 50 100 150 200 250 300

R
el

ia
b

il
it

y

Number of Tasks

Proposed ICA

GA

http://pib.sagepub.com/search?author1=Hany+Seidgar&sortspec=date&submit=Submit
http://pib.sagepub.com/search?author1=Mostafa+Zandieh&sortspec=date&submit=Submit
http://pib.sagepub.com/search?author1=Hamed+Fazlollahtabar&sortspec=date&submit=Submit
http://pib.sagepub.com/search?author1=Iraj+Mahdavi&sortspec=date&submit=Submit

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 3, 2016

331 | P a g e

www.ijacsa.thesai.org

Computer Science and Engineering (IJCSE),Vol. 3,ISSN: 0975-3397,
No. 2 ,Feb 2011.

[18] AnjuBala, InderveerChana, “Fault Tolerance- Challenges, Techniques
and Implementation in Cloud Computing”, International Journal of
Computer Science (IJCSI) Issues, Vol. 9, Issue 1, No 1, January 2012.

[19] Ravi Jhawar, Vincenzo Piuri and Marco Santambrogio, Member of
IEEE, “Fault Tolerance Management in Cloud Computing: A System-
Level Perspective “, IEEE, 2012.

[20] Anjali D.Meshram, A.S.Sambare, S.D.Zade: Fault Tolerance Model for
Reliable Cloud Computing, International Journal on Recent and
Innovation Trends in Computing and Communication,600-603 (2013).

[21] Lovejit Singh and Sarbjeet Singh: A Genetic Algorithm for Scheduling
Workflow Applications in Unreliable Cloud Environment, Springer-
Verlag Berlin Heidelberg, 139-150 (2014).

[22] Rajkumar Buyya, Rodrigo N. Calheiros, Jungmin Son, Amir Vahid
Dastjerdi, and Young Yoon : Software-Defined Cloud Computing:
Architectural Elements and Open Challenges, Cloud Computing and
Distributed Systems (CLOUDS) Laboratory Department of Computing
and Information Systems, arXiv:1408.6891v2 [cs.DC] 19 Feb 2015.

[23] E. Atashpaz-Gargari and C. Lucas: Imperialist Competitive Algorithm
An algorithm for optimization inspired by imperialistic competition,
IEEE Congress on Evolutionary Computation, 2007.

[24] Calheiros, R.N., Ranjan, R., De Rose, C.A.F., Buyya, R.K.: CloudSim:
A Novel Framework for Modelling and Simulation of Cloud Computing
Infrastructures and Services. GRIDS Laboratory. The University of
Melbourne, Australia (2009).

